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Abstract— Lifestyle monitoring (LM) technology is part of a 

new generation of telecare which aims to observe the daily 

activities of older or vulnerable individuals and hence determine 

if an intervention may be beneficial. The development and 

validation of new LM systems should ideally involve extensive 

trials with users in real conditions. Unfortunately, effective user 

trials are very challenging, generally limited in scope and very 

costly. In this paper, a simulator is proposed that can serve to 

generate synthetic data of daily activity which could then be used 

as a tool for the validation and development of LM systems. The 

most challenging part of the simulator is to replicate people’s 

behaviour. In the paper, a novel model of daily activity 

simulation is proposed. Such daily activities are dependent on a 

number of external factors that control the need or desire to 

perform the activity. The proposed simulator aims to reproduce 

behaviour such that the probability of performing an activity 

increases until the need is fulfilled. It is possible to parameterise 

the behavioural model according to a set of features representing 

a particular individual. Experimental verification that the 

desired features are reasonably reproduced by the simulator is 

provided. 

 
Index Terms— Simulation, Lifestyle Monitoring, Daily 

Activities, Telecare. 

I. INTRODUCTION 

IFESTYLE MONITORING is an approach that is 

increasingly being considered by health and care services 

to maintain older and vulnerable people in their home. As part 

of the newer generations of telecare, lifestyle monitoring (LM) 

aims to observe the activities of older or vulnerable 

individuals and if circumstances change determine if an 

intervention may be beneficial. Generally, LM uses a set of 

sensors fitted in the house and aims to detect those deviations 

from „normal‟ behaviour that could be indicative of a change 

in care needs (e.g. Mobility problems, difficulty of toileting, 

etc.). The development and validation of such a system should 

ideally involve trials with users in real situations. 

Unfortunately, establishing an effective user trial is a very 

challenging operation that is often limited in scope: a literature 

review [4] shows that only 4 trials have been conducted with 

more than 20 persons. In this paper, a simulator is proposed 

that can serve to generate synthetic data of daily activity 

which could be used as a tool for the validation and 

development of LM systems.  
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The aim is to develop a simulator that can generate a realistic 

sequence of daily activities, and then the subsequent response 

of a lifestyle monitoring system. The model must allow for 

changes to key parameters, so that it can simulate 

circumstances such as a reduction in mobility or illness that 

could lead to a change in care need. The simulation would 

then be used to generate the relevant data and hence to check 

if the LM system can accurately respond to the changes. The 

simulation could also serve other purposes, as for instance to 

evaluate the effect of a new type of sensor before physically 

integrating it and by consequence significantly reduce 

development costs.  

While this paper provides an overview of a possible complete 

simulation system, it focuses in particular on the simulation of 

daily activities as this can be considered as the most 

challenging aspect. Indeed, the activities undertaken by an 

individual during a day are driven by a number of factors and 

unlike machines, human behaviour can be unpredictable. In 

terms of the simulation this unpredictability is reproduced 

through the use of stochastic models.   

The motivations for and benefits of using a simulator and 

generated synthetic data for the development of  LM systems 

are presented initially. The proposed hierarchical approach to 

simulate daily activities, actions and sensor events is then 

presented.  

II. BACKGROUND AND MOTIVATION 

In England, over the next fifty years, the number of people 

over 65 is expected to rise by 56% and a similar trend is 

observed in most other western countries. As a consequence, 

numbers of researchers and governments are looking at novel 

solutions to support people in their own home by monitoring 

their daily activities [1,2,5,7,10,12].  How  ever, most of the 

research publications in this domain present results based on 

only a small number of users. Indeed, a review of the literature 

suggests that to the end of 2009 only 4 trials have been 

conducted with more than 20 participants [4]. The limited 

scale and scope of trials can largely be attributed to the 

difficulty of performing such experiments. Indeed, while it is 

desirable to evaluate a lifestyle monitoring system under real 

conditions, several issues generally arise which act to limit the 

scope of the trials. These include: 

a. Difficulty in recruiting participants who will accept a 

relatively intrusive system installation in their home 

without direct immediate return. 

b. The system should be installed and data observed over a 

long period of time. 

c. Difficulties in collecting ground-truth information. 

Indeed, to validate and develop a system that is supposed 
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to observe individual activity, it is essential to know 

which activity that individual is actually involved in at 

any time. This information could be collected by means of 

diaries, but these are not always accurate and can be very 

demanding for the participants if they need to be 

maintained over a long period of time. Another approach 

could be to visually monitor and manually annotate 

individual activity using video cameras on site, but this 

can be considered to be too intrusive and would require a 

laborious video transcription and annotation phase.  

d. In order to validate a system that aims to detect 

abnormality, a significant number of abnormal events 

must be observed. By definition, such abnormal events 

are rare and when a trial is conducted, it is therefore 

unlikely that these abnormal events occur frequently.  

 

Given these constrains, it becomes clear that trials with 

users, while ultimately essential, will generally be limited in 

scope. As a consequence, thorough and large scale testing on 

synthetic data can be of great benefit to the development of 

novel LM systems.  

By using a simulation tool, it becomes possible to simulate 

virtually any condition, and it becomes possible to test the 

effect of any change on the system or on subject behaviour. 

With a simulator it is possible to create a change in behaviour 

on demand, rather than running a real system while hoping to 

encounter specific types of change. Likewise, a simulator 

could provide information on the effect of including a new 

sensor (with known specifications) in the system before 

having to encounter the costs in both time and money of real 

world experiments.   

Verone et al [11] attempted to simulate behavioural data from 

a patient living in an intelligent home
1
. Their paper presents 

some interesting ideas and appears to provide a useful 

background in developing the simulator being proposed here. 

However, Verone et al only simulate room transitions based 

on daily behaviour profiles. More importantly, they do not 

propose any mechanism to modify behaviour according to 

specific changes in the subject‟s condition or care need.  

III. SIMULATION APPROACH 

The primary objective of the simulator is to generate data that 

can be used for evaluating the performance of a LM system 

and should be able to reproduce sensor activations that 

correspond to specific user behaviours. Note that there is a 

differentiation between those key features which are 

characteristic of behaviour or the system and those key 

parameters that translate these features into the values used  

for the simulation. Key features could for example be the 

number of times the subject has a drink in a day, the average 

time the individual takes for lunch or the expected error rate of 

a sensor. Key parameters are model parameters that reproduce 

these features. Some of these features can change with time, in 

particular when circumstances that result in a change in care 

needs is simulated.  

 

 
1Habitats Intelligents pour la Santé  
 

It can be assumed that individual behaviour is independent of 

the LM system, and therefore can be generated independently. 

The simulator can therefore be decomposed in two parts. The 

first part simulating individual behaviour and the second 

simulating the response of the LM system to these behaviours. 

Moreover, the simulation will be based on configurable 

parameters based on the key features that it is desired to 

simulate. Fig. 1 thus represents the structure of the simulation 

system. 

A. Simulation of behaviour 

Individual behaviour can be decomposed into two hierarchical 

levels. The first of these levels is the activity sequence, 

defining WHAT they are doing. The second level is then a 

sequence of actions, defining HOW they are doing it. For 

example, having dinner is an activity and turning the kettle on, 

opening the fridge, sitting on a chair and so on could be the 

associated actions. While activities are enduring events, 

actions are considered as instantaneous and are not associated 

with any duration.  

This hierarchical structure was chosen for the simulator in 

order to imitate human behaviour in that individuals tend to 

decide what they want to do (activities) according to a number 

of motivating factors and then to do it in a defined way 

(actions).   

Simulating realistic daily activities is a challenging task since 

activities performed are usually driven by a large set of 

factors. These include; basic needs, lifestyle, weather, TV 

programming, family visits among many others. The proposed 

approach to generating the sequence of daily activities is 

described in detail in section IV.  

Knowing that the subject is involved in a particular activity, it 

is possible to generate the corresponding set of actions. In 

practice, it is assumed that an activity follows a specific set of 

actions separated by a time interval. While the set of actions is 

fixed, the time interval between actions is randomly sampled 

from a probability density function (PDF). The parameters of 

the PDF are set for each interval between actions according to 

the expected time intervals and their variances. Note that it can 

be envisaged that in future versions of the simulator that 

several ways of performing a specific activity would be 

incorporated, for instance through the incorporation of a 

randomisation of a sequence of actions.  

Room Transitions 

Transitions between rooms requires special consideration. As 

an example, if an activity requires the subject to go to the 

kitchen, the exact room transitions to execute the “go to 

kitchen” action will be defined with respect to the subject‟s 

initial location. The initial location can only be known at run 

time since it depends on the location of the previous activity. 

To determine the sequence of room transitions at run time, 

graph theory is used. The house layout is coded as an 

undirected graph where edges are the locations and vertices 

are the possible transitions between locations. In order to 

travel from one location to another, the subject is assumed to 

use the shortest route, in terms of numbers of locations visited. 

Optimised search for the shortest path is a well known 

problem in graph theory and standard algorithms such as 
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Dijkastra‟s algorithm [6] are used for this task. When the 

sequence of locations visited is found, the transitions are timed 

proportionally to the walking speed of the subject. This latter 

is a subject parameter that can be changed to emulate 

behavioural changes.   

Run time parameter adaptation 

Note that transition rates and times are initially set to a 

standard value, but this value can then be modified at run time 

according to factors such as a change in the subject‟s health 

status or an environmental change (see Section III.C). 

Parameters can also be affected by events that have occurred 

in previous days. For example, a rule could be set to reduce 

the probability of going out shopping if the “going out 

shopping” action has been activated within the last three days. 

By doing so, it is possible to generate levels of dependency 

between actions performed in a day and actions performed in 

previous days, enabling simple weekly routines to be 

generated.  

B. System simulation 

Lifestyle monitoring systems include both hardware and 

software elements. The hardware element is the set of sensors 

deployed along with the communication platform while the 

software element is the algorithms that interpret the sensor 

data to generate a response. This software element does not 

require any simulation as the actual algorithms can be 

executed. Both the sensors and communication platform can 

be simulated using the generated set of actions and a set of 

rules that defines the sensors responses to specific actions.  

According to the functionality and characteristics of the 

simulated sensors, the ideal response to an action is defined as 

well as possible sensor errors. Generally, a sensor will respond 

to a specific action: for example, a door sensor will generate 

an “open” event when the door is opened and a “close” event 

when the door is closed. Then according to the specification of 

the sensor or test performed on this sensor, it is possible to 

estimate the probability of missing the event, the probability 

of generating events when nothing actually happens or to 

introduce a delay between the action and the sensor detecting 

it. These characteristics can be included in the simulator.  

C. Features and parameters 

The simulator must be able to simulate both individual and 

system behaviour according to a number of features. For 

example, a feature associated with the “having dinner” activity 

could be the average time of day the subject has dinner.  These 

features must then be transposed to model parameters, so that 

the data generated by the simulator reproduces the same 

features.   

These features are not necessarily constant and can be set to 

change while the simulation is running. In particular, it is 

desired to be able to simulate changes that can be associated 

with a change in care need (e.g. deterioration of mobility or 

illness). Features, and consequently parameters, will be altered 

by this change in a predefined way. As a result, the data 

generated by the simulator will be affected and it is possible to 

analyse the response of the LM algorithms to these changes.  

As an example, it might be expected that a relatively benign 

illness such as a cold would increase the time spent in bed, 

reduce the probability of going out and so forth. Such an 

illness may also have differing degrees of severity that can 

change from day to day. 

In order to be able to simulate this condition, the way a change 

affects a feature is weighted by a severity variable 

]1,0[coldS . Thus,
 

0coldS   means the absnce of a cold 

and 1coldS  means that the severity is a maximum. 

 
Figure 1- Simulation scheme: Change in care needs can represent a change in person health or physical condition and 

is going to affect the subject’s parameters. The change in subject’s parameters is going to affect the output of the 

simulator (sensor events) and the algorithms can be validated by matching the simulated changes and the detection of 

these changes by the algorithms. 
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In the previous example, the average time spent in bed could 

be affected by the cold in the following way: 

 

 *cold

std

bedbed STT   (1) 

 

Where 
std

bedT  is the expected time spent in bed in a standard 

situation, bedT  is the actual expected time spent in bed and    

is constant that regulates the effect of a cold on the time spent 

in bed.   can be seen as the additional time spent in bed with 

a cold of severity maximum.  

The way such a variable changes can be by following a 

specific functions. Some examples of the severity function 

associated with particular conditions could be: 
 Affine function to simulate a regular trend of 

degradation or improvement. 

 Sinusoid function to simulate a cyclic condition with 

periodical behaviour. 

 Exponential function to simulate an exponential 

degradation or improvement. 

 Combination of sinusoid and affine function to 

simulate a general trend of improvement or 

degradation with periodic local variation. 

 Affine function and white noise to simulate a general 

trend of improvement or degradation with some 

random local variations. 

 A parabolic function to simulate a temporary 

condition (e.g. cold or a flue). 

 

In order to make the simulation more realistic, it is possible to 

simulate other types of change related to external factors such 

as the weather, the TV programme schedule or day of the 

week. These can affect the subject parameters using the same 

mechanism as previously defined. However, while they do not 

represent any change in care need they do represent realistic 

changes in profile that LM algorithms should be able to handle 

appropriately. 

IV. SIMULATION OF DAILY ACTIVITY 

 

The simulation of daily activity consists of the generation of 

the sequence of activities performed by an individual. Because 

of the dynamic nature of the daily activity simulation, it is 

necessary to keep track of the current value of the simulated 

time as the simulation proceeds. The simulation clock is a 

variable that gives the current value of time which is then 

incremented by a fixed value. The unit of the increment can be 

chosen according to the level of precision needed. 

As previously stated, daily activities are dependant on a 

number of external factors that control the need or desire to 

perform them. Arguably, a desire can be the consequence of a 

need, generalised here by using the word need even though in 

some cases desire could be considered more appropriate.  

The aim is to build a simple model of the need to perform a 

specific activity. It provides at each time the probability of 

acting on a need. The main assumption of the proposed model 

is that the  

need to perform a specific activity will increase with time until 

the need is fulfilled and the activity is performed. Figure 2 

presents the simplest form of the need model where the 

probability of performing an activity increases linearly with 

time. This model can be defined such that: 

  

 



1

t0t when   t  .p  

(2) 

And 


1
t when 1  t p  

 

where pt is the probability of performing an activity at time t 

and  is the single parameter regulating the model.  
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Figure 2 - Representation of a linear need model where the 

probability p of performing an activity increases linearly with 

time 

 

At each time interval it is randomly decided if an activity with 

the probability pt  is to be performed or not. From a 

probabilistic point of view, a Bernoulli Trial is performed with 

a probability of  “success” of pt where “success” means that 

the activity is performed. 

When an activity is performed at time T, it is assumed that the 

need is fulfilled and the probability of performing the activity 

at time T+1 is returned to zero and starts again to increase 

with gradient  from this point. Fig. 3 then represents the 

evolution of p for an activity that is repeated throughout the 

day. 

 

The need model can be used in different ways to simulate 

different activities. For example, for an activity that is 

repeated at regular intervals throughout the day, the behaviour 

represented by Fig. 3 can be produced: when the activity is 

performed the value of p returns to zero and starts again to 

increase linearly until the activity is performed again. Other 

types of activity include those that are normally associated 

with a specific time of day, as for instance having dinner. In 

this case, p remains to zero until a defined time of day when it 

starts to increase until the activity is performed. Note that, in 
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this case, the time when the activity starts to increase can be 

considered as a second parameter (the first parameter being 

the gradient ).  

 
Figure 3 - Evolution of the probability of performing an 

activity with regard to  the time of day.  At each time interval 

it is randomly tested as to whether the activity is performed 

using the  probability of occurrence  p. Δt corresponds to the 

time interval between two occurrences of the activity. 

 

In the former case, the feature that serves to define the 

parameter could be the average frequency of the activity and 

in the second case it may be the average and variance of the 

time of day the activity starts.  

Note that when is large, the probability, pt, of the activity to 

occur increases more rapidly and as a consequence, the 

expected time t before the action is performed is reduced. In 

order to set up the simulator, it is useful to formally establish 

the link between and t. Indeed, it may be desired to set the 

system such that an activity occurs at a specific frequency on 

average. A mathematical description of the model is thus 

necessary to define the relationship between and the 

probability distribution of t.  

At each time interval a Bernoulli Trial probability of success 

pt is calculated using equation 2. It is decided if the activity is 

performed or not according to probability pt when t is the 

time lapse (number of time units) before the activity is 

performed. Thus t has values in the range {1, 2…., 1/} 

since pt = 1 when t = 1/. The probability distribution of t is 

defined as: 
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where 














k


1
 denotes the binomial coefficient. 

By definition the expected value of t is: 

    







1

1

.

k

k

ktpktE  (8) 

and its variance is: 

       2

1

1

2. tEktpktVar

k

k

 






 (9) 

 

Equations 8 and 9 can then be used to calculate the 

expectation and the variance of t. A lookup table is built with 

reasonable values of  associated with the corresponding 

expectation and variance. Then, when the simulator is to be set 

for a specific value of expectation or variance, it is possible to 

refer to the closest value in the lookup table to estimate a 

suitable parameter value for .  

V. SIMULATOR SETUP 

The proposed simulator includes a large number of parameters 

and the development of the simulation must comprise a 

parameterisation step.  As shown in Fig.1 the parameters are 

clustered in four categories: 

 Subject parameters - Parameters related to the subject‟s 

behaviour. These include: 

 List of activities. 

 Activities parameters: average frequency of 

occurrence if they are repeated activities or the mean  

and variance of the time they occur if they normally 

happen around a particular time of day.  

 The sequence of actions which are associated with 

each activity as well as the average time lapse 

between actions.    

 Sensor parameters - Sensors rules that are used to infer 

sensor event from a subject‟s actions. These include: 

 List of sensors 

 Rules of activation 

 Mis-detection rates 

 Frequency of spurious events and probability of 

occurrence, mean and standard deviation of delay.  

 Change parameters – Including: 

 List of factors that imply a change in care need. 

 Definition of functions that define how the model is 

affected by factors that imply a change in care need. 
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 Environmental parameters - External parameters that can 

affect a subject‟s behaviour but are not directly related to 

the subject: Including: 

 Weather 

 Day of the week 

 Television programme schedules 

 Definition of functions that define how the model is 

affected by environmental factors. 

The above parameters represent our simulator, other aspects 

should be defined according to specific needs of the simulator 

usage.  The simulation parameters must reflect characteristics 

of the real world and ideally should be inferred from 

experiments.  Two experiments were set-up to gather 

information and set simulator parameters:  

 Experiments conducted in a simulated dwelling where 

subjects were asked to perform specific activity or actions. 

These experiments allowed us to estimate the expected 

error rates of the sensors as well as estimating the expected 

time lapse between actions within a particular activity.   

 Experiments conducted with four older people for at least 

18 weeks where diaries and questionnaires were used to 

record activities and events. These experiments were used 

to setup the activities parameters of the simulator.   

However, for practical reasons, it cannot be expected that all 

parameters can be inferred from these experiments. The other 

parameters can  be evaluated by expert knowledge.  

VI. MODEL VERIFICATION 

 

Simulation model verification is often defined by reference to 

Sargent
 
[8] as “ensuring that the computer program of the 

computerised model and its implementation are correct”. A 

formal definition of model validation is given by Schlesinger 

et al [9]: “substantiation that a computerized model within its 

domain of applicability possesses a satisfactory range of 

accuracy consistent with the intended application of the 

model”.  

 

For the daily activity simulator, there is no set of specific tests 

that can be applied to determine the absolute “correctness” of 

the model.  It is, however, possible to check if the simulator 

model meets specifications and that it fulfils its intended 

purpose. In particular, it is possible to verify that a user set of 

parameters are reflected in the simulated data. Indeed, because 

of the approximation made to find 

parameters and the assumption that activities are independent 

some difference between specified and observed parameters 

are expected to be observed.  

Independent activity testing – Here activities are generated 

independently with only one type of activity being generated 

at a time, and hence not dependent on any other activity. The 

validity of the simulation of activities that are repeated 

throughout the day was checked using the “drinking” activity. 

The main feature of this activity is its frequency, the average 

number of time it occurs per day (n_day). Table 1 reports  on 

the expected and corresponding observed behaviour when 

1,000 days have been simulated.   

Table 1  Expected and observed averages of the number of 

times the activity is repeated during the day when simulated 

over 1000 days 

Expected Observed 

n_day Average(n_day) 

1 1.015 

2 2.000 

4 4.026 

8 8.001 

16 15.900 

32 31.692 

Then, an example of activity that usually happens around a 

specific time of day was considered, in this case the “lunch” 

activity is simulated.  The main features associated with this 

activity are the average and the standard deviation (std) of the 

time of day the activity occurs (time) and the probability of 

activity occurrence (p).  Table 2 shows the expected and 

corresponding observed behaviours when 1,000 days have 

been simulated.   

Table 2:  Expected and observed features of an activity 

occurring around a specific time of day when simulated over 

1000 days 

Expected Observed 

time std 

(time) 

p Average 

(time) 

std 

(time) 

p 

12:00:00 0min 1 12:00:00 0.0min 1.000 

12:00:00 10min 1 11:59:53 9.8min 1.000 

12:00:00 20min 1 12:00:46 20.0min 1.000 

12:00:00 40min 1 12:01:49 41.3min 1.000 

12:30:00 20min 1 12:31:20 20.9min 1.000 

12:00:00 20min 0.9 12:00:45 20.2min 0.899 

12:00:00 20min 0.5 12:00:32 20.7min 0.493 

12:00:00 20min 0.1 12:03:55 21.3min 0.099 

Integration testing - Previous testing checked that it is possible 

to observe expected results when activities are generated 

independently. A similar test was then performed when all 

activities were generated together and including dependency 

between activities.  

If an activity is to be started while another activity is being 

performed, the new activity enters a First In First Out (FIFO) 

“waiting list” and will actually start when current activity and 

other activities in the waiting list are finished. Consequently, 

the new activity will not start at the time selected by the need 

model and it can generate differences between expected and 

observed features.  

We define the “time active” as the total time spent in any 

activity. It is anticipated that the longer the time active, the 

more the observed activity occurrences are expected to 

coincide with other activities. The time active can be seen as 

how busy the user is. As in the previous experiment, expected 

outcomes were compared with the observed features. This 

time we want to observe the effect of the other activities, 

therefore the amount of other activity generated is measured as 

the total expected time spent performing any activities during 
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the day (time active).  Table 3 reports on the expected and 

observed number of times the drinking activity is performed 

during a day along with the time active. The other activities 

parameters are changed in order to vary the total amount of 

time the subject is active during a day. Table 4 then shows the 

outcomes of the tests for the lunch activity where the expected 

time of day (time) is shown together with the associated 

standard deviation and the daily probability of the activity are 

again compared with observed values.  

Table 3  Expected and observed average number of times the 

activity is repeated along the day. Time active is the total 

expected time spent in any activity during a day when 

simulated over 1000 days 

Expected Observed 

n_day Time active  (min) n_day 

1 685 1.366 

8 744 8.242 

32 946 28.081 

8 596 8.284 

8 872 8.163 

8 1035 8.063 

 

Table 4  Expected and observed features of an activity that 

occurs around a specific time of day. Time active is the total 

expected time spent in any activity during a day when 

simulated over 1000 days 

Expected Observed 

time  Std 

(time)  

Time 

active 

(min) 

Average 

(time) 

Std 

(time) 

12:00:00 0min 761 12:01:34 8.52min 

12:00:00 20min 761 12:01:30 22.54min 

12:00:00 40min 761 11:58:33 39.65min 

12:00:00 20min 562 12:00:25 21.18min 

12:00:00 20min 1273 12:07:26 25.21min 

Generally, the observed values are reasonably close to the 

expected values. This is particularly true when the activities 

are generated independently, which suggest that the model 

have been correctly implemented. As expected, when all 

activities are generated at the same time and under particular 

extreme conditions, there is a larger discrepancy between 

observed and expected value. This is the case when: 

 an activity is expected to be repeated a many times 

throughout the day.   

 the variability of an activity is set to be 0. While it is 

expected that the activity arises always at the same time of 

day, in practice, variability arises when some other 

activities are performed at the time when the activity is 

supposed to occur.   

 when the generated activities are almost filling the 24 

hours of the day. In this case, since it is assumed that only 

one activity can be performed at a time, the activity will 

happen when there is  “free time” and by consequence will 

not necessarily exactly respect the expected time of 

occurrence.  

As a consequence, if the application of the simulator requires 

the production of precise features such as the average time of 

day the activity occurs, it is recommended to set the 

parameters to stay outside these conditions. However, for the 

purpose intended by this simulator, the validation experiments 

suggest that the observed results are reasonable and can be 

used as such.  

These experiments suggest that the computer programming 

and implementation of the conceptual model is correct and 

shows the limitation of the model in some particular and 

known conditions.  

In additions to the controlled model verification presented in 

this section, a lifestyle monitoring system
2
 has been installed 

with four older people. They have recorded thier activities in a 

diary for at least 6 weeks. We used the collected diaries and 

the lifestyle monitoring system specification to setup the 

simulator and thus generate a large amount of synthetic data. 

VII.  LIMITATIONS 

It is believed that the proposed model is satisfactory for the 

intended application however it can be considered to suffer 

from number of limitations for a more realistic simulation of 

daily activities that could be required in other applications.  

The model is built to reproduce realistic statistical features, 

however it does not integrate firm limitations encountered in 

real life. For example, it might be impossible to go shopping 

after 8pm because the shop is closed. To cope with this 

problem the model must allow the possibility to integrate 

some „hard rules‟ into the model.  

Furthermore, if the simulator needs to be highly realistic, the 

degree to which the synthetic daily activities resemble real life 

activities should be evaluated. A face validity test [8] could be 

performed where knowledgeable persons assess whether the 

model‟s behaviour is reasonable. 

VIII. CONCLUSION 

An important barrier for the development of the next 

generation of intelligent telecare systems [3, 13] is the 

difficulty of performing effective field evaluations. 

Consequently, the pre-evaluation of such systems using 

synthetic data would be beneficial. In this context a functional 

simulator of  a lifestyle monitoring system is proposed with a 

particular emphasis on the development of a new simulation 

model of daily activity. The proposed simulator can be 

parameterised to simulate specific individuals or sets of 

sensors. The performed experiments show that the simulator is 

able to reproduce data containing the desired features and is 

thus now being used in the development of LM algortithms.    
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