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Assessment of maximum a posteriori image estimation

algorithms for reduced acquisition time medical positron

emission tomography data

Daniel Deidda, Robert G. Aykroyd and Charalampos Tsoumpas

Abstract This study examines the effects of reduced radioactive dosage data collection on positron

emissions tomography reconstruction reliability and investigates the efficiency of various reconstruction

methods. Also, it investigates properties of the reconstructed images under these circumstances and the

limitations of the currently used algorithms. The methods are based on maximum likelihood and maxi-

mum a posterior estimation, but no explicit solutions exist and hence iterative schemes are obtained using

the expectation-maximisation and one-step-late methods, while greater efficiency is obtained by using an

ordered-subset approach. Ten replicate real datasets, from the Hoffman brain phantom collected using a

Siemens Biograph mMR scanner, are considered using standard deviation, bias and mean-squared error as

quantitative output measures. The variability is very high when low prior parameter values are used but

reduces substantially for higher values. However, in contrast, the bias is low for low parameter values and

high for high parameter values. For individual reconstructions, low parameter values leads to detail being

lost in the noise whereas high values produce unacceptable artefacts at the boundaries between different

anatomical regions. Considering the mean-squared error, a balance between bias and variability, still iden-

tifies high prior parameter values as giving the best results, but this is in contradiction to visual inspection.

These findings demonstrate that when it comes to low counts, variability and bias become significant and

are visible in the images, but that improved reconstruction can be achieved by a careful choice of the prior

parameter.
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1 Introduction

Positron emission tomography (PET) is a non-invasive imaging technique used in the clinical setting for

routine diagnosis, dose delivery and treatment response evaluation. The use of medical imaging technolo-

gies is now commonplace in the clinical setting. Positron emission tomography leads the way in the de-

tection of abnormalities such as cancer since, although it has low spatial resolution, it provides unrivalled

functional information. As with all radiation-based methods, however, there is a risk of tissue damage

which could lead to cancer at a later date. Hence there is a constant demand for decreases in radioactive

dosages. Positrons are emitted by a radioactive-tracer, travelling a few millimetres before interacting with

electrons. As soon as the interaction takes place a pair of photons, of identical energies, are emitted in

opposite directions. The detection of the two photons allows a line-of-response to be defined which is char-

acterised by an angle and the shortest distance between the line and the center of the detector system – see

Figure 1(a) where four events are shown. When a large number of lines-of-response are plotted the result-

ing graph is half of a sine wave – hence the motivation for this type of graph being called a “sinogram”.

With complex objects the data will consist of a large number of overlapping sine waves (Fahey, 2002) –

see the real data example in Figure 1(b).

(a) Diagram showing sinogram formulation. (b) Example sinogram.

Fig. 1 PET data acquisition: (a) events recorded as a line-of-response, and (b) total counts shown in a sinogram.

If this were a non-random system then the data, Y say, would be a simple linear function of the radio-

isotope concentrations, Λ say, and coefficients, C say, that is Y =CΛ . In principle, this can be inverted as

Λ = C−1Y , or the usual linear regression estimate Λ = (CTC)−1CTY . In a typical data collection system,

however, there are about 256× 642 ≈ 16 million data values and a 3D reconstruction space of 2563 ≈ 16

million voxels. This means that C is a 16 million by 16 million matrix with high multicollinearity. This is

a highly ill-conditioned, and possibly ill-posed, big-data inverse problem which requires careful analysis.

Several iterative algorithms are currently used to estimate the radioactive-tracer distribution based upon

the principles of maximum likelihood and maximum a posteriori estimation. These have been widely stud-

ied using both simulated and clinical data, but less well for anatomically realistic measured phantom data,

as is the theme here. This investigation will consider quantitative voxel-by-voxel output analysis, rather

than the more common region-of-interest based approach, in terms of bias, standard deviation and mean
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squared error. A further novelty is the use of low count data and hence it will be the first to make the

quantitative comparison of algorithm accuracy for such low count phantom data.

This paper is organized as follows. A summary of the basic physical and statistical modelling is given

in Section 2 with estimation discussed in Section 3. The data are described in Section 4 along with details

of the investigation design. Numerical results are presented in Section 5 with discussion in Section 6.

2 Statistical modelling for PET data

Suppose that the 3D reconstruction space, R ⊂ R3, is partitioned into small cubic voxels with the true

radioactive-tracer concentration in voxel j labelled as λ j giving the discretised unknown image Λ = {λ j :

j = 1, . . . ,M}. Note that this partitioning is arbitrary and hence can be tailored to the application or chosen

for computational convenience. Let the data sinogram be denoted Y = {yi : i = 1, . . . ,N} which depends on

the radioactive-tracer concentration through a Poisson model with

yi ∼ Poisson

(
M

∑
j=1

ci jλ j

)
, i = 1, . . . ,N, (1)

where ci j represents the, assumed known, probability that an event occurring in voxel j produces a coinci-

dence in the i-th pair of detectors and takes into account attenuation and normalisation corrections. Before

moving-on it is worth noting that, for computational efficiency, the full summation over all N voxels is

never performed. Instead, for each sinogram element the sum is only taken over voxels with non-negligible

contribution, that is with ci j above some threshold. The set of voxels with non-negligible contribution to yi

is denoted Ii and hence the model becomes

yi ∼ Poisson

(

∑
j∈Ii

ci jλ j

)
, i = 1, . . . ,N. (2)

Based on this model the corresponding data log-likelihood, l(Y,Λ) = lnL(Y,Λ), is given by

l(Y,Λ) = ∑
i∈N

[
yi ∑

j∈Ii

ln(ci jλ j)− ∑
j∈Ii

(ci jλ j)− ln(yi!)

]
(3)

and the maximum likelihood estimates of Λ given by

Λ̂ = max
Λ

l(Y,Λ) (4)

with the usual asymptotic approximations available for calculating a covariance matrix and construction of

confidence intervals etc. However, given that M is typically very large, e.g. M = 16 million, any direct so-

lution of (4) is impractical. An alternative approach is to use an iterative method, such as the EM algorithm

which is discussed in the next section.

Given that this is an inverse problem, stable solution of the maximum likelihood problem is unlikely,

especially when the number of unknowns is large compared to the amount of data. One approach is to

incorporate additional information into the maximisation step creating a penalized likelihood approach.
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This can equally be posed in a Bayesian setting with the penalty forming a prior distribution which is com-

bined with the above likelihood to produce the posterior distribution and the maximum a posteriori (MAP)

solution used as the reconstruction. Consider a prior distribution defined in terms of a Gibbs distribution

f (Λ) =
1

Z(β )
exp{−βV (Λ)} (5)

where β > 0 is a prior parameter and V (Λ) is chosen so that f is large for values of Λ believed to be

likely and small for implausible values. In particular, the following functional forms will be considered: (i)

a Gaussian prior model on local differences

V1(Λ) = ∑
< j,k>

w jk(λ j −λk)
2/λ j, (6)

where < j,k > denotes all voxel neighbours, {w jk} are positive constants that define a weight value for

each neighbouring voxel (in general, 1 for first-order interactions between orthogonal nearest neighbours,

and 1/
√

2 for second-order diagonal interactions), and (ii) a Gaussian prior on local variability

V2(Λ) = ∑
j

(λ j − λ̄ j)
2/λ̄ j, (7)

were λ̄ j is the median of the values in the neighbourhood of voxel j. This is considered to be a more

robust alternative allowing occasional sharp changes, or jumps, between neighbouring radioactive-tracer

values. For further details of these prior distributions see, for example, Alenius and Ruotsalainen (2002)

and Bettinardi et al. (2002).

The posterior distribution is then produced by combining the likelihood and the prior density using

Bayes’s Theorem resulting in the following log-posterior function (and ignoring constant terms)

p(Λ | Y ) = ∑
i∈N

[yi ∑
j∈Ii

ln(ci jλ j)− ∑
j∈Ii

(ci jλ j)−βV (Λ)], (8)

with resulting definition of the maximum a posterior (MAP) estimate as

Λ̂ = max
Λ

p(Y,Λ). (9)

Again, this cannot be solved easily and hence iterative algorithms can be used, one of which, based on the

OSL algorithm (Green, 1990), is described in the next section.

3 Maximum likelihood and maximum posterior estimation using an EM algorithm

In general, it is difficult to directly find the maximum of the log-likelihood in (3), recalling that there are

millions of data points and millions of unknown parameters, and instead an iterative approach is used

which considers single parameter updates one-by-one. The algorithms currently used in the clinical setting

for PET are based on the approach originally proposed in Shepp and Vardi (1982), that is the maximum
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likelihood expectation maximisation (MLEM) algorithm, see also Dempster et al. (1977) and Lange and

Carson (1984), which can be explained and derived as follows based on a “missing data” argument.

Suppose that instead of only Y being recorded, it had been possible to observe where all events origi-

nated, then this leaves a simple task of estimating the radioactive-tracer concentration. Hence a “complete

dataset”, X = {Xi j : i = 1, . . . ,N, j = 1, . . . ,M}, is considered where Xi j is defined as the number of photon

pairs emitted from j and detected at i and is related to yi by yi = ∑ j∈Ii
Xi j. The complete data log-likelihood

is then:

l(X ,Λ) = ∑
i∈N

[
Xi j ∑

j∈Ii

ln(ci jλ j)− ∑
j∈Ii

(ci jλ j)− ln(Xi j!)

]
. (10)

In order to obtain the algorithm updating formula, the following two steps are necessary. In these n is

the iteration number and Λ̂ (n) is the estimated radioactive-tracer concentration at iteration n.

• E-STEP: During this step the algorithm estimates the conditional expectation of l(X ,Λ), E(l(X ,Λ)|Y,Λ̂ (n)).

The expected value for l(X ,Λ), given the measured data Y and Λ̂ (n), is:

E(l(X ,Λ) | Y,Λ̂ (n)) = ∑
i, j


 ci jλ̂

(n)
j yi

∑k∈Ii
cikλ̂

(n)
k

ln(ci jλ̂
(n)
j )− ci jλ̂

(n)
j


+ Const. (11)

In the first iteration the image can consist of any non-negative solution, to assure the non-negativity

constraint (Lange and Carson, 1984), though often an initial homogeneous image is used.

• M-STEP: In this step the algorithm finds the image that maximises the log-likelihood computed in the

previous step by considering the partial derivatives:

∂E(l(X ,Λ) | Y,Λ̂ (n))

∂λ j

∣∣∣∣∣
Λ=Λ̂ (n)

= ∑
i∈J j


 ci jλ̂

(n)
j yi

∑k cikλ̂
(n)
k

λ−1
j − ci j


= 0, (12)

where J j is the set of projections to which voxel j contributes. Dempster et al. (1977) showed that

equation (12) is equal to ∂ l(Y,Λ̂ (n))/∂λ j. The resulting formula describes the MLEM algorithm:

λ
(n+1)
j =

λ̂
(n)
j

∑i∈J j
ci j

∑
i∈J j

ci jyi

∑k∈Ii
cikλ̂

(n)
k

, j = 1, . . . ,M. (13)

The resulting value for Λ̂ (n+1) is then used in the E-STEP of the next iteration and the procedure is

repeated until convergence is reached.

The MLEM algorithm is demonstrated to be a convergent algorithm and appropriately takes into account

the random behaviour of the emission process. Nevertheless, it is computationally demanding and takes

many iterations to converge. An accelerated version of MLEM was developed in Hudson and Larkin (1994)

using ordered subsets (OS) of the data. The resulting OSEM converges in fewer iterations and is widely used

in clinical practice because it is easily implemented and provides good images more quickly.

The OSEM algorithm provides acceleration of convergence, proportional to the number of subsets, by

simply processing only the data within a subset at each sub-iteration. The data is organised in ordered
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subsets and the MLEM method is applied to each subset in turn. The reconstruction after each sub-iteration

becomes the starting point for the following subset. In this way every iteration passes through every subset.

These subsets are usually chosen so that the projections within a subset corresponds to the projections of

the image with down-sampled projection angles. The number of subsets has to be a divisor of the number

of detector blocks in a ring (the Siemens mMR has 63 blocks per ring with 8 × 8 detectors per block and

consequently, the choice could be one of 3, 9, 21 and 63). Following the same approach as for MLEM, the

OSEM algorithm is obtained by substituting the sum over i with the sum over s ∈ Sm in (13), where Sm is

the chosen subset of detector pairs and m = 1, ...,M, where M is the number of subsets:

λ̂
(n,m+1)
j =

λ̂
(n,m)
j

∑s∈Sm
cs j

∑
s∈Sm

cs jys

∑k cskλ̂
(n,m)
k

, j = 1, . . . ,M, (14)

where λ̂
(n,m)
j is the estimate of λ j at sub-iteration m in the n-th full iteration. The resulting value for Λ̂ (n+1)

is then used in the next iteration and the procedure is repeated until convergence is reached. The final

solution then yields the maximum likelihood estimate, Λ̂ , which will later be referred to as the MLE.

The OSEM method has been proven to converge quickly if the subset balance is respected (Hudson and

Larkin, 1994). However, with this method the MLEM noise artefacts are magnified after every iteration.

For this reason, in the clinical practice it is often stopped at early iterations. Further to remove the effects

of noise in the reconstruction a Gaussian smoothing filter is applied as a post-processing step – later this

will be referred to as the MLE+G.

To reduce the effects of noise in reconstruction in the final stages of the maximum likelihood algorithm,

smoothing can be introduced through a prior distribution which then leads to the maximum a posterior

estimate. As with the log-likelihood, the log-posterior function in (9) cannot be maximised directly and

hence an EM-based algorithm is again considered.

The OSMAPOSL algorithm is an extension of the OSEM algorithm which iteratively maximises the pos-

terior distribution

l(λ | Y ) = ∑
i∈N

[yi ∑
j∈Ii

ln(ci jλ j)− ∑
j∈Ii

(ci jλ j)−βV (λ )], (15)

to produce the MAP estimate with the following updating equation:

λ̂
(m+1)
j =

λ̂
(m)
j[

∑
s∈Sm

cs j −β
∂V (Λ)

∂λk

∣∣∣∣
Λ=Λ̂ (m)

] ∑
s∈Sm

cs jys

∑k cskλ̂
(m)
k

, j = 1, . . . ,M. (16)

This uses the same ordered-subset approach and hence has faster convergence than the original one-step

late algorithm (Green, 1990). The final solution then yields the maximum a posterior estimate, Λ̂ , which

will later be referred to as the MAP. Further, the choice of prior function will be indicated as either V1 or V2

as defined in (6) and (7) respectively, and finally the value of the prior parameter will be given, for example

β = 100, to give a full labelling such as MAP,V1,β = 100.
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4 Data description and assessment criteria

The data used in this study were acquired with a 3D PET-MR system (Biograph mMR, Siemens Healthcare)

by colleagues at the Institute of Nuclear Medicine of University College London Hospital. The Biograph

mMR has 8 rings, each one divided in 63 blocks. The detector blocks have 8 × 8 LSO crystals, each 8

× 8 × 20 mm3 in size. Experiments were carried out using the Hoffman 3D Brain Phantom (Hoffman

et al., 1990), which can provide a realistic approximation of the radioactive-tracer distribution found in the

normal brain. The phantom consists of a robust plastic cylinder (diameter: 20.8 cm, height: 17.5 cm, fillable

volume: ∼ 1.2 l) and 19 independent plates within the cylindrical phantom. It was filled with 60 MBq 18F-

fluorodeoxyglucose and the acquisition time was 3600 s giving a total number of events of about 109, which

represents a standard for brain acquisitions. The numerical procedures have been developed within the

Collaborative Computational Project in Positron Emission Tomography and Magnetic Resonance imaging

(CCP-PET-MR) – see www.ccppetmr.ac.uk and make extensive use of STIR (Thielemans et al., 2012) for

data correction (attenuation, scatter, normalisation and random matches) and reconstruction. The image

size after the reconstruction is 289×289×127 with voxel size 2.04×2.04×2.03 mm3.

With real data the activity concentration is unknown and hence a gold standard is defined as a reference,

using maximum likelihood estimation from the MLEM algorithm with the full 3600 s phantom data. The

reconstructed image, as MLEM is globally convergent and because of the very high level of counts, is

sufficient in terms of noise, bias and so on. The image, later denoted Λ ∗, used as the “true” image was

obtained after 126 iterations (see Figure 2), to ensure convergence. Both “gray matter” and “white matter”

voxel values can be distinguished well with substantial detail of the undulating and folded structure.

Fig. 2 MLEM image chosen as our high quality reference.

To ensure exactly equal experimental conditions, ten samples with roughly the same number of counts

have been created, by sub-sampling from the 3600 s data, so as to mimic different acquisition times and to

allow reconstruction assessment. The effective acquisition time was reduced from 3600 s to 36 s in order

to simulate low count datasets. To analyse the low-count reconstructed images, different figures of merit

have been chosen that are standard deviation (SD), Bias and Root Mean Squared Error (RMSE).
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In general, to define a general quantitative analysis design, suppose that K replicate datasets are avail-

able, {Y k : k = 1, . . . ,K} and that the corresponding result of the algorithm are estimated radioactive-tracer

concentration images {Λ̂ k : k = 1, . . . ,K}. These can be used to define a mean image, Λ̄ = ∑
K
k=1 Λ̂ k/K. Fur-

ther, recall that a “gold standard”, Λ ∗ is available from the 3600 s dataset reconstructed using the MLEM

algorithm. The SD, Bias and RMSE are then defined as follows:

SD =

√
1

K

K

∑
n=1

(Λ̂ k − Λ̄)2; Bias = Λ̄ −Λ ∗; RMSE =
√

SD2 +Bias2. (17)

The ideal reconstruction algorithm would produce low values for each of these measures indicating high

reproducibility from the replicate datasets and lack of overall bias.

5 Experimental results

A preliminary investigation was carried out to choose the number of sub-iterations in the ordered-subset

algorithms, OSEM and OSMAP. To do so, two regions of interest (ROI) were chosen as representative of

gray and white matter. Figure 3(a) and (b) show the average value within each ROI as a function of sub-

iteration from the OSEM reconstruction based on the 3600 s and 36 s datasets respectively. This shows that

at the 5-th iteration for 21 subsets (corresponding to 105 sub-iterations), the ROI values in both white and

gray matter have stabilized. Although in the clinical setting, with 21 subsets, 63 sub-iteration are often

used, here 105 is chosen as more appropriate for our datasets. In the rest of the analysis, 21 subsets and 5

complete iterations (105 sub-iterations) are used without further comment.
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(a) 3600 s acquisition time
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(b) 36 s acquisition time

Fig. 3 Convergence of activity concentration values for white and gray matter using 21 subsets with OSEM.

The results of the main statistical investigation with the 36 s dataset over the ten replicate datsets are

represented in Figures (4) and (5). These show a single dataset reconstruction (Individual), Mean, SD,

Bias and RMSE images for 6 different cases. Figure (4) shows the MLE from the OSEM algorithm,

the corresponding image after the Gaussian smoothing post-processing, then the MAP estimate using the
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Gray Matter

MLE MAP with V1 MAP with V2

MLE MLE+G V1, β=10 V1, β=100 V1, β=1000 V2, β=10 V2, β=100 V2, β=500

Mean 2.47 ± 0.59 2.39 ±0.12 2.46 ±0.51 2.47 ±0.26 2.39 ±0.15 2.49 ±0.47 2.49 ±0.21 2.42 ±0.16

SD 1.53 ±0.44 0.22 ±0.05 1.34 ±0.34 0.67 ±0.13 0.22 ±0.05 1.23 ±0.28 0.5 ±0.1 0.23 ±0.05

Bias 0.41 ±0.36 0.22 ±0.15 0.37 ±0.31 0.25 ±0.18 0.22 ±0.15 0.35 ±0.3 0.25 ±0.18 0.23 ±0.16

RMSE 1.61 ±0.48 0.33 ±0.12 1.42 ±0.37 0.74 ±0.14 0.33 ±0.12 1.3 ±0.31 0.59 ±0.13 0.34 ±0.12

White Matter

MLE MAP with V1 MAP with V2

MLE MLE+G V1, β=10 V1, β=100 V1, β=1000 V2, β=10 V2, β=100 V2, β=500

Mean 0.55 ±0.25 0.61 ±0.07 0.55 ±0.23 0.55 ±0.17 0.57 ±0.09 0.54 ±0.18 0.56 ±0.09 0.62 ±0.07

SD 0.57 ±0.35 0.14 ±0.03 0.54 ±0.29 0.38 ±0.13 0.14 ±0.03 0.41 ±0.16 0.17 ±0.04 0.08 ±0.02

Bias 0.16 ±0.13 0.14 ±0.08 0.15 ±0.12 0.11 ±0.08 0.1 ±0.07 0.11 ±0.08 0.09 ±0.06 0.13 ±0.09

RMSE 0.61 ±0.35 0.20 ±0.06 0.57 ±0.3 0.41 ±0.13 0.17 ±0.05 0.43 ±0.16 0.2 ±0.05 0.16 ±0.07

Table 1 Summary results, over ten samples, using three circular ROIs for each of gray and white matter.

Gaussian prior on local differences, V1, with β = 100. Figure (5) shows the remaining results for MAP

estimates using the Gaussian prior on local differences, V1, with β = 1000 and then MAP estimates using

the Gaussian prior on local variability, V2, with β = 100 and finally β = 500. The values of the prior

parameters were chosen to give a range of reconstruction quality.

The SD images summarise the variability of the individual estimates over the ten samples, and show

that the MLE and MAP estimates with small prior parameter have SD which is very high. Using a filter

for the MLE to produce the MLE+G estimate, and a higher prior parameter for MAP estimation, help to

reduce the SD. Overall the Bias is higher in regions with the lowest activity concentration. In addition, too

high a prior parameter leads to artefacts around the border between different anatomical features, this is

the effect of over-smoothing.

The RMSE images should take into account both Bias and SD, but here they show the same trend as the

SD images. That is the variability between the ten samples swamps the Bias. With β higher then 500 and

1000 respectively for Gaussian prior on differences and Gaussian prior on variability, the Bias will become

higher and more artefacts will be created. Table 1 shows the mean pixel values for two ROI, representing

typical gray and white matter with each made up of three circles. Each number in the table is accompanied

by the standard deviation over all the pixels within the ROI for each image in Figure (4) and (5).

6 Discussion

The purpose of this work was to check the feasibility of image reconstruction when a short acquisition time

or a low radioactive-tracer dosage is used and to compare the performance of various estimation methods in

this situation. The study has used real data to assess how low-count conditions affect image reconstruction
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reliability, and in particular has compared different prior assumptions and different prior parameter values

in terms of bias, standard deviation and mean squared error. The results show that good estimation can be

achieved by a careful choice of the prior parameter. From a global perspective, low-count reconstructions

show high noise and bias with all the methods showing the need for improvement. Moreover, it is clear that

the convergence rate of OSEM is smaller in regions with lower pixel intensity; in fact early-stopped OSEM

images show a systematic bias in regions with lower activity concentration such as white matter and the

background. In contrast, MAP methods with the right prior parameter value show better performance as

low activity regions have less bias. This is due to the fact that they maximise the posterior distribution intro-

ducing prior information to remove the ill-conditioning. The maximum likelihood and MAP estimates with

low prior parameter values have very high RMSE while it decreases with higher prior parameter values.

Purely in terms of the RMSE, the best estimation occurs with the post-filtered maximum likelihood, and

MLE MLE+G MAP,V1,β = 100

Fig. 4 Transverse view of images reconstructed with 21 subsets at the 105-th sub-iteration: 36 s acquisition.
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MAP estimation with the higher values of prior parameter. On visual inspection, however, these estimates

are not completely acceptable as there is high bias across the boundary of grey and white matter, and fur-

ther within a region it is overly smooth. These would make it challenging to recognise small abnormalities,

such as cancers. Hence, a global goodness-fit measure which gives greater weight to bias, than does the

RMSE, would be more suited to such medical investigations.

A key contribution of this study is to show the difficulty in the choice of a suitable prior parameter

with low-count data. Even though the MAP estimates with the highest prior parameter values have low

RMSE the images appear to be over-smoothed. In contrast, the maximum likelihood estimate with Gaussian

smoothing, which is the preferred method in the clinic, produces results at least as well as any of MAP

estimates. Hence, to achieve substantially better results with the MAP estimation methods will need careful

choice of prior parameters. Recent studies, such as Ahn et al. (2015) and Karaoglanis et al. (2015), have

MAP,V1,β = 1000 MAP,V2,β = 100 MAP,V2,β = 500

Fig. 5 Transverse view of images reconstructed with 21 subsets at the 105-th sub-iteration: 36 s acquisition.
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demonstrated that regularisation can significantly improve quantification and detectability compared to

post-filtered maximum likelihood. The results of this investigation confirm what was suspected about low-

count data, that is, under this special circumstance reconstruction is more greatly affected by bias and high

levels of noise. Under this point of view, our results are in agreement with the results in Walker et al.

(2011).

The use of anatomical information from MR will be in the development of new hybrid reconstruction

methods. This should help to preserve sharp contrast between adjacent anatomical features and avoid partial

volume effect (Vunckx et al., 2012; Novosad and Reader, 2016). This investigation and the procedures for

iterative image reconstruction considered will be a useful guide for researchers who wish to study and

extend image reconstruction and correction methods for PET data.
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