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Abstract text 28 

Bone tissue healing is a dynamic process that is initiated by the recruitment of osteoprogenitor 29 

cells followed by their migration, proliferation, differentiation and development of a 30 

mineralising extracellular matrix. The work aimed to manufacture a functionalised porous 31 

membrane that stimulated early events in bone healing for initiating a regenerative cascade. 32 

Layer-by-layer (LbL) assembly was proposed to modify the surface of osteoconductive 33 

electrospun meshes, based on poly(lactic-co-glycolic acid) and nanohydroxyapatite, by using 34 

poly(allylamine hydrochloride) and poly(sodium4-styrenesulfonate) as polyelectrolytes. 35 

Molecular cues were incorporated by grafting peptide fragments into the discrete nanolayers. 36 

KRSR sequence was grafted to enhance cell adhesion and proliferation, 37 

NSPVNSKIPKACCVPTELSAI to guide bone marrow mesenchymal stem cells 38 

differentiation in osteoblasts, and FHRRIKA to improve mineralisation matrix formation. 39 



  

2 
 

Scanning electron microscopy, infrared and X-Ray photoelectron spectroscopy demonstrated 40 

the successful surface functionalisation. Furthermore, the peptides incorporation enhanced 41 

cellular processes, with good viability and significant increase of alkaline phosphatase activity, 42 

osteopontin and osteocalcin. The functionalised membrane induced a favourable in vivo 43 

response after implantation for four weeks in non-healing rat calvarial defect model. It was 44 

concluded that the multilayer nanoencapsulation of biofunctional peptides using LbL 45 

approach has significant potential as innovative manufacturing technique to improve bone 46 

regeneration in orthopaedic and craniofacial medical devices. 47 

48 
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Introduction 49 

Biomimetic scaffolds are ideal for bone regeneration due to their ability to mimic the native 50 

extracellular matrix environment by incorporating biomolecules such as extracellular matrix 51 

(ECM) proteins or short peptide fragments via surface modification or bulk incorporation. 52 

They have the potential to interact with cells, promoting desirable cellular activities, i.e. 53 

adhesion, proliferation, and differentiation [1]. Bone morphogenetic proteins (BMPs) are the 54 

largely used growth factors involved in the improvement of bone regeneration [2], showing 55 

their potential to differentiate mesenchymal stem cells into osteogenic cells [3]. However there 56 

are a number of issues surrounding the use of full proteins in the body, that include: folding 57 

randomly, dose, price, susceptibility to degradation, immunogenicity and purification [4]. 58 

Therefore, short peptides chain represents a viable alternative to these problems related with 59 

full protein use and can reciprocate the signalling and binding domains of the long chain 60 

proteins. Short peptides are characterised by reduced manufacturing cost and purification time 61 

as well as they are much more stable and resistant than long protein to pH and thermal 62 

changes [5]. Since the discovery of the arginine-glycine-aspartic acid (RGD) sequence in 63 

fibronectin 30 years ago [6], there has been a vast array of proteins found in bone with high 64 

number of cellular interactions possible through the different cell adhesion receptors. 65 

Recently, Gentile et al. proposed two identified peptide fragments, FHRRIKA (phenylalanine-66 

histidine-arginine-arginine-isoleucine-lysine-alanine) and KRSR (lysine-arginine-serine-67 

arginine) for grafting scaffolds surfaces for bone regeneration [7]. It has been reported in 68 

literature that KRSR sequence, identified in different adhesive proteins related with bone (i.e. 69 

fibronectin, vitronectin, bone sialoprotein) is suitable for enhancing the osteoblast adhesion to 70 

scaffold surfaces. [8] Dee et al. have demonstrated a comparable adhesion of osteoblasts on 71 

surfaces modified by incorporation of KRSR and RGD [9]. 72 

Furthermore, several studies described that FHRRIKA sequence, derived from bone 73 

sialoprotein, supported the matrix mineralisation [10]. Interestingly, as reported by Schuler 74 
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RGD combined with FHRRIKA or KRSR caused an improved osteoblast activities [11]. Other 75 

short peptide fragments proposed in literature for bone regeneration are the hexapeptide 76 

fragment GFOGER, extracted from collagen (type I), that stimulates the differentiation of 77 

osteoblasts [12, 13] and the C-terminal pentapeptide YGFGG, derived from the osteogenic 78 

growth peptide ALKRQRTLYGFGG, corresponding to the C-terminal of histone H4, able to 79 

stimulate the proliferation and alkaline phosphatase activity (ALP) of MC3T3 osteoblastic-80 

like cells [13]. Finally the long peptide sequences, such as NSPVNSKIPKACCVPTELSAI 81 

derived from BMP2, showed their potential to induce osteogenesis in vivo [13, 14]. However, 82 

the overall number of peptide fragments used in bone can increase by using combinations of 83 

the bone peptide sequences. The interactions between peptides or peptide combinations and 84 

cells are not yet fully understood. 85 

The most established methods proposed in the literature are to graft short peptide sequences 86 

by adsorption [15] or chemical grafting (by click-chemistry or carbodiimide) [16]. Although, 87 

traditional chemistry has been widely used to functionalise constructs with peptides, it does 88 

not allow creation of 3D gradient peptide structures. In this work we propose an alternative 89 

method, called layer-by-layer (LbL) assembly to build up peptide gradients in order to 90 

modulate at nanoscale cellular response and induce faster bone formation. LbL technique is 91 

based on the alternating exposure of positively and negatively solutions of charged polymers 92 

called polyelectrolytes (PEs). It is an inexpensive, aqueous, conformal method for the creation 93 

of nanolayered coatings with custom-made composition and structure, showing a large range 94 

of optical, electrical, and biological properties [17, 18, 19]. Due to its versatility and simplicity for 95 

incorporating high loadings of different types of biomolecules with a fine control over 96 

multilayers structure, LbL provides a rational method towards the control of specific 97 

biological activities. Recently, Zhou et al. prepared electrospun mesh, based on cellulose 98 

acetate, modified by LbL in order to enhance antibacterial and antioxidative properties. Silver 99 

nanoparticles-lysozyme compound and tannic acid (AgNPs–Lys/TA)n were used as a formula 100 
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to obtain the multilayered coating, where n was the number of the AgNPs–Lys/TA bilayers. 101 

The outermost layer was Lys composite when n equalled to 5.5 and 10.5. These mats revealed 102 

to be suitable in the areas of food packing, tissue engineering and wound dressing [20]. 103 

Moreover, Layer-by-Layer has been used to investigate the in situ differentiation of 104 

mesenchymal stem cells (MSCs) into mature osteoblasts on titanium films, by using chitosan 105 

and plasmid DNA (pEGFP–hBMP2) as polyelectrolytes. Compared with control groups, 106 

MSCs cultured onto LbL-modified titanium films displayed higher production levels of 107 

alkaline phosphatase and osteocalcin over 7 days and 14 days culture, respectively [21]. 108 

Therefore, LbL is highly attractive as a route to functionalise biomaterials or devices that 109 

would otherwise be incapable of stimulating specific biological processes or enhanced healing. 110 

While the research reviewed above has shown the potential for LbL to deliver small 111 

molecules that retained their functionality, to date the stimulation of anabolic biological 112 

processes by nanoencapsulated peptides has not been reported. In this work, we proposed the 113 

LbL method to modify osteoconductive electrospun composite membranes (based on PLGA 114 

and nano-hydroxyapatite) in order to impart a cascade of stimuli at the nanoscale and to 115 

control the adhesion, proliferation and differentiation of mesenchymal stem cells, and the 116 

formation of new bone matrix [22]. LbL allows to create a peptide gradient, where the cells, 117 

according the dissolution of the multilayered coating, can interact subsequently with the 118 

different peptide sequences (Figure 1A-B) for: (1) enhancing their adhesion, spreading and 119 

proliferation (interaction with KRSR grafted on the top nanolayers), (2) guiding their 120 

differentiation in osteoblasts (NSPVNSKIPKACCVPTELSAI grafted to the middle 121 

nanolayers), and (3) improving the formation of mineralisation matrix (FHRRIKA on the 122 

bottom nanolayers). The biocompatibility and osteogenic response has been evaluated in vitro 123 

studying bone marrow mesenchymal stem cells differentiation in osteoblasts and in vivo using 124 

non-healing rat calvarial defect model.  125 
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To summarise, it is the final aim of this work to manufacture a biomimetic construct using 126 

LbL technology to simulate and so initiate a physiological bone healing cascade. If successful, 127 

this approach could find wide application as a simple and reliable method to modify a wide 128 

range of medical devices where stimulation of bone tissue regeneration was clinically 129 

challenging and necessary. 130 

131 
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2. Results and Discussion 132 

A summary of the experiments is reported in Figure 1. The multilayered structure was 133 

fabricated by Layer-by-Layer after accurate optimisation of the process parameters (A). 134 

Specific bone peptides were grafted to the positive charged polyelectrolytes in order to mimic 135 

the “bone healing” cascade (B). The osteogenic potential was measured in vitro after seeding 136 

rat bone marrow mesenchymal stem cells (BM-MSCs) (C) on the membrane surface and in 137 

vivo using a rat calvarial bone model (D). 138 

In this work composite membranes, based on poly(lactic-co-glycolic acid) (PLGA) and 139 

nanohydroxyapatite (nHA), have been obtained by electrospinning. This conventional method 140 

has been widely accepted as the simple and less expensive method to fabricate random or 141 

aligned fibrous matrices through the extrusion of the solution from a needle by an high 142 

voltage electric field [23] By tuning electrospinning processing parameters it is possible to 143 

modify fibres morphology and dimensions to enhance the spun morphology for promoting a 144 

positive cellular response [24]. After optimisation of the process parameters (solution 145 

concentration 20 %, voltage 20 kV, distance 18 cm and flow rate 2.5 mL/h) and smooth nano- 146 

and micro- fibres were formed with the occurrence of some nHA aggregates, with a size 147 

ranging from 800 nm to 1.4 µm (Figure 2A). 148 

For mimicking the cascade of bone healing, the LbL approach has been used for obtaining a 149 

multilayered coating on the electrospun membranes in order to graft appropriate bone peptide 150 

sequences to the nanolayers (Figure 1A). Furthermore, 14 layers was chosen as final number 151 

after optimisation of several process parameters: number of layers (10, 14 and 20 (Figure 152 

S1)), dipping time into the PE solutions (10 and 15 minutes), polyelectrolytes molar 153 

concentration (0.25 and 0.5 M), and bone peptide sequences grafting (several combinations 154 

within the multilayers). 155 

An optimised peptide gradient has been created after grafting to PAH: KRSR (from layer 10 156 

to 14) to enhance cell adhesion, spreading and proliferation [11], 157 
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NSPVNSKIPKACCVPTELSAI (from layer 6 to 10) to guide BM-MSCs differentiation in 158 

osteoblasts [12] and FHRRIKA (from layer 2 to 6) to improve the formation of mineralisation 159 

matrix [11, 12]. Furthermore the small amount of peptide grafted on the PAH did not influence 160 

the ȗ-potential of the solution (+14.6 mV respect with +14.9 mV of pure PAH), while PSS 161 

solution was always negatively charged with ȗ-potential of -18.6 mV. 162 

Finally, the presence of the osteoconductive nanohydroxyapatite in the electrospun mesh is 163 

present to influence the cells to maintain the new osteoblast-like phenotype and guide their 164 

growth along the fibre orientation [25]. The manufactured membranes were coded with the 165 

corresponding number of the last layer created, following with “_P” if the bone peptide 166 

sequences were grafted to PAH.  167 

The surface morphology of the multilayered coating after LbL assembly was analysed by 168 

Scanning Electron Microscopy (SEM) (Figure 2B). The membranes presented an average 169 

fibres diameter of 1.7 ± 0.5 µm, without compromising the micro-porosity for nutrient 170 

transport, making available biocues of the native ECM [26]. Successful immobilisation of 171 

poly(sodium4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) grafted 172 

with peptides was monitored by several techniques although qualitative and semi-quantitative 173 

information were provided. Specifically, Energy dispersive spectroscopy (EDS) proved the 174 

formation of the multilayer coating by the difference in the amount of Sulphur and Nitrogen 175 

(Figure 3A and B). For 14L_P membrane, S and N content was 8.8 ± 0.5 wt. % and 5.5 ± 0.3 176 

wt. % considerable higher than the amounts detected in the uncoated mesh (0.1 wt. % for 177 

sulphur and 0.5 wt. % for nitrogen). Furthermore, the maps (Figure 3B (ii)) evidenced a 178 

uniform distribution of sulphur (pink dots) and nitrogen (green dots) on the membrane surface, 179 

that was not observed for pure composite meshes, where calcium (red dots) and phosphorous 180 

(blue dots) elements were present only (Figure 3A (ii)). 181 

X-ray photoelectron (XPS) and infrared spectroscopy (ATR-FTIR) were performed to analyse 182 

the surface composition of the membranes before and after LbL assembly. Particularly, 183 
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Figure 4A shows the XPS survey spectra after aminolysis treatment (PLGA/nHA_am) and 184 

after the obtainment of 1, 4 and 14 layers. The surveys showed the characteristic S2p peak at 185 

168eV and N1s peak at 399.5 eV, demonstrating PSS and PAH have been successfully 186 

introduced. 187 

The resulting atomic percentage of the main characteristic elements of the coating (C1s, O1s, 188 

N1s and S2p) and the atomic ratio between S/N with the increase of layers number has been 189 

calculated and reported in Table 1. 190 

XPS confirmed again the realisation of the multilayer where the content of nitrogen and 191 

sulphur increased. Moreover, the S/N atomic ratio had an alternating regular trend, suggesting 192 

modifications in the surface chemical composition after LbL assembly. Particularly, S/N ratio 193 

was higher with the PSS as top layer where sulphur was the representative chemical element 194 

of PSS and nitrogen was for PAH. Similar results were observed previously by the same 195 

authors, after functionalising PLGA dense film by LbL assembly (using the same PEs of the 196 

current work) to impart antimicrobial activity after incorporation of an antibiotic drug [19]. 197 

Notwithstanding, the presence of the peptides was influencing slightly the values of nitrogen 198 

content in the even layers, due to their low amount grafted to PAH (data not shown). 199 

The high resolution spectra for C1s along with the curve fit (Figure 4B) show three peaks 200 

attributed to the different Carbon oxidation states: (1) 284.7−285.0, (2) 286.8−287.0, and (3) 201 

288.5−289 eV, corresponding to −C−H or−C−C− bonds, to −C−O- bond [27], and to -N-C=O 202 

(amide) groups [28] respectively. Moreover, from Table 1 that summarises all the data, it is 203 

observed that these components content varied significantly. The concentration of -N-C=O 204 

(23.5±1.4% for the aminolysed sample) decreased drastically with the increase layer number 205 

(4.2±1.1% for 14L_P). For the coated sample, the component at 284.7 eV corresponding to 206 

C−C bonds increased reaching a final value of (83.0±2.3%) and the component at 286.9 eV 207 

attributed to C−O bonds decreased reaching a final value of (11.8±1.2%), suggesting the PE 208 

coating. 209 
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Furthermore the infrared spectra showed in Figure 5A revealed the presence of the 210 

characteristic chemical bands of the polyelectrolytes: for poly(sodium4-styrenesulfonate): ȞO-211 

H stretching of the adsorbed water (frequency range 3700 - 3000 cm-1), aromatic ȞC-H 212 

stretching (3100 cm-1); alkyl ȞC-H stretching (2920 cm-1); aromatic įC-H bending (1800 and 213 

1925 cm-1); ȞO-H bending vibrations of absorbed water (1640 cm-1), aromatic ȞC=C- 214 

stretching (1600, 1500, 1450 and 1410 cm-1), ȞSO3
- symmetric and asymmetric stretching 215 

(1040-1005 cm-1 and 1190-1130 cm-1 respectively) [29]. 216 

Poly(allylamine hydrochloride was characterised by the following chemical bands: ȞN-H 217 

stretching (3360 cm-1); alkyl ȞC-H stretching (2920 cm-1); N-H symmetric and asymmetric 218 

scissoring vibrations (1490 cm-1 and 1580 cm-1 respectively), and ȞN-H asymmetric stretching 219 

(1330 cm-1 [29]. Finally, the presence of the peptide grafting into nanolayered structure has 220 

been indicated by the typical absorption peaks of the Amide I and II at 1650 and 1520 cm-1 221 

respectively) [30]. Amide A and III of the peptides typical bands were not clearly observed 222 

because the polyelectrolytes bands caused an overlap. 223 

In vitro dissolution tests has been performed for testing the coating stability. ATR-FTIR 224 

spectra were obtained after 2, 4 and 6 weeks of immersion in Phosphate Buffer Saline (PBS). 225 

Figure 5B-D shows that the intensity of the characteristic chemical bands of PSS, PAH and 226 

peptide sequences decreased with the increase of immersion time. Particularly, after 2 and 4 227 

weeks it was calculated a dissolution degree of ~35 and ~75 % respectively. Finally after 6 228 

weeks it was noticed only weak absorption peaks of the corresponding polyelectrolytes, 229 

suggesting a complete dissolution of the coating. The dissolution measured is in accordance 230 

with the time required for the osteoblastogenesis in vitro [31]. 231 

The presented design of the functionalised membranes was proposed after combination of 232 

several process variables and characterising not only by physico-chemical characterisation but 233 

also by analysing cells behaviour (as reported in the supporting information section also). In 234 

this study we used bone marrow-derived mesenchymal stem cells, the best characterised cells 235 
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to represent adult stem cell population capable of differentiation into various lineages [32]. The 236 

BM-MSCs were extracted from rats according the protocol proposed by Santocildes-Romero 237 

[33] and were seeded on uncoated and coated membranes. 238 

Designing and manufacturing a biocompatible materials is one of the most challenging key 239 

feature for the in vivo scaffold implantation. Therefore, several approaches have been 240 

described in literature for modifying successfully the surface of scaffolds, such as by physical 241 

absorption, encapsulation, chemical treatment, and ionic or covalent binding.[34] However the 242 

encapsulation and physical absorption are characterised by weak biomolecules stability due to 243 

their fast release when the functionalised scaffolds are implanted in vivo for a medium and 244 

long-term. In addition, the entrapped biomolecules present poor resistance to shear stress of 245 

the fluids. [34] The LbL assembly is a versatile and environmental-friendly method, widely 246 

used in many fields, that allows the immobilization of different biomolecules to impart 247 

specific biological activities. Moreover, in this work the covalent immobilization of bone 248 

peptide sequences permits to avoid the removal of the grafted biomolecules by washing [18]. 249 

Biocompatibility tests were performed to evaluate whether the polyelectrolytes and the 250 

grafting between PAH and peptide sequences affected the BM-MSCs viability and 251 

proliferation. PrestoBlue® analysis (Figure 6A) showed that BM-MSCs in both coated 252 

membranes with and without peptides exhibited a metabolic activity higher comparable with 253 

the control after 3 and 7 days. In the case of 14L_P sample, the cells displayed a significant 254 

higher metabolic activity (i.e. after 7 days of cells seeding, normalised fluorescence units for 255 

14L_P and 14L were 0.243 ± 0.021 and 0.152 ± 0.018). 256 

Therefore, the addition of the peptide sequences affected dramatically the adhesion and 257 

metabolic activity of BM-MSCs in a short term period, and particularly the authors found 258 

40% more viability on membrane with KRSR grafted to the top layer in comparison with 259 

FHRRIKA and NSPVNSKIPKACCVPTELSAI (see Figure S2). Sun et al. described also the 260 

role of KRSR influence, where the MC3T3-E1 attachment and osteogenic differentiation was 261 
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improved significantly on the TiO2 anodized nanotube-layers grafted with KRSR for 262 

orthopaedic and dental implants applications.[35] Moreover, Schuler et al. reported that 263 

scaffold surfaces modified with KRSR sequence preferred osteoblast-like cells in comparison 264 

with fibroblasts or endothelial cells in terms of cell proliferation. [11] 265 

It is commonly accepted that changes of Alkaline phosphatase activity in bone cells are 266 

associated with a change of the differentiated state. Generally, an increase of ALP enzyme 267 

activity is correlated with bone formation, increasing during the bone formation stage. [36] Not 268 

surprisingly, the ALP quantification data (Figure 6B) showed significantly higher activity 269 

levels when cells were cultured under osteogenic media rather than basal media. However, at 270 

day 14 and 21 the levels of ALP activity on 14L_P under basal media cultures are 271 

significantly higher than PLGA/nHA and 14L membranes (i.e. at day 21 under basal media 272 

culture the grafting of the peptide significantly (* p<0.05) higher ALP activity levels 273 

(0.046±0.004) in respect to pure composite membrane (0.024±0.003)). Although PLGA/nHA 274 

and 14L membranes are not capable of inducing the ALP protein expression alone, they were 275 

capable of improve the ALP expression during the differentiation process of BM-MSCs to 276 

osteoblasts under osteogenic media condition for 21 days of culture. 277 

In addition to the reported biological data, the differentiation level of BM-MSC under basal or 278 

osteogenic media was assessed by quantitative expression of two major bone-specific proteins, 279 

namely, osteopontin (OP) and osteocalcin (OC). The relative expression of those proteins was 280 

normalised in respect to with the cell proliferation (Figure 6C-D). It is well described that 281 

osteoblasts are differentiated cells that mineralise the bone matrix. OP that is synthesised by 282 

bone forming cells, is a phosphoprotein, which has calcium-binding domains and is 283 

responsible for cell attachment, proliferation, and ECM mineralization [37]. While OC, is a 284 

bone-specific glycoprotein capable of binding with calcium, which promotes ECM 285 

calcification [38]. Not surprisingly as described for ALP activity, the OP and OC evaluation 286 

showed significantly higher protein expression levels when BM-MCSs were cultured under 287 
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osteogenic media rather than basal media [38]. In the case of OP, as expected, a delay in the 288 

protein synthesis is observed (Figure 6C). At day 7 there was no significant difference in OP 289 

expression in respect to the pure composite membrane under basal and osteogenic conditions. 290 

However, at day 14 there is the highest expression peak for osteogenic media cultures, which 291 

indicates the beginning of the mineralisation phase. Specifically, under osteogenic media all 292 

the sample showed a significant (*p<0.05 for PLGA/nHA and 14L) and extremely significant 293 

(**p< 0.001 for 14L_P) over-expression. To emphasise, all the samples under osteogenic 294 

conditions and the 14L_P membrane under basal condition showed a significant 295 

overexpression of OP protein at day 21, supporting the higher ALP activity. For OC 296 

evaluation, there was a high protein expression up to day 14 (Figure 6D), indicating bone 297 

ECM maturation. [39] At day 7 there is a significant difference of OC expression in respect to 298 

the control (PLGA/nHA under basal medium conditions). PLGA/nHA and 14L_P membranes 299 

showed the OC overexpression capacity at 14 and 21 days, representing significant 300 

differences over the control. Notable is that 14L_P under basal media condition exhibited a 301 

peak of expression at day 21, suggesting that this membrane was able to induce in long term 302 

OC protein expression, which corroborates the ALP data. 303 

Finally, preliminary in vivo tests using a rat calvarial model were performed. After 4 weeks of 304 

implantation there was increased new bone formation when a construct was utilised compared 305 

to sham operated sites with no construct (Figure 7A, Movie S1). MicroCT investigation 306 

indicated that the volume percentage of new formed bone in the defect treated with 307 

PLGA/nHA, 14L and 14L_P were 13.7±3.6%, 15.8±4.1% and 24.6±3.8%; thus all 308 

membranes let to an improved healing in comparison with the subject matched empty defect 309 

in which the volume percentages of new bone were 7.7±1.9%, 8.5±2.8% and 9.4±2.2% 310 

respectively (Figure 7B-D, Movie S2, S3 and S4). While these increases did not show 311 

significant differences between the constructs it suggests that they could encourage bone 312 

healing and that any significant difference between them was not evident at this single time 313 
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point. When compared to other studies reported in literature using pure membranes based on 314 

PLGA/collagen/HA or collagen/HA, the volume percentage of new formed bone in the defect 315 

treated with 14L_P was higher (~25% respect to ~6-10%) after 4 weeks of implantation [40]. 316 

Moreover, the trend in the formation of new bone was found also comparable with more 317 

sophisticated membrane, described in literature, where a scaffold sheet of medical grade 318 

polycaprolactone/tricalcium phosphate/collagen was functionalised with the addition of BMP-319 

2 and, then implanted in cranial model [41]. Sawyer et al. demonstrated that the addition of 320 

bioactive molecules increased dramatically the new bone growth respect with the non-321 

functionalised composite membrane (from ~12 mm3 to ~19 mm3 of bone volume). Therefore, 322 

the biomimetic approach of functionalising scaffolds with the addition of proper biomolecules 323 

can be considered a promising and cheaper alternative to tissue engineered cell–polymer 324 

constructs [42]. 325 

Histological assessment of the rat calvaria was performed on completion of micro-CT 326 

examination. Haematoxylin and eosin-stained sections were examined using conventional 327 

light microscopy. New bone was noted at the periphery and centre of the defects for 14L-P 328 

sample (Figure 7H), as opposed to the other groups (Figure 7F-G, PLGA/nHA and 14L), 329 

where new bone was restricted to the margins. The histological findings in terms of 330 

distribution of new bone were consistent with the appearances noted on micro-CT and lend 331 

support for the usefulness of this image modality in the assessment of bone response to novel 332 

materials. All animals recovered well after surgery with no adverse events noted; the 333 

membranes were biocompatible in the model used and were associated with improved bone 334 

healing when compared with sham operated sites. An initial inflammatory infiltrate was noted 335 

but given the presence of foreign material and wound healing this is to be expected and no 336 

unusual features were noted. Further work would be required to evaluate membrane 337 

degradation and long term tissue responses to the membranes, and the possibility to use the 338 
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proposed functionalised membrane as layer of a bi- or multi- phasic scaffold for bone tissue 339 

engineering, as proposed by Ivanovski’s group.[43] 340 

 341 

3. Conclusion 342 

We have demonstrated the utility of LbL to assemble structures characterised by tailored 343 

morphological, chemical and biological features in tissue engineering. The advantages of this 344 

low temperature nanoencapsulation technology are evident, as sensitive molecules may be 345 

incorporated for predictable release without loss of biofunctionality. The LbL-modified 346 

membrane was shown to be both more biocompatible and able to impart an increase in the 347 

expression of the ALP activity and two major bone-specific proteins, osteopontin and 348 

osteocalcin, compared with all control materials. The functionalised membrane reported here 349 

is a substantial improvement on existing commercial devices on account of its degradability 350 

and greatly enhanced osteoconductivity via direct interaction of the biomaterial surface with 351 

cells in order to enhance tissue regeneration and healing. This is the first report of LbL being 352 

employed successfully to encourage bone tissue regeneration in vivo. It was concluded that 353 

the multilayer nanoscale encapsulation of biofunctional peptides using an LbL approach has 354 

great potential as an innovative manufacturing process to substantially improve bone tissue 355 

regeneration when using orthopaedic and craniofacial medical devices. 356 

357 
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4. Experimental Section 358 

Materials. Calcium hydroxide, phosphoric acid (85 wt%, >99% pure), docusate sodium salt 359 

(DSS), poly(D,L-lactide-co-glycolide) (PLGA; LA/GA ratio (75/25), Mw = 66-107 kDa), İ-360 

maleimidocaproic acid (EMCA), N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide 361 

hydrochloride (EDC), poly(sodium4-styrenesulfonate) (PSS average Mw = 70 kDa), N-362 

Hydroxysuccinimide (NHS), and ethylenediamine (ED) were supplied from Sigma-Aldrich, 363 

UK. Poly(allylamine hydrochloride) (PAH) was supplied from Alfa Aesar, UK. The bone 364 

peptide sequences (N-acetyl-CFHRRIKA-amide, N-acetyl-CKRSR-amide and N-acetyl-365 

NSPVNSKIPKACCVPTELSAI-amide) were synthesized (purity more than 95% by 366 

analytical HPLC) and supplied by Biomatik, Taiwan. Acetone (99.8%) was purchased from 367 

Fisher Scientific, UK. All materials and chemicals were used without further purification. 368 

Electrospun membranes preparation. The electrospun membranes were prepared according 369 

the following protocol. A defined amount of nano-hydroxyapatite (nHA, 20-40 nm in width 370 

and 60-80 nm in length), synthesised according to the protocol described by the same authors 371 

[44], was dissolved in acetone (20% w/w respect with PLGA content) in ultrasonic bath stirring 372 

before the addition of the polymer. DSS surfactant (0.05% wt/v) was added to improve the 373 

stability of the nanoparticle suspension in the polymeric solution. Then PLGA (20% w/v) was 374 

added at 25 °C in order to obtain a composite solution. The electrospinning parameters were 375 

optimized and membranes were prepared with a static 21G needle and a flat paper plate to 376 

collect randomly oriented nanofibres. The solution was spinnable in the following conditionsμ 377 

distance from tip to the metallic collector of 18 cm, a flow of 2.5 ml/h, and an electric 378 

potential of 20 kV. The resulting membranes, coded as PLGA/nHA, were collected, left under 379 

hood overnight to remove solvent residues. 380 

Aminolysis. Electrospun membranes were treated by aminolysis by dipping in ED solution 381 

(0.05 M) for 15 minutes at 20 °C for grafting -NH2- in order to get a positive charge on the 382 

surface. Then aminolysed meshes were washed five times in H2O, dried under hood for 12 h. 383 



  

17 
 

Peptide conjugation. First step of the peptide conjugation was the maleimide groups grafting 384 

to the poly(allylamine hydrochloride) sidechains: 1.5 mg of EMCA was added to 1 ml of 385 

PAH solution (2 mg PAH, 23.7 mg EDC and 14.7 mg NHS) and left to react at 25 °C (room 386 

temperature, RT) for 2 h. Gel filtration was performed in order to remove non-reacted 387 

reactants and additional by-products. Then, the peptide sequences were grafted to PAH–g-388 

EMAC by reaction between of the maleimide group with the cysteine thiol groups. The molar 389 

ratio between the maleimide groups and peptides was 2:3, and left to incubate at 4 °C for 24 h. 390 

The peptide-g-PAH was coded as PAH-P. 391 

LbL functionalisation. The assembly of PSS/PAH-P multilayers (shown in Figure 1A) was 392 

performed at 25 °C. The polyelectrolytes were dissolved in order to obtain 5 mg/mL solutions 393 

in 0.1 M NaCl with a pH of around 4.6. The ȗ-potentials of the polyelectrolytes solutions was 394 

measured by laser Doppler electrophoresis (Zetasizer Nano, Malvern instrument, USA). 395 

Aminolysed membranes (size 5 × 5 cm and thickness ~ 180 µm) were dipped firstly in PSS 396 

solution (5 mL) for 15 min. Then, they were washed in water containing 0.1 M NaCl at pH 397 

4.6 for 5 min. The, the membranes were finally soaked in PAH-P solution (5 mL) for 15 min 398 

followed with water washing step using the same parameters described before. This dipping 399 

process was repeated for 7 cycles for creating 14 layers (7 bilayers of PSS/PAH-P) (Figure 400 

1B). Finally, the membranes were washed with distilled water for 10 min. The samples were 401 

left to dry under hood overnight and stored in the fridge at 3 °C. 402 

Physico-chemical characterisation. The morphological analysis of the samples before and 403 

after LbL assembly was performed by Scanning electron microscopy (SEM, LEO 1450VP). 404 

Membrane were coated with gold under vacuum (100 s) by Agar Auto Sputter Coater. The 405 

diameters of the fibres and the pores were evaluated on at least five SEM micrographs using 406 

ImageJ software. EDS analysis has been performed by using a bench SEM-equipped with 407 

EDS (Hitachi TM3030). Surface composition of the membranes was analysed by XPS and 408 

ATR-FTIR. XPS spectra were acquired on Theta Probe (Thermo Scientific, UK), equipped 409 
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with a microfocused AlKa X-ray source (1486.6 eV), operated with a 400 µm spot size (100 410 

W power). Process parameters were: 200 eV pass energy, 1 eV step size of and of 50 ms 411 

dwell time in not angle-resolved lens mode. At least 3 single area were evaluated on each 412 

membrane surface. Moreover, high resolution spectra were acquired with 40 eV pass energy, 413 

0.1 eV step size and 200 ms as dwell time. 414 

ATR-FTIR spectra were acquired in a wavenumber range of 4000–550 cm-1 using a Nicolet 415 

iS10 spectrometer (4 cm-1 resolution and 32 scans). 416 

Dissolution in vitro tests were performed after immersion in 5 ml of Phosphate Buffer Saline 417 

(PBS) solution at 37 °C for different time points (2, 4 and 6 weeks) with a PBS refresh every 418 

2 days. 419 

Cell tests. In vitro cell tests were performed on pure electrospun composite membranes, LbL 420 

functionalised meshes without and with addition of peptides. Preliminary to the seeding of 421 

cells, membranes (ĳ~ 1.2 cm diameter discs) were sterilised using UV light for 4 hours in 24-422 

well plates and rinsed five times with PBS. Rat Bone marrow stromal cells (BM-MSCs) were 423 

grown in a controlled atmosphere (5 % CO2 and T= 37 °C) in Iscove’s modified Dulbecco’s 424 

medium (DMEM) supplemented with 10 % foetal calf serum (FCS, Sigma-Aldrich), 2 mM L-425 

glutamine (Sigma-Aldrich), penicillin (100 U/mδ), and streptomycin (100 ȝg/mδν Sigma-426 

Aldrich) and 0.1 mM nonessential amino acids (NEAA, Lonza, UK) for 7 days. This medium 427 

condition is considered as basal. For all experiments we used cells from up to two passages. A 428 

number of 30,000 cells were seeded onto the samples in 1 ml DMEM. 429 

After 3 and 7 days of cell culture, the medium was removed and the sample were transferred 430 

to new 24-well plates; after addition of 10 % PrestoBlue solution (5 mg/mL in DMEM; Fisher 431 

Scientific), the multiwell plates were kept in incubation for 1 h at 37 °C. After the supernatant 432 

removal, the solution (now dark blue) was transferred in 96-well plates (0.2 mL) and 433 

quantified spectrophotometrically at 560 nm (Leica DM2500). PicoGreen® dsDNA reagent 434 

(Invitrogen, USA) was used to calculate the cell number for each sample in order to make a 435 
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correct normalisation of the fluorescence values. After each culturing period, the membranes 436 

were washed with PBS and then incubated at 37 ºC for 3 h followed by freezing step at -80 ºC 437 

for at least overnight in ultra-pure water (1 mL) to ensure cell lysis. The assay was performed 438 

according to the manufacturer’s protocol. And the fluorescence was determined at an 439 

excitation wavelength of 485 nm and emission wavelength of 528 nm. The mean ± standard 440 

deviation were calculated for five tests.  441 

After 21 days of cell culture BM-MSCs differentiation was evaluated in basal (as described 442 

before) and osteogenic medium (after 1 week of cell seeding consisted of basal medium plus 443 

50 ȝg/mδ ascorbic acid, 10–8 M dexamethasone (Sigma-Aldrich) and 10 mε ȕ-444 

glycerophosphate (Fluka Biochemika)). Alkaline Phosphatase activity was evaluated after 7, 445 

14 and 21 days by adding 500 µL alkaline buffer solution and 0.5 mL of stock substrate 446 

solution (40 mg p-nitrophenyl phosphate disodium, Sigma-Aldrich) to 100 µL of each lysate 447 

samples (obtained following the same protocol described for the PicoGreen assay), diluted in 448 

10 mL of distilled H2O for 1 h at 37 °C. The p-nitrophenol production was analysed by 449 

monitoring the solution absorbance using Leica DM2500 at 410 nm. PicoGreen® dsDNA 450 

reagent (Invitrogen, USA) was used to calculate the cell number for each sample in order to 451 

make a correct normalisation of the ALP absorbance values. The mean ± standard deviation 452 

were calculated for three tests. 453 

Osteopontin (OP) and osteocalcin (OC) protein expression of BM-MSCs was assessed by 454 

immunoassay technique to evaluate the osteoblast differentiation. The concentration of OP 455 

and OC was determined for all time culture periods, using the lysates used for DNA 456 

quantification by Picogreen. OP quantitative determination was performed by the use of 457 

Mouse/Rat Osteopontin Quantikine ELISA Kit (R&D Systems, UK). In brief, 50 µL of assay 458 

diluent RD1W and 50 µL of standard (2500 to 39 pg/mL), control and membrane were added 459 

into to the multi-well plate and kept to incubate at 25 °C for 2 h. After 4 washing steps, 100 460 

µL of Mouse/Rat OPN conjugated were added and incubated at 25 °C for 2 h. The sandwich 461 
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complex was rinsed 4 times in order to react with 100 µL of substrate solution before adding 462 

100 µL of stop solution. Finally, the optical density was determined at 450 nm and 463 

concentration of OP obtained from standard curve plot. OC quantitative determination was 464 

performed by the use of Rat Bla-Osteocalcin High Sensitive EIA kit (Takara Clontech, Japan). 465 

In brief, 100 µL of samples and standard solution (16 to 0.25 ng/mL) were incubated for 1 h 466 

at 37 ºC with the capture-antibody, rat osteocalcin C-terminus-specific antibody. After OC 467 

capture and 3 washing steps, 100 µL of the enzyme-labelled antibody (GlaOC4-30) specific to 468 

Gla-OC was incubated at room temperature for 1 h. The sandwich complex was rinsed 4 469 

times and allowed to react with 100 µL of substrate solution for 10-15 min. Finally, after 470 

adding the stop solution the optical density was determined at 450 nm and concentration of 471 

OC obtained from standard curve plot. OP and OC content was calculated by normalising OP 472 

or OC concentration per DNA concentration for each condition and time point. 473 

In vivo tests. The potential of enhanced bone regeneration in vivo was assessed by 474 

implantation of the constructs into 4.5 mm Ø defects created in the crania of adult male 475 

Wistar rats (the average weight at the time of surgery was 320 g). The rats were assigned to 476 

one of three experimental groups (PLGA/nHA, 14L and 14L_P) each of which comprised 477 

three animals. General anaesthesia was induced and maintained using Isoflurane in oxygen; 478 

after induction of anaesthesia a single dose of 0.05 ml Carprofen (Rimadyl™, Pfizer δtd, 479 

Sandwich, Kent, UK) was given by subcutaneous injection. 480 

A midline incision was made over the cranial vault and the skin and periosteum reflected to 481 

reveal the skull. A single circular defect 4.5mm diameter was made on each side of the 482 

midline using a diamond tipped surgical bur with saline irrigation. A sample of test membrane 483 

was placed over one defect and the other left untreated to act as an internal control. The 484 

periosteum and skin were carefully repositioned to avoid moving the membrane and wounds 485 

were closed with resorbable sutures (Vicryl™, Ethicon δtd. Edinburgh, UK) and the animals 486 

were allowed to recover before returning to clean cages.  487 
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Animals were housed in groups of three and preserved under standard laboratory conditions 488 

with free access to food and water. Four weeks after surgery animals were sacrificed using a 489 

schedule one method and the heads removed and placed in formalin for fixation prior to 490 

processing for Micro-CT and histological processing. Specifically, trimmed specimens were 491 

scanned using a desktop microtomograph (Sky Scan 1172, Aartselaar, Belgium) through 360° 492 

at a setting 1 voxel = 10 µm. The voltage used was 70 kV, the current was 130 µA and the 493 

aluminium filter was set at 0.5 mm.  The scan was collected using the medium camera (2000 494 

x 1048), 0.7 rotations with x2 averaging. Reconstruction was done using NRecon 495 

(SkyScan1172, Aartselaar, Belgium) by correcting for ring artefacts and 15% for beam 496 

hardening. The data was segmented and analysed in CT Analyser (Bruker software) using 497 

threshold level 60 -255. The new bone formation was calculated as a percentage Bone 498 

Volume / Tissue Volume (% BV/TV) in 4.5 mmØ x 0.7 mm depth within the defect. A 3D 499 

image of each sample was created in CTvox (ver. 3 Sky scan Bruker) using the transfer 500 

function ‘Steph bone cortical.tf’ (Dr. S Borg, University of Sheffield).  501 

Trimmed specimens were decalcified and processed to produce Haematoxylin and Eosin 502 

stained sections for conventional light microscopy; histological images were collected on 503 

Aperio scan (Leica Microscopes UK ltd). 504 

Statistical analysis. Tests were performed at least three times for each membrane. All data 505 

were expressed as mean ± SD. Statistical analysis was determined by using Graph pad Prism 506 

6 software. The statistical differences between groups were calculated using Kruskal-Wallis 507 

One Way Analysis of Variance on Ranks (ANOVA). Statistical significance was declared at * 508 

p<0.05, ** p<0.001 and ***p<0.0001. 509 
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Figures 521 
Figure 1. Schematic diagram of the manufacturing of nanofunctionalised electrospun 522 
membranes and their application for mimicking bone healing repair and regeneration: A. 523 
Layer-by-layer method with the alternating exposure of the pre-charged membrane in 524 
polyelectrolytes solutions; B. Bone peptide sequences grafted to the positive-charged 525 
polyelectrolyte; C. In vitro tests by seeding BM-MSCs on the electrospun nanofunctionalised 526 
membranes; D. In vitro tests using non-healing defect (~4.5 mm) in a rat calvarial model. 527 

528 

529 
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Figure 2. SEM micrographs of the electrospun membranes before and after Layer-by-layer 530 
surface modification (bar= 5µm). The insets show the macrographs of the electrospun 531 
membranes (Magnification 3000x, bar= 10mm). 532 

BA

 533 

534 
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Figure 3. EDS analysis of the electrospun membranes before (A) and after Layer-by-layer 535 
surface modification (14L_P) (B), with the acquisition of the following outputs: (i) SEM 536 
micrograph, (ii) punctual elemental composition, and (iii) EDS spectrum. Bars = 50 µm.  537 

 538 

 539 

540 
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Figure 4. XPS spectra after functionalization by Layer-by-layer assembly. A. Survey spectra 541 
and B. deconvoluted C1s spectra for pure composite membrane after aminolysis and after 542 
coating of 1, 4 and 14 layers respectively. 543 
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Figure 5. ATR-FTIR spectra of the Layer-by-layer functionalised electrospun membranes (A) 546 
and after in vitro dissolution test in PBS at 2 weeks (B), 4 weeks (C) and 6 weeks (D) 547 
(resolution 4 cm-1; 32 scans). The most important peaks of the nanocoating are evidenced in a 548 
coloured area: PSS in beige, PAH in green and the bone peptide sequences in blue colour 549 
respectively. 550 

A
b

so
rb

a
n

ce
  
 (

-)

Wavenumber (cm-1)

A

B

C

D

 551 

552 



  

28 
 

Figure 6. In vitro cell tests. A. BM-MSCs metabolic activity (PrestoBlue® assay) after 553 
culturing for 3 and 7 days. B. Intracellular alkaline phosphatase activity of BM-MSCs 554 
(Alkaline Phosphatase detection kit –Sigma Aldrich Alkaline phosphatase assay kit (APF-555 
1KT)) after culturing either with basal or osteogenic media for 7, 14 and 21 days. C. 556 
Osteopontin protein content of BM-MSCs cultured either with basal or osteogenic media at 7, 557 
14 and 21 days. D. Osteocalcin protein content of BM-MSCs cultured either with basal or 558 
osteogenic media at 7, 14 and 21 days. The statistic significance is in respect to the control of 559 
PLGA membrane in basal media for each time point (* p<0.05, ** p< 0.001 and *** p< 560 
0.0001). 561 

 562 

563 
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Figure 7. MicroCT scans (A-D, bar= 1 mm) and histological section (E-H, bar= 200 µm) of 564 
the membranes after testing in vivo rat cranial model: A,E No construct, B,F Composite 565 
membrane, C,G Composite membrane functionalised by LbL (14L), D,H Composite 566 
membrane functionalised by LbL with the peptide sequences grafting (14L_P). For the 567 
histological section: Ÿ- new bone and Ɣ- calvarial bone. 568 

 569 

570 
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Table 1. Atomic concentration (%) of the characteristic elements present in the multilayer and 571 
the core-levels of composite membranes after Layer-by-layer assembly. 572 

Sample C1s 
(%) 

O1s 
(%) 

N1s 
(%) 

S2p 
(%) S/N ratio 

288.5 
eV  

N-C=O 
 

(%) 

286.9 
eV 

−C−O− 
 

(%) 

284.6 
eV 

−C−H−, 
C−C− 
(%) 

PLGA/nHA_am 66.2±0.3 33.2±0.4 0.6±0.1 - - 23.5±1.4 31.3±1.8 45.2±2.1 

1L 73.9±0.5 25.0±0.3 0.3±0.1 0.8±0.1 0.95±0.16 22.3±1.8 33.7±2.4 44.0±2.8 

2L_P 74.1±0.4 23.2±0.3 2.2±0.3 0.4±0.1 0.18±0.25 22.0±1.9 32.8±2.1 45.2±3.4 

4L_P 72.6±0.3 23.3±0.4 3.4±0.2 0.7±0.1 0.20±0.18 17.8±2.3 35.0±2.0 47.2±2.5 

9L_P 71.9±0.5 20.9±0.4 4.7±0.2 2.5±0.3 0.53±0.31 4.5±1.2 15.0±1.7 79.5±3.1 

10L_P 71.7±0.4 20.5±0.3 6.2±0.3 1.6±0.2 0.25±0.23 4.7±1.1 12.3±1.4 83.0±2.3 

13L_P 72.0±0.3 20.7±0.2 4.5±0.3 2.8±0.2 0.62±0.22 4.0±1.0 11.4±1.2 84.6±1.9 

14L_P 70.9±0.4 20.9±0.3 6.7±0.2 1.5±0.1 0.22±0.18 4.2±1.1 11.8±1.2 84.0±2.4 

 573 

574 
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The table of contents 575 

Layer-by-layer (LbL) assembly is a powerful tool to modify the surface of biomedical 576 
devices for imparting enhanced biological properties. This work proposed an in vitro 577 
model for mimicking the bone healing process, by grafting appropriate bone peptide 578 
sequences to the discrete nanolayers for improving the mesenchymal stem cells adhesion, 579 
proliferation and differentiation, and the formation of mineralisation matrix. 580 
 581 
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 692 
Methods 693 

For the morphological evaluation, after 6 days of culturing period, samples were washed with 694 

PBS and fixed with 4 % formalin solution (0.5 mL) for 15 min at room temperature (RT). The 695 

cells were washed with PBS, containing 0.2 % Triton X, for 2 min. After the fixation and 696 

permeation steps, cells were washed again and stained with 4,6-Diamidino-2-phenyindole 697 

dilactate (1:1000 DAPI, Sigma-Aldrich) for 2 min at RT, and Phalloidin-698 

Tetramethylrhodamine B isothiocyanate (10 ȝε phalloidin Sigma-Aldrich) for 1 h at RT. 699 

Finally, cells were washed and observed with the help of Axioplan 2 imaging fluorescent 700 

microscope with a digital camera QIC AM 12-bit (Zeiss). 701 

 702 

Figures 703 

Figure S1. SEM micrograph of the electrospun membranes after Layer-by-layer surface 704 

modification with the obtainment of 20 nanolayers. Bar= 10µm. 705 

 706 

 707 

 708 
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Figure S2. (A) BM-MSCs metabolic activity (PrestoBlue® assay) after culturing for 3 and 7 711 

days and (B) Intracellular alkaline phosphatase activity of BM-MSCs (Alkaline Phosphatase 712 

detection kit –Sigma Aldrich Alkaline phosphatase assay kit (APF-1KT)) after culturing 713 

either with basal or osteogenic media for 7, 14 and 21 days on LbL functionalised membranes 714 

with the single peptide sequence (* p<0.05). 715 
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Figure S3. Fluorescence microscopy of composite membranes after 7 days of culture on: (a) 718 

PLGA/nHA membrane; (b) 14L membrane and (c) 14L_P membrane. DAPI in blue colour 719 

and stains nucleus of cells; Phalloidin in green colour and stains the actin filamentous. 720 

 721 

722 
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Movie S1-4. Micro-CT 3D reconstruction movies of 4.5mm Ø defects in the crania of Wistar 723 

rats after 4 weeks of implantation: 724 

Movie S1: Sham 725 

Movie S2: PLGA/nHA membrane 726 

Movie S3: 14L membrane 727 

Movie S4:14L_P membrane 728 


