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Abstract. In this paper, we outline our vision for building verifica-
tion tools for Cyber-Physical Systems based on Hoare and He’s Uni-
fying Theories of Programming (UTP) and interactive proof technology
in Isabelle/HOL. We describe our mechanisation and explain some of
the design decisions that we have taken to get a convenient and smooth
implementation. In particular, we describe our use of lenses to encode
state. We illustrate our work with an example UTP theory and describe
the implementation of three foundational theories: designs, reactive pro-
cesses, and the hybrid relational calculus. We conclude by reflecting on
how tools are linked by unifying theories.

This paper is dedicated to Bill Roscoe on the occasion of his 60th birthday.

1 Introduction

Cyber-Physical Systems (CPS) are networks of computational devices that in-
teract with the world through an array of sensors and actuators, and combine
discrete computation with continuous physical models of their environment. For
example, automated, driverless vehicles that are required to sense their environ-
ment, construct a real-time model of the present situation, make decisions about
developing scenarios, and respond within a sufficiently short amount of time to
ensure the safety of its passengers and other road users. Engineering such systems
whilst demonstrating their trustworthiness is a major challenge. CPS engineering
involves a wide range of modelling and programming paradigms [10], including
concurrency, real-time, mobility, continuous variables, differential equations, ob-
ject orientation, and diagrammatic languages. These aspects are represented by
a variety of domain-specific and general-purpose languages, such as Simulink,
Modelica, SysML, Java, and C, and thus engineering trustworthy CPS requires
that we semantically integrate models in a consistent way, and then form argu-
ments that the system as a whole exhibits certain properties.

Semantic integration has been made possible using the industry-developed
standard FMI [5] (Functional Mockup Interface), which describes a CPS using a
network of FMUs (Functional Mockup Units) that represent components or con-
stituent systems. An FMU exposes a number of observable continuous variables



that characterise the state of the individual model at a particular instant. Vari-
ables can either be of type input, output, or state, depending on whether they
are under the control of the FMU or the environment. FMUs can be stepped
forward in time, which will cause these variables to evolve. A requested time
step may be rejected and require curtailing if an event, such as a zero-crossing,
occurs in the meantime, since the other FMUs may need to be notified. A master
algorithm manages stepping the individual FMUs forward, and distributing in-
formation in between time steps. Aside from this minimal operational interface,
each FMU is treated as a black box. An FMU can correspond to an abstract
model of behaviour, an implementation of a particular component, or even a
physical piece of hardware, which allows for Hardware in the Loop (HiL) simu-
lation and testing. FMI thus allows one to describe heterogeneous multi-models
that are described in different notations, and with different underlying semantic
models, but are nevertheless integrated through a common operational interface.

Though FMI provides the necessary operational interface between different
models and programs, it alone does not provide enough semantic information
to verify them. In order to achieve that, we need a way of tackling the inherent
semantic heterogeneity of the multi-model, for which we use Hoare and He’s Uni-
fying Theories of Programming [24,39,8] (UTP), which is a a long-term research
agenda to describe different computing paradigms and the formal links between
them. It allows us to consider the various semantic aspects of a heterogeneous
multi-model as individual theories that characterise a particular abstract pro-
gramming or modelling paradigm. Hoare & He [24] show how the alphabetised
relational calculus can be applied to construct a hierarchy of such theories, in-
cluding simple imperative programs (relations), designs that correspond to pre-
and postcondition specifications, and various theories of concurrent and paral-
lel programs, including the process algebras ACP, CCS, and CSP [23]. Since
the advent of UTP, a host of additional UTP theories have been developed
that variously tackle paradigms like real-time programming [34], object-oriented
programming [32], security and confidentiality [3], mobile processes [33], prob-
abilistic modelling [6], and hybrid systems [15]. Moreover, the FMI API itself
has been given a UTP-based semantics [9] that can be used as an interface to
the semantic model of individual FMUs, and also allows a network of FMUs to
be verified at this level using the FDR3 refinement checker [18]. The UTP ap-
proach allows computational theories to be formalised and explored as indepen-
dent theories, and then later integrated to provide heterogeneous denotational
semantic models. This can either be done directly through theory combination,
or where theories are not directly compatible, such as in the case of discrete and
continuous time, through the use of Galois connections that characterise best
approximations.

In order to make UTP theories practically applicable to program verifica-
tion, tool support is needed, and so we are also developing a theorem prover
for UTP based on Isabelle/HOL [28], which we call Isabelle/UTP [17,16]. Is-
abelle is a powerful proof assistant that can be used both for the mechanisa-
tion of mathematics, and for the application of such mechanisations to program
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verification, which is famously illustrated by the seL4 microkernel verification
project [26]. Another excellent example is the use of Kleene algebras to build
program verification tools [1], from which Hoare logics, weakest-precondition
calculi, rely-guarantee calculi, and separation logics have been created. Specifi-
cally of interest for CPS, there has also been a lot of recent work on formalising
calculus, analysis, and ordinary differential equations (ODEs) in Isabelle [25],
which can then be applied to verification of hybrid systems. Similarly, we are
also building a mechanised library of UTP theories1, including associated laws
of programming and verification calculi.

Crucial to all of these developments is the ability to integrate external tools
into Isabelle that can provide decision procedures for specific classes of problems.
Isabelle is well suited to such integrations due to its architecture that is based
on the ML and Scala programming languages, both of which can be used to
implement plugins. Isabelle is sometimes referred to as the Eclipse of theorem
provers [37]. The sledgehammer tool [4], for example, integrates a host of first-
order automated theorem provers and SMT solvers, which often shoulder the
burden of proof effort. Sledgehammer is used, for example, by [1], both at the
theory engineering level, for constructing an algebraic hierarchy of Kleene alge-
bras, and also at the verification level, where it is used to discharge first-order
proof obligations. For verification of hybrid systems, it will also be necessary
to integrate Isabelle with Computer Algebra Systems (CAS) like Mathemat-
ica, MATLAB, or SageMath, to provide solutions to differential equations, an
approach that has been previously well used by the KeYmaera tool [30,31].

Our vision is the use of Isabelle and UTP to provide the basis for CPS
verification through formalisation of the fundamental building-block theories of
a CPS multi-model, and the integration of tools that implement these theories
for coordinated verification. This is, of course, an ambitious task and will require
collaboration with a host of domain experts. Nevertheless, the vision of UTP is
to provide a domain in which such cooperations can be achieved.

This paper gives an overview of the state of our work towards verification
of CPS in UTP. In Section 2, we describe our approach to mechanising UTP
in Isabelle/HOL, including its lens-based state model, meta-logical operators,
and the alphabetised relational calculus. In Section 3, we show how an example
theory can be mechanised and properties proved in Isabelle/UTP. In Section 4,
we give an overview of the UTP theories of CPS that we have mechanised so
far. In Section 5, we conclude.

2 Algebraic foundations of Isabelle/UTP

In this section we summarise the foundations of Isabelle/UTP, our semantic em-
bedding of the UTP in Isabelle/HOL, including its lens-based state model, meta-
logical functions, and laws. Isabelle/UTP includes a model of alphabetised pred-
icates and relations, proof tactics, and a library of proven algebraic laws. Follow-
1 This library can be viewed at github.com/isabelle-utp/utp-main.
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ing [11,12], our predicate model is a parametric Isabelle type α upred =̂ α⇒ bool
where α is the domain of possible observations, that is, the alphabet.

The predicates-as-sets model is standard for most semantic embeddings of
UTP, both deep [29,16,40] and shallow [11,12], and means that the predicate cal-
culus operators can be obtained by simple lifting of the HOL equivalents. This
means that we can automatically inherit the fact that, like HOL predicates,
UTP predicates also form a complete lattice. Moreover, this facilitates auto-
mated proof for UTP predicates, which we make available through the predicate
calculus tactic pred-tac, which can be used to discharge a large number of con-
jectures in our UTP theories.

A major difference between Isabelle/UTP and the deep embeddings is that
we use Isabelle types to model alphabets, rather than representing them as finite
sets. Use of types to model alphabets has the advantage that the type checker
can be harnessed to ensure that variables mentioned in predicates are indeed
present in the alphabet. What the predicate model lacks a priori though, is a
way of manipulating the variables present in α; for this we use lenses.

2.1 Lenses in brief

UTP is based on the paradigm of predicative programming, where programs are
predicates [22]. This view results in a great simplification, with much of the ma-
chinery of traditional denotational semantics swept away, including the brackets
mapping fragments of syntax to their denotation, as well as the environment
used to evaluate variables in context. As an example of the latter, x := 1 is
just another way of writing the predicate x ′ = x + 1. This simplified view of an
environment-free semantics is difficult to maintain when thinking about more
sophisticated programming techniques, such as aliasing between variables. See,
for example a UTP semantics for separation logic [38], where environments are
reintroduced to record variables stored on the heap and the stack. This raises the
general methodological question of what is the most convenient way of modelling
the state space for a UTP theory? The answer to this is especially important for
our mechanisation in Isabelle, if we are to provide a generally reusable technique.

Rather than characterising variables as syntactic entities [16], we instead
algebraically characterise the behaviour of variables using lenses [17,14]. Lenses
allow us to represent variables as abstract projections on a state space with
convenient ways to query and update in a uniform, compositional way. Variables
are thus represented by regions of the state space that can be variously related,
namelessly and spatially; these regions can be nested in arbitrary ways. Lenses
are equipped with operators for transforming and decomposing the state space,
enabling a purely algebraic account of state manipulations, including consistent
viewing, updating, and composition. Importantly, the theory of lenses allows us
to formalise meta-logical operations in the predicate calculus, such as freshness
of variables and substitution of expressions for variable names.

A lens X from a view type V to a bigger source type S is a function
X : V =⇒ S that allows us to focus on V independently of S . The signature of
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a lens consists of two functions:

get : S → V

put : S → V → S

Consider as an example, a record lens. For the record

(| forename : String , surname : String , age : Int |)

there are seven lenses (the record has three components, so there are 23−1 ways
of decomposing it). Other examples include product, function, list, and finite
map lenses. A number of algebraic laws might be satisfied by a particular lens:

get (put s v) = v (PutGet)
put (put s v ′) v = put s v (PutPut)

put s (get s) = s (GetPut)

Lenses that satisfy combinations of these laws are classified in different ways [14,17]:

Well-behaved lenses PutGet + GetPut
Very well-behaved lenses addition of PutPut

Mainly well-behaved lenses PutGet + PutPut

The majority of laws in Isabelle/UTP require variables to be modelled as mainly
well-behaved lenses of type τ =⇒ α, where τ is the variable type, though some
laws depend on them being very well-behaved. From these axiomatic bases we
define operations for querying and composing lenses. These include independence
(X ./ Y ), sublens (X ⊆L Y ), equivalence (X ≈L Y ), composition (X ; L Y ), and
summation (X +L Y ). All of these operations can be given denotations in terms
of the get and put [17]; here we focus on the intuition and algebraic laws.

Independence,X ./ Y , describes when lensesX : V1 =⇒ S andY : V2 =⇒ S

identify disjoint regions of the common source S . Essentially, this is defined re-
quiring that their put functions commute. In our example, the forename and
surname lenses can be updated independently and thus forename ./ surname.
Lens independence is thus useful to describe when two variables are different.
The sublens partial order, X ⊆L Y , conversely, describes the situation when X

is spatially within Y , and thus an update to Y must affect X . From this partial
order we can also define an equivalence relation on lenses in the usual way:

X ≈L Y =̂ X ⊆L Y ∧ Y ⊆L X

Lens composition X ; L Y : V1 =⇒ S , for X : V1 =⇒ V2 and Y : V2 =⇒ S ,
allows one to focus on regions within larger regions, and thus allows for state
space nesting. For example, if a record has a field that is itself a record, then
lens composition allows one to focus on the inner fields by composing the lenses
for the outer with those of the inner record. Lens composition is closed under
all the algebraic lens classes. We also define the unit lens, 0L : unit =⇒ S ,
which has an empty view, and the identity lens, 1L : S =⇒ S , whose view
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is the whole source. Both of these lenses are also very well-behaved. Lens sum,
X +L Y : V1 × V2 =⇒ S , parallel composes two independent lensesX : V1 =⇒ S

and Y : V2 =⇒ S . This combined lens characterises the regions of both X and
Y . For example, the lens forename+L age allows us to query and updates both
fields simultaneously, whilst leaving surname alone. Finally, the associated lenses
fstL : V1 =⇒ V1 × V2 and sndL : V2 =⇒ V1 × V2 allow us to view the left and
right elements of a product source-type.

Our lenses operations satisfy the following algebraic laws, all of which has
been mechanised [17], assuming X , Y , and Z are well-behaved lenses:

Theorem 1. Lens algebraic laws

X ; L(Y ; L Z ) = (X ; L Y ) ; L Z (L1)
X ; L 1L = 1L ; L X = X (L2)
X ./ Y ⇔ Y ./ X (L3)

X +L(Y +L Z )≈L(X +L Y )+L Z X ./ Y ,X ./ Z ,Y ./ Z (L4)
X +L Y ≈L Y +L X X ./ Y (L5)
X +L 0L≈L X (L6)

X ⊆L X +L Y X ./ Y (L7)
fstL ./ sndL (L8)

fstL ; L(X +L Y ) = X X ./ Y (L9)
X ./ (Y +L Z ) X ./ Y ,X ./ Z (L10)

The majority of these laws are self explanatory, however we comment on a few.
Sum laws like L4 use lens equality rather than homogeneous HOL equality since
the left- and right-hand sides have different types. Law L9 shows how the fstL

lens extracts the left-hand side of a product. Interestingly, these laws contain
the separation algebra axioms [7], where separateness is characterised by ./ ,
and thus shows how our lens approach also generalises memory heap modelling.
Thus we have an abstract model of state and an algebraic account of variables.

2.2 Expressions

Expressions have a similar type to predicates: (τ, α) uexpr =̂ α ⇒ τ , where τ is
the return type and α is the alphabet. We thus harness the HOL type system
for ensuring well-formedness of expressions. HOL contains a large library of
expression operators, such as arithmetic, and we lift these to UTP expressions.
We also introduce the following core expressions constructs:

– e =u f : equality of UTP expressions.
– &x : obtains the value of lens x : α =⇒ τ in the state space.
– «v»: embeds a HOL expression of type τ into a UTP expression.

In general for expressions, we try to follow the standard mathematical syntax
from the UTP book [24] and associated tutorials [39,8]. For example, for the
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predicate operators we introduce overloaded constants so that the type system
must determine whether operators like ∧ and ¬ are the HOL or UTP versions.
Where this is not possible, for example equality, we add a u subscript.

2.3 Meta-logical functions

Isabelle/UTP is based on a semantic model for alphabetised predicates, rather
than syntax. Since we do not formalise a fixed abstract syntax tree for UTP
predicates, there are no notions such as free variables or substitution that or-
dinarily would be recursive functions on the tree. Instead, we introduce weaker
semantic notions that are sufficient to characterise the laws of programming:

– Unrestriction, x ] P , for lens x and predicate P , that semantically charac-
terises variables that are fresh.

– Semantic substitution, σ †P , for substitution function σ.
– Alphabet extrusion, P ⊕p a, for lens a.
– Alphabet restriction, P �p a, for lens a.

Intuitively, x ] P holds, provided that P ’s valuation does not depend on x . For
example, it follows that x ] true, x ] «v», and x ] (∃ x • x >u y), but not that
x ] (x =u 1 ∧ y =u 2). What differentiates it from syntactic freshness is that
x ] (x =u 0 ∨ x 6=u 0), because the semantic valuation of this predicate is al-
ways true. Unrestriction can alternatively be characterised as predicates which
satisfy the fixed point P = (∃ x • P) for very well-behaved lens x . Substitu-
tion application σ †P applies a substitution σ to P . A substitution function
σ : α usubst (=̂ α ⇒ α) is a mapping from variables in the predicate’s alpha-
bet α to expressions to be inserted. Substitution update σ(x 7→s e) assigns the
expression e to variable x in σ, and

[x1 7→s e1, · · · , xn 7→s en ] = id(x1 7→s e1, · · · , xn 7→s en)

creates a substitution for n variables. A substitution PJe1, · · · , en/x1, · · · , xnK
of n expressions to corresponding variables is then expressed as

[x1 7→s e1, · · · , xn 7→s en ] †P

We now present some of the proven laws of substitutions.

Theorem 2 (Substitution query laws).

〈σ(x 7→s e)〉s x = e (SQ1)
〈σ(y 7→s e)〉s x = 〈σ〉s x if x ./ y (SQ2)

σ(x 7→s e, y 7→s f ) = σ(y 7→s f ) if x ⊆L y (SQ3)
σ(x 7→s e, y 7→s f ) = σ(y 7→s f , x 7→s e) if x ./ y (SQ4)

SQ1 and SQ2 show how substitution lookup is evaluated. SQ3 shows that an
assignment to a larger lens overrides a previous assignment to a small lens and
SQ4 shows that independent lens assignments can commute.
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Theorem 3 (Substitution application laws).

σ †&x = σ(x ) (SA1)
σ(x 7→s e) †P = σ †P if x ] P (SA2)

σ †(¬ P) = ¬ (σ †P) (SA3)
σ †(P ∧ Q) = (σ †P) ∧ (σ †Q) (SA4)

(∃ y • P)Je/xK = (∃ y • PJe/xK) if x ./ y , y ] e (SA5)

These laws effectively subsume the usual syntactic substitution laws, for an ar-
bitrary number of variables, many of which simply show how substitution dis-
tributes through predicate operators.

Alphabet extrusion P ⊕p a, for P : α upred, extends the alphabet type using
lens a : α =⇒ β: it projects the predicate’s alphabet α to “larger” alphabet type
β. Lens a can be seen as a coercion that shows how the original state space α
can be embedded into β. Effectively alphabet extrusion retains the predicate’s
characteristic valuation set over α, whilst filling in the rest of the variables in
source alphabet β with arbitrary values.

Alphabet extrusion can be used to map a predicate α upred to a relation
(α×α) upred by application of the lens fstL or sndL, depending on whether a pre-
condition or postcondition is desired. We give these two lifting operations the
syntax dpe< =̂ p⊕p fstL and dpe> =̂ p⊕p sndL, respectively, where p is a predi-
cate in only undashed variables. We similarly create the substitution extension
operator dσes that maps all variables and expressions to relational equivalents
in undashed variables. Alphabet restriction is simply the inverse of extrusion:
P �p a, for P : β upred and a : α =⇒ β, yields a predicate of alphabet α. Unlike
extrusion this operation can be destructive if the predicate refers to variables in
β but not in α. We demonstrate the following laws for extrusion and restriction:

Theorem 4 (Alphabet laws).

true⊕p a = true (AE1)
«v»⊕p a = «v» (AE2)

(P ∧ Q)⊕p a = (P ⊕p a) ∧ (Q ⊕p a) (AE3)
&x ⊕p a = &(x ; L a) (AE4)
x ./ a ⇒ x ] (P ⊕p a) (AE5)

(P ⊕p a) �p a = P (AE6)

As indicated by laws AE1 and AE2, alphabet extrusion changes only the type of
predicates with no variables; the body is left unchanged. Extrusion distributes
through all the predicate operators, as expected, as indicated by law AE3. Ap-
plied to a variable, extrusion precomposes the variable lens with the given al-
phabet lens, as law AE4 demonstrates. Law AE5 shows that extrusion yields a
predicate unrestricted by any variable x in the state-space extension. Finally,
AE6 shows that alphabet restriction inverts alphabet extrusion.
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2.4 Relations and Laws of Programming

A relation is a predicate with a product state space: α relation =̂ (α × α) upred.
Variables of α can therefore be lifted to input or output variables by composing
the corresponding lens with fstL or sndL respectively.

Definition 1 (Relational variables).
$x =̂ x ; L fstL $x ′ =̂ x ; L sndL

It is important to note that “$x” is distinguished from “&x”: the former has
a product alphabet whilst the latter has a scalar one. Thus &x is useful when
writing predicates which should not contain dashed variables: $x =u &y will
usually result in a type error. Alphabet coercion can be used to convert between
relations and predicates, and in particular it follows that d&xe< = $x .

We define the relational calculus operators like P ; Q2 and II by lifting of
the constructs for HOL relations. Again, this gives us access to various built-in
laws for binary relations, and allows us to produce a tactic for relational calcu-
lus, rel-tac. Conditional (if-then-else) is introduced using predicate operators as
PC bBQ =̂ (b ∧ P) ∨ (¬ b ∧ Q). Assignment is defined as a general construct
over a state substitution: 〈σ〉a : α relation updates the state by applying the
substitution σ : α usubst to the previous state. The alphabet of the substitution
is α rather than α×α as this ensures that the assigned expressions cannot refer
to post variables, as usual. The unary substitution x := e can then be defined as
〈[x 7→s e]〉a , and similarly for simultaneous assignment of n variables. This has
the advantage that the duality between substitution and assignment is clear in
the corresponding algebraic laws. We have proven a large library of laws for re-
lations, a selection of which is shown below, accompanied by the Isabelle names.

Theorem 5. Relational laws of programming

P ; (Q ; R) = (P ; Q) ; R (seqr-assoc)
II ; P = P (seqr-left-unit)

false ; P = false (seqr-left-zero)

(PC bB(QC bBR)) = (PC bBR) (cond-shadow)

dpe< ∧ II = II ∧ dpe> (pre-skip-post)

(p ; true) = p ⇔ sndL ] p (precond-equiv)

P ; Q = (∃ v • PJ«v»/$x ′K ; QJ«v»/$xK) (seqr-middle)
〈σ〉a ; P = dσes †P (assigns-r-comp)

〈σ〉a ; 〈ρ〉a = 〈ρ ◦ σ〉a (assigns-comp)

We comment on a few of these. Law pre-skip-post shows that a precondition con-
joined with relational identity can become a postcondition, since all variables are
2 This is written as P ;; Q in Isabelle since ; is a delimiter for assumptions
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identified. Law seqr-middle allows us to extract the intermediate value of a single
variable in a sequential composition. Constant v is not a UTP state variable, but
rather a logical HOL variable indicated by use of quoting. Law assigns-r-comp
is a generalised version of the law x := v ; P = P [v/x ]—it states that an as-
signment of σ followed by P equates to a substitution on P . We have to extend
the alphabet of σ to match the relational alphabet of P using dσes . Finally,
law assigns-comp states that the sequential composition of two assignments cor-
responds to the functional composition of the two substitutions. From this law
we can prove the assignment commutativity law:
Theorem 6. Assignment commutativity

(x := e ; y := f ) = (y := f ; x := e) if x ./ y , x ] f , y ] e (assign-commute)

Proof. By combination of laws assigns-comp and SQ4. ut

Altogether we have proven over 200 hundred laws of predicate and relational
calculus, many of which can be imported either from HOL or by Armstrong’s
algebraic hierarchy [1]. This then gives us the foundation on which to build UTP
theories for Cyber-Physical Systems.

3 Example UTP theory

In order to exemplify the use of Isabelle/UTP, we mechanise a simple theory
representing Boyle’s law. Boyle’s law states that, for an ideal gas at fixed tem-
perature, pressure p is inversely proportional to volume V, or more formally that
for k = p · V is invariant, for constant k. We here encode this as a simple UTP
theory. We first create a record to represent the alphabet of the theory consisting
of the three variables k, p and V.
record alpha-boyle =
boyle-k :: real
boyle-p :: real
boyle-V :: real

For now we have to explicitly cast the fields to lenses using the VAR syntactic
transformation function [11] – in the future this will be automated. We also have
to add the definitional equations for these variables to the simplification set for
predicates to enable automated proof through our tactics.
definition k :: real =⇒ alpha-boyle where k = VAR boyle-k
definition p :: real =⇒ alpha-boyle where p = VAR boyle-p
definition V :: real =⇒ alpha-boyle where V = VAR boyle-V

declare k-def [upred-defs] and p-def [upred-defs] and V-def [upred-defs]

We also prove that our new lenses are well-behaved and independent of each
other. A selection of these properties is shown below.
lemma vwb-lens-k [simp]: vwb-lens k by (unfold-locales, simp-all add: k-def )
lemma boyle-indeps [simp]: k ./ p p ./ k k ./ V V ./ k p ./ V V ./ p
by (simp-all add: k-def p-def V-def lens-indep-def )

10



3.1 Static invariant

We first create a simple UTP theory representing Boyle’s laws on a single state, as
a static invariant healthiness condition. We state Boyle’s law using the function
B, which recalculates the value of the constant k based on p and V.
definition B(ϕ) = ((∃ k · ϕ) ∧ (&k =u &p·&V ))

We can then prove that B is both idempotent and monotone simply by applica-
tion of the predicate tactic. Idempotence means that healthy predicates cannot
be made more healthy. Together with idempotence, monotonicity ensures that
the image of the healthiness function forms a complete lattice, which is useful
to allow the representation of recursive constructions with the theory.
lemma B-idempotent: B(B(P)) = B(P) by pred-tac
lemma B-monotone: X v Y =⇒ B(X) v B(Y ) by pred-tac

We also create some example observations; the first (ϕ1) satisfies Boyle’s law
and the second doesn’t (ϕ2).
definition ϕ1 = ((&p =u 10 ) ∧ (&V =u 5 ) ∧ (&k =u 50 ))
definition ϕ2 = ((&p =u 10 ) ∧ (&V =u 5 ) ∧ (&k =u 100 ))

We first prove an obvious property: that these two predicates are different ob-
servations. We must show that there exists a valuation of one which is not of the
other. This is achieved through application of pred-tac, followed by sledgeham-
mer [4] which yields a metis proof.
lemma ϕ1-diff-ϕ2: ϕ1 6= ϕ2

by (pred-tac, metis select-convs num.distinct(5 ) numeral-eq-iff semiring-norm(87 ))

We prove that ϕ1 satisfies Boyle’s law by application of the predicate calculus
tactic, pred-tac.
lemma B-ϕ1: ϕ1 is B by (pred-tac)

We prove that ϕ2 does not satisfy Boyle’s law by showing that applying B to it
results in ϕ1. We prove this using Isabelle’s natural proof language, Isar, details
of which can be found in the reference manual [36]. The proof below is annotated
with comments.
lemma B-ϕ2: B(ϕ2) = ϕ1

proof −
— We first expand out the definition of ϕ2

have B(ϕ2) = B(&p =u 10 ∧ &V =u 5 ∧ &k =u 100 )
by (simp add: ϕ2-def )

— Then the definition of B
also have ... = ((∃ k · &p =u 10 ∧ &V =u 5 ∧ &k =u 100 ) ∧ &k =u &p·&V )
by (simp add: B-def )

— The existentially quantifier k can be removed
also have ... = (&p =u 10 ∧ &V =u 5 ∧ &k =u &p·&V )
by pred-tac

— We show that (10 :: ′a) · (5 :: ′a) = (50 :: ′a)
also have ... = (&p =u 10 ∧ &V =u 5 ∧ &k =u 50 )
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by pred-tac
— This is then definitionally equal to ϕ1

also have ... = ϕ1

by (simp add: ϕ1-def )
— Finally we show the overall thesis
finally show ?thesis .

qed

3.2 Dynamic invariants

Next we build a relational theory that allows the pressure and volume to be
changed, whilst still respecting Boyle’s law. We create two dynamic invariants
for this purpose.

definition D1 (P) = (($k =u $p·$V ⇒ $k´ =u $p´·$V´) ∧ P)
definition D2 (P) = ($k´ =u $k ∧ P)

D1 states that if Boyle’s law satisfied in the previous state, then it should be
satisfied in the next state. We define this by conjunction of the formal speci-
fication of this property with the predicate. The annotations $p and $p´ refer
to relational variables p and p′. D2 states that the constant k indeed remains
constant throughout the evolution of the system, which is also specified as a
conjunctive healthiness condition. As before we demonstrate that D1 and D2
are both idempotent and monotone.

lemma D1-idempotent: D1 (D1 (P)) = D1 (P) by rel-tac
lemma D2-idempotent: D2 (D2 (P)) = D2 (P) by rel-tac

lemma D1-monotone: X v Y =⇒ D1 (X) v D1 (Y ) by rel-tac
lemma D2-monotone: X v Y =⇒ D2 (X) v D2 (Y ) by rel-tac

Since these properties are relational, we discharge them using our relational cal-
culus tactic rel-tac. Next we specify three operations that make up the signature
of the theory.

definition InitSys ip iV
= ((«ip» >u 0 ∧ «iV» >u 0 )> ; ; p,V ,k := «ip»,«iV»,(«ip»·«iV»))

definition ChPres dp
= ((&p + «dp» >u 0 )> ; ; p := &p + «dp» ; ; V := (&k/&p))

definition ChVol dV
= ((&V + «dV» >u 0 )> ; ; V := &V + «dV» ; ; p := (&k/&V ))

InitSys initialises the system with a given initial pressure (ip) and volume (iV ).
It assumes that both are greater than 0 using the assumption construct c> which
equates to II if c is true and false (i.e. errant) otherwise. It then creates a state
assignment for p and V , uses the B healthiness condition to make it healthy
(by calculating k), and finally turns the predicate into a postcondition using the
dPe> function.

12



ChPres raises or lowers the pressure based on an input dp. It assumes that
the resulting pressure change would not result in a zero or negative pressure,
i.e. p + dp > 0. It assigns the updated value to p and recalculates V using the
original value of k . ChVol is similar but updates the volume.

lemma D1-InitSystem: D1 (InitSys ip iV ) = InitSys ip iV by rel-tac

InitSys is D1, since it establishes the invariant for the system. However, it is
not D2 since it sets the global value of k and thus can change its value. We can
however show that both ChPres and ChVol are healthy relations.

lemma D1 : D1 (ChPres dp) = ChPres dp and D1 (ChVol dV ) = ChVol dV
by (rel-tac, rel-tac)

lemma D2 : D2 (ChPres dp) = ChPres dp and D2 (ChVol dV ) = ChVol dV
by (rel-tac, rel-tac)

Finally we show a calculation for a simple animation of Boyle’s law, where the
initial pressure and volume are set to 10 and 4, respectively, and then the pressure
is lowered by 2.

lemma ChPres-example:
(InitSys 10 4 ; ; ChPres (−2 )) = p,V ,k := 8 ,5 ,40

proof −
— InitSys yields an assignment to the three variables
have InitSys 10 4 = p,V ,k := 10 ,4 ,40
by (rel-tac)

— This assignment becomes a substitution
hence (InitSys 10 4 ; ; ChPres (−2 ))

= (ChPres (−2 ))[[10 ,4 ,40/$p,$V ,$k]]
by (simp add: assigns-r-comp alpha)

— Unfold definition of ChPres
also have ... = ((&p − 2 >u 0 )>[[10 ,4 ,40/$p,$V ,$k]]

; ; p := &p − 2 ; ; V := &k / &p)
by (simp add: ChPres-def lit-num-simps usubst unrest)

— Unfold definition of assumption
also have ... = ((p,V ,k := 10 ,4 ,40 / (8 :u real) >u 0 . false)

; ; p := &p − 2 ; ; V := &k / &p)
by (simp add: rassume-def usubst alpha unrest)

— (0 :: ′a) < (8 :: ′a) is true; simplify conditional
also have ... = (p,V ,k := 10 ,4 ,40 ; ; p := &p − 2 ; ; V := &k / &p)
by rel-tac

— Application of both assignments
also have ... = p,V ,k := 8 ,5 ,40
by rel-tac

finally show ?thesis .
qed
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4 Theories of Cyber-Physical Systems

In this section we describe some the key UTP theories we have mechanised which
form the basis for our future semantic model of Cyber-Physical Systems.

4.1 Designs

The simplest theory in UTP is that of a nondeterministic imperative program-
ming language expressed in the relational calculus of alphabetised predicates
arranged in a complete lattice. The ordering is refinement, which is defined
as universal inverse implication: (P v Q) = [Q ⇒ P ] (here the brackets are
universal closure over the alphabet). The worst program, the bottom of the lat-
tice, is abort, with semantics true; the best program, the top of the lattice, is
miracle, with semantics false. This theory of nondeterministic programming is
that of partial correctness, with recursion given a strongest fixed-point seman-
tics. The choice of semantics for recursion is a very practical one to make the
theory work. If the weakest fixed-point were chosen, then some desirable laws
would fail to hold. For example, we’d certainly like the following law to hold:
abort ; P = abort . Choosing a weakest fixed-point semantics gives us the equa-
tion (true ; x := 0) = x := 0, for a state with a single variable x : it is possible
to recover from abort (for example, a non-termination recursion) and behave as
though it had never happened. On the other hand, the choice of the strongest
fixed-point would validate the law, thus: (false ; x := 0) = false. It turns out
that the strongest fixed-point is also easier to reason with. Compare the laws
defining the extreme properties of the two operators:

(F (P) v P)⇒ (µF v P) (S v F (S ))⇒ (S v νF )

The left-hand law states that if P is a pre-fixed-point of F , then it can’t be any
weaker than the weakest fixed-point. This would be useful in reasoning about a
recursive specification µF of a program P . The right-hand law states that if S
is a post-fixed-point of F , then it can’t be any stronger than the strongest fixed-
point. This would be useful in reasoning about a recursive implementation νF of
a specification S . The left-hand law seems more practically useful than the right-
hand one. The cost of this practical benefit is an inescapable law: S v abort ,
for every specification S , since abort, with a strongest fixed-point semantics, is
the top of the lattice. So the result is a theory of partial correctness: if we have
S v P , and the P terminates (that is, it is not abort), then P is correct. For this
price, a simple rule is obtained in Hoare logic for reasoning about the (partial)
correctness of loops:

{ b ∧ c } P { c }
{ b ∧ c } while b do P { ¬ b ∧ c }

So it was that the proof rules for fixed-points determined the early emphasis of
partial correctness in program verification.
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UTP’s theory of designs extends the treatment of the nondeterministic im-
perative programming language from partial to total correctness. This is done by
restricting attention to a subclass of predicate for which the left and right-zero
laws actually hold: (true ; P) = true = (P ; true). These predicates are called
designs.

The insight is to capture the theory of assertional reasoning and assumption-
commitment pairs as single relations by adding two observations: that a pro-
gram has started ok and that a program has terminated ok ′. A design is then a
precondition-postcondition pair

(P ` Q) =̂ (ok ∧ P ⇒ ok ′ ∧ Q) for P and Q not containing ok or ok ′

This is read as “if the program has started (ok) and the precondition P holds,
then it must terminate (ok ′) in a state where the postcondition Q holds.” This
is clearly a statement of total correctness. Notice that, although the syntax of
a design is a pair of alphabetised predicates, its meaning is encoded as a single
predicate.

Designs form a complete lattice with false ` Q (abort) at the bottom and
true ` false (miracle) at the top. These two definitions can be simplified as true
and ¬ ok , respectively. Thus, abort permits any and every behaviour, whilst a
miracle, quite properly, cannot be started, and so has no behaviours at all.

A theory in UTP has three components. The first is the signature; here this
is the syntax of the programming language and the syntax of a design pair. The
second component is the alphabet; here this is the two boolean observations ok
and ok ′ NS ny program variables. The third component is a set of healthiness
conditions characterising membership of the theory. In the case of designs, there
are two healthiness conditions, one concerning each observational variable. The
first states that no observation may be made of a program before it has started.
This is necessary for proper initialisation and to make sequential composition
work properly.

H1(P) =̂ ok ⇒ P

The healthiness condition is presented as a monotone idempotent function; its
fixed points are its healthy predicates.

The second healthiness condition concerns termination and seeks to eliminate
the specification that would require a program not to terminate: ¬ ok ′. Refine-
ment allows us to write a correct program that improves on what a specification
requires. In our programming methodology, anything is better than nontermi-
nation, so you should not be allowed to require nontermination. The following
healthiness condition formalises this:

H2(P) = P ⇔ [ P f ⇒ P t ]

where P f =̂ P [false/ok ′] and P t =̂ P [true/ok ′]. Hoare & He show how to
present this condition in terms of the fixed points of the monotone idempotent
function H2 [H&H]. They also shows how to characterise the space of designs in
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three equivalent ways: syntactically, as the fixed points of these two healthiness
conditions, and as the solutions of algebraic equations (left unit and left zero).
Finally, they prove that the lattice of designs is closed under the nondeterministic
programming language’s combinators with assignment as the basis.

The theory of designs has been mechanised in Isabelle/UTP and we show
an excerpt from this theory. We introduce the alphabet by parametric type
′α alphabet-d [11,12] which extends the alphabet ′α with the variable lens ok.
Moreover, we add the useful type synonym
type-synonym ′α hrelation-d = ( ′α alphabet-d, ′α alphabet-d) relation

which describes a homogeneous relation with a design alphabet. We then use
these to create the signature and healthiness conditions of designs in a similar
way to the theory demonstrated in Section 3. Then many standard laws of designs
can be proved automatically, as the following demonstrates.
theorem design-false-pre: (false ` P) = true by rel-tac

Of course not all properties can be proved this way, and in any case there is
great value in presenting the intuition behind a theorem through proof. We
demonstrate this firstly that the syntactic form of designs is equivalent to the
healthiness conditions.
theorem H1-H2-eq-design: H1 (H2 P) = (¬ Pf ) ` Pt

proof −
have H1 (H2 P) = ($ok ⇒ H2 (P))
by (simp add: H1-def )

also have ... = ($ok ⇒ (Pf ∨ (Pt ∧ $ok´)))
by (metis H2-split)

also have ... = ($ok ∧ (¬ Pf ) ⇒ $ok´ ∧ $ok ∧ Pt)
by rel-tac

also have ... = (¬ Pf ) ` Pt

by rel-tac
finally show ?thesis .

qed

This proof makes use of the auxiliary theorem H2-split to expand out H2 which
states that H2(P) = P f ∨ (P t ∧ ok ′). We also show that the design identity IID

is a right unit of any design. We define this element of the signature as follows:
definition skip-d :: ′α hrelation-d (IID) where IID = (true `r II )

The turnstile P `r Q is a specialisation of P ` Q which requires that neither P
nor Q have ok , ok ′ in their alphabets. It use alphabet extrusion and the Isabelle
type system to ensure this: ok `r P entails a type error. Proof of the right unit
law requires that we can calculate the sequential composition of two designs,
which the following theorem demonstrates.
theorem rdesign-composition-cond:
assumes outα ] p1

shows ((p1 `r Q1) ; ; (P2 `r Q2)) = ((p1 ∧ ¬ (Q1 ; ; (¬ P2))) `r (Q1 ; ; Q2))
— proof omitted
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This is itself a specialisation of the more complex design composition law [8]
which adds the requirement that the assumption of the first design be a con-
dition. Thus the theorem assumes p1 does not refer to variables in the output
alphabet, outα, which is just shorthand for fstL. The law demonstrates the ad-
vantages of the alphabets-as-types approach: we do not require provisos that
p1,Q1,P2, and Q2 do not refer to ok and ok ′ which greatly simplifies the theo-
rem and its application. We can now prove the unit law, which we do in Isar.

theorem rdesign-left-unit:
fixes P Q :: ′α hrelation-d
shows (IID ; ; P `r Q) = (P `r Q)

proof −
— We first expand out the definition of the design identity
have (IID ; ; P `r Q) = (true `r II ; ; P `r Q)
by (simp add: skip-d-def )

— Next, we apply the design composition law above in a subproof
also have ... = (true ∧ ¬ (II ; ; ¬ P)) `r (II ; ; Q)
proof −
— The assumption of identity is true so it is easy to discharge the proviso
have outα ] true
by unrest-tac

— From this we can apply the composition law
thus ?thesis
using rdesign-composition-cond by blast

qed
— Simplification then allows us to remove extraneous terms
also have ... = (¬ (¬ P)) `r Q
by simp

— Finally, we can show the thesis
finally show ?thesis by simp

qed

4.2 Reactive processes

A more sophisticated UTP theory is that of reactive processes. In the reactive
paradigm, a process is a pattern of behaviour expressed in terms of observable
events. In general, the behaviour is as follows. The process minds its own business
internally until it’s ready to interact with its environment; it then pauses and
waits until its environment is cooperative, whereupon it reacts and then returns
to its own business; this behaviour is repeated. A reactive process characteris-
tically has two sorts or after-states: intermediate states, where the process is
waiting for interaction with its environment; and final states, where the process
has reached its ultimate computation, completed its behaviour, and terminated.

We investigate this paradigm in terms of its three components as a UTP
theory.

First, we consider the signature of the theory. We consider a simple ex-
tension of the nondeterministic programming language in the previous section,
augmented by an operator that synchronises on an event with the environment.
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If P is a reactive process, then a → P is another process that first engages in
the synchronisation of the event a and then behaves like the process P .

Next, we consider the alphabet of observational variables.
We can observe the sequence of events synchronised by an individual reactive

process. We call this sequence a trace, and denote its before-value by tr and its
intermediate or final value by tr ′. It is a sequence over the set of events.

We can also observe whether a reactive process is in one of its waiting states.
This is an observation that we denote by the boolean variables wait , in the before
state, and wait ′ in the intermediate or final state.

The stability of a reactive process is described in the same way as the termi-
nation of a nondeterministic program. That is, ok ′ describes whether the reactive
process has reached a stable state, whether it be intermediate or final. Thus, the
combination of ok ′ and wait ′ is of interest. If ok ′ ∧ wait ′, then the process
has reached a stable intermediate state. If ok ′ ∧ ¬ wait ′, then the process has
reached a stable final state. Regardless of the value of wait ′, if ¬ ok ′, then the
process is in a divergent state.

The final observation that may be made of a reactive process concerns its
liveness. The process a → SKIP is waiting to perform the event a and then
terminate (SKIP). While it is waiting, it cannot refuse to perform a. The ob-
servational variable ref ′ records this fact. We can think of the value of ref ′ as
an experiment offered by the environment: will the process deadlock if we offer
these events? Suppose that the universe of events is {a, b, c}. Our process will
deadlock if we offer it the empty experiment ∅ (all processes have this property).
It will also deadlock if we offer it either or both b or c. The maximal refusal is
the pair {b, c}; note that the process will refuse any subset: ref ′ is downward
closed. Now consider the nondeterministic process a → SKIP u b → SKIP .
The nondeterministic choice can be resolved in two ways: if the first branch is
taken, then it may refuse b; if the second branch is taken, then it may refuse
a. Note that although ref ′ is downward closed, there is no maximal refusal set.
Recording a refusal set is one way of capturing this kind of nondeterministic
choice. Our process is then partially specified by the predicate

if wait ′ then
(tr ′ = tr) ∧ (ref ′ ⊆ {b, c} ∨ ref ′ ⊆ {a, c}) ∧ ok ′

else
((tr ′ = tr a 〈a〉) ∨ (tr ′ = tr a 〈b〉)) ∧ ok ′

Reactive processes have three healthiness conditions. The first requires that
the trace grows monotonically, so that history is never edited.

R1(P) =̂ P ∧ tr ≤ tr ′

(Here, ≤ denotes the sequence prefix relation.)
The second healthiness condition requires that a process P is insensitive to

the trace of events that occur before P is initiated:

R2(P) =̂ P [〈〉, tr ′ − tr/tr , tr ′]C tr ≤ tr ′BP
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(Here we use the sequence subtraction operator.)
Finally, sequential composition must be made to work as it does in a pro-

gramming language, and not merely as relational composition. In the sequence
P ; Q , if P is waiting, then Q must not be initiated. Define

II rea =̂ R1 ◦ H1((ok ′,wait ′, tr ′, ref ′, x ′) = (ok ,wait , tr , ref , x ))

where x is a list of the process’s state variables. Our healthiness condition is

R3(P) =̂ (II reaCwaitBP)

For the full semantics, other healthiness conditions are needed, but almost all
the process algebraic laws for CSP can be proved correct based on the semantics
presented so far, providing we add two more healthiness conditions concerning
ok and ok ′. Fortunately, we have already presented them: they are H1 and H2,
simply adjusted for the larger alphabet of reactive processes.

The CSP processes are the fixed points of the montone idempotent function

CSP =̂ R1 ◦ R2 ◦ R3 ◦ H1 ◦ H2

Equivalently, by theorem H1-H2-eq-design every CSP relation can be stated as
a reactive design of the form R(P ` Q), where R =̂ R1 ◦ R2 ◦ R3, and P

and Q are assumptions and commitments over the trace and program variables.
For example, the worst CSP process is Chaos =̂ R(false ` true), which fails
to satisfy its assumption and thus establishes nothing other than that the trace
must increase monotonically (by R1). Every CSP process can be expressed as
such a reactive design [8].

We have likewise mechanised the theory of reactive designs, and here show
a few of the properties proved, though without proofs for reasons of space. The
first property shows that Chaos is indeed the bottom of the lattice – every
CSP process refines it. The second shows that Chaos is a left zero for sequential
composition: since wait ′ is always false the second process can never be executed.
theorem Chaos-least: assumes P is CSP shows Chaos v P
— proof omitted

theorem Chaos-left-zero: assumes P is CSP shows (Chaos ; ; P) = Chaos
— proof omitted

More laws we have proved can be found in our online UTP repository3.

4.3 Hybrid Relational Calculus

Differential Algebraic Equations (DAEs) are often used to model the continu-
ously evolving dynamic behaviour of a system. The theory of hybrid relations in
UTP unifies discrete and continuous variables used in such models. We introduce
3 github.com/isabelle-utp/utp-main/blob/master/utp/utp_reactive.thy
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a theory of continuous-time processes that embeds in the theory of alphabetised
predicates trajectories of states evolving over time intervals representing piece-
wise continuous behaviour.

We start with the UTP theory of alphabetised relations, which therefore
will not capture continuous process termination or stability. This allows us to
treat the behaviour of hybrid processes as an individual phenomenon, before
augmenting the theory with additional structure to capture such properties by
embedding it in the theory of timed reactive designs [19,35].

Alphabet. Our theory has two variables ti, ti′ : R≥0 that observe the start and
end time of the current computation interval and its duration ` = ti′ − ti, as in
the Duration Calculus [41]. Following [20], we classify the alphabet of a hybrid re-
lation in three disjoint parts: input variables, inα(P); output variables, outα(P);
and continuous variables, conα(P) (such as x , y , z ). Continuous variables of type
R describe a value at a particular instant of time; trajectory variables of type
R≥0 → R describe the evolution of a value over all time (values outside [ti, ti′)
are irrelevant).

A junction between the discrete and continuous world is established by
making a discrete copies x , x ′ : R of the values of each continuous variable
x : R≥0 → R at the beginning and end of the interval under observation. Discrete
variables that are not surrogates for continuous variables are in the sub-alphabet

disα(P) =̂ { x ∈ inα(P) | x /∈ conα(P) } ∪ { x ′ ∈ outα(P) | x /∈ conα(P) }
Following [13], we define a continuous variable lifting operator from a predi-

cate in instant variables to one in trajectory variables:
P @ τ =̂ { x 7→ x (τ) | x ∈ conα(P) \ {t} } † P
In P @ τ , we map every flat continuous variable (other than the distinguished

time variable t ∈ [ti..ti′)) to a corresponding variable lifted over the time domain.
So the new predicate holds for values of continuous variables at the instant τ , a
variable that is free in P . So each flat continuous variable x : T is transformed to
a time-dependent function x : R → T type. In this way, we lift time predicates
to intervals.

Our hybrid theory has two healthiness conditions:
HCT1(P) =̂ P ∧ ti ≤ ti′

HCT2(P) =̂
P ∧ti < ti′ ⇒

∧
v∈conα(P)


∃ I : Roseq •

ran(I ) ⊆ {ti . . . ti′}
∧ {ti, ti′} ⊆ ran(I )
∧ (∀n < #I − 1 • v cont-on [In , In+1))




where Roseq =̂ { x : seqR | ∀n < #x − 1 • xn < xn+1 }

f cont-on [m,n) =̂ ∀ t ∈ [m,n) • lim
x→t

f (x ) = f (t)
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HCT1 requires that time advances monotonically. HCT2 requires that every
continuous variable v is piecewise continuous: for non-empty intervals there is a
finite number of discontinuous points (the range of I ) between ti and ti′. The
set of totally ordered sequences Roseq captures the set of discontinuities; the
continuity of f is defined in the usual way by requiring that at each point in
[ti, ti′), the limit correctly predicts the function.

Both healthiness conditions are idempotent, monotone, and commutative, as
is their composition HCT = HCT2 ◦ HCT1 . The image of HCT a complete
lattice.

The signature of our theory is as follows:

P ,Q ::= II | P ; Q | PC bBQ | x := e | P∗ | Pω |
ddPee | 〈Fn | b 〉 | P [ b ]Q

This syntax extends the signature of the alphabetised relational calculus with
operators to specify intervals ddPee, differential algebraic equations 〈Fn | b 〉, and
behavioural preemption P [ b ]Q . P∗ and Pω describe finite and infinite iteration,
respectively. The following operators of relational calculus P ; Q , PC bBQ ,
P
∗ , II , x := v , true, and false are HCT closed.
Finally, we define the interval operator from the Duration Calculus [41] and

our own variant.

dPe =̂ HCT2(` > 0 ∧ (∀ t ∈ [ti, ti′) • P @ t))

ddPee =̂ dPe ∧
∧

v∈conα(P)(v = v(ti) ∧ v ′ = lim
t→ti′

(v(t))) ∧ IIdisα(P)

dPe is taken from the Duration Calculus: it is a continuous specification state-
ment that P holds at every instant over all non-empty right-open intervals from
ti to ti′; we make it healthy with HCT2 for piecewise continuity. ddPee links
discrete and continuous variables with the given property.

By making x ′ the limit of x , rather than its value at the end of the interval, we
do not constrain the trajectory valuation at ti′; so it can be defined by a suitable
discontinuous discrete assignment at this final instant. Following [21], we use
the interval operator to give the basis of systems of differential equations. As a
result, we can refine a DAE, under given initial conditions, to a suitable solution
expressed using the interval operator. Intervals satisfy a number of standard
laws.

dtruee = ` > 0 dfalsee = false dP ∧ Qe = dPe ∧ dQe

dP ∨Qe v dPe ∨ dQe ddPee v ddPee ; ddPee

The evolution of a DAE system in semi-explicit form is modelled by an operator,
adapted from HCSP [41,27].

〈 v̇1 = f1; · · · ; v̇n = fn | 0 = b1; · · · ; 0 = bm 〉
=̂ dd (∀ i ∈ 1..n,∀ j ∈ 1..m •

v̇ i(t) = fi(t , v1(t), · · · , vn(t),w1(t), · · · ,wm(t)))
∧ 0 = bj (t , v1(t), · · · , vn(t),w1(t), · · · ,wm(t)) ee
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A DAE 〈Fn |Bm 〉 consists of a set of n functions fi : R × Rn × Rm → R,
which define the derivative of variable v i in terms of the independent time vari-
able t and n + m dependent variables. It also contains algebraic constraints
bj : R × Rn × Rm → R that must be invariant for any solution and do not
refer to derivatives. For m = 0 the DAE corresponds to an ODE, which we
write as 〈Fn 〉. The DAE operator is defined using the interval operator to be
all non-empty intervals over which a solution satisfying both the ODEs and al-
gebraic constraint exists. Non-emptiness is important as it means that a DAE
must make progress: it cannot simply take zero time since ` > 0, and so a DAE
cannot directly cause “chattering Zeno” effects when placed in the context of a
loop, though normal Zeno effects remain a possibility.

To obtain a well defined problem description, we require the following con-
ditions to hold [2]: (i) The system of equations is consistent and neither un-
derdetermined nor overdetermined. (ii) the discrete input variables vi provide
consistent initial conditions. (iii) the equations are specific enough to define a
unique solution during the interval `. The system is then allowed to evolve from
this point in the interval between ti and ti′ according to the DAEs. At the end
of the interval, the corresponding output discrete variables are assigned. During
the evolution all discrete variables and unconstrained continuous variables are
held constant.

Finally, we define the preemption operator, adapted from HCSP.

P [ b ]Q =̂ (QC b@ tiB(P ∧ d¬be)) ∨ ((d¬be ∧ b@ ti′ ∧ P) ; Q)

P is a continuous process that evolves until the predicate B is satisfied, at which
point Q is activated. The semantics is defined as a disjunction of two predicates.
The first predicate states that, if B holds in the initial state of ti, then Q is
activated immediately. Otherwise, P is activated and can evolve while B remains
false (potentially indefinitely). The second predicate states that ¬B holds on the
interval [ti, ti′) until instant ti′, when B switches to a true valuation; during that
interval P is executing. Following this, P is terminated and Q is activated.

Although space does not permit us to go into details, we have mechanised
this theory in Isabelle/UTP4.

5 Conclusions

In this paper we describe our work towards building a mechanised library of
computational theories in the context of the UTP, including those for concurrent
and hybrid systems. Our aim in the future is to use these theories to enable
integration of heterogeneous multi-model semantics, as described by FMI, for the
purpose of multi-pronged verification. We are currently working on integrating
hybrid relations and reactive in order to mechanise hybrid reactive designs. A
hybrid reactive design has the form R(P ∧ ddRee ` Q ∧ ddGee), where P and Q

are the precondition and postcondition on the discrete state, and R and G are
4 See github.com/isabelle-utp/utp-main/blob/master/utp/utp_hybrid.thy.
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assumptions and commitments on the continuous variables. Such a construction
will enable us to apply contractual-style program construction and reasoning
to concurrent Cyber-Physical Systems. Moreover work is underway to explore
other theories relevant for CPS, in particular real-time modelling and probability.
Once these theories are mechanised we will also explore the links between them,
in particular useful Galois connections between discrete and continuous time
domains, which are practically applicable for verification.

Though our Isabelle/UTP theory library is a step forward, further work in
needed particularly in the direction of tool integration. As Hoare and He pointed
out in Chapter 0 of the UTP book [24]:

At present, the main available mechanised mathematical tools are pro-
grammed for use in isolation [...] it will be necessary to build within each
tool a structured library of programming design aids which take the ad-
vantage of the particular strengths of that tool. To ensure the tools may
safely be used in combination, it is essential that these theories be unified.

We believe that the Isabelle framework is a significant step towards acquisition
of this goal. Nevertheless, there is certainly more to be done, particularly in the
area of mechanisation of continuous mathematics and application of associated
computational algebra tools.
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