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The evolution of gene expression and the transcriptome–
phenotype relationship

Peter W. Harrison 1, Alison E. Wright 1, and Judith E. Mank *

University of Oxford, Edward Grey institute, Department of Zoology, South Parks Road, Oxford
OX1 3PS, United Kingdom

Abstract
Changes in gene expression underlie the adaptive evolution in many complex phenotypes, and the
recent increase in the availability of multi-species comparative transcriptome data has made it
possible to scan whole transcriptomes for loci that have experienced adaptive changes in
expression. However, despite the increase in data availability, current models of gene expression
evolution often do not account for the complexities and inherent noise associated with
transcriptome data. Additionally, in contrast to current models of gene sequence evolution, models
of transcriptome evolution often lack the sophistication to effectively determine whether
transcriptional differences between species or within a clade are the result of neutral or adaptive
processes. In this review, we discuss the tools, methods and models that define our current
understanding of the relationship between gene expression and complex phenotype evolution. Our
goal is to summarize what we know about the evolution of global gene expression patterns
underlying complex traits, as well to identify some of the questions that remain to be answered.
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1. The Genome–phenotype relationship and gene expression evolution

Phenotypes are encoded by genes, and the vast majority of heritable changes in phenotypes
are caused by changes in DNA. This simple statement obscures the deeply complex
relationship between DNA and phenotypes, a relationship that involves several types of
molecules, signalling patterns and interactions. Phenotypic evolution can therefore occur
through a variety of mechanisms, sometimes divided dichotomously into structural versus
regulatory. Changes in coding sequence result in altered protein forms, with different
folding structures, activity or other properties that result in functional phenotypic variation
[1]. Regulatory changes do not alter the protein structure, rather the amount of protein
produced, and can influence phenotypes by altering the volume, timing or tissue of
expression [2].

Many examples of adaptive phenotypic change have been shown to be due to changes in
protein coding sequence, and this is an important, and arguably the classical evolutionary
mechanism of adaptation. Powerful and nuanced models of sequence evolution exist that
allow us to scan gene sequence data for regions of adaptive evolution [3]. These models,
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combined with the explosion of sequence data in recent years at both the species and
population level, have made possible whole-genome scans for changes in gene sequence and
polymorphism indicating the locus of phenotypic changes [4–8].

However, there is a growing body of work showing that in some cases where gene sequence
is functionally conserved, gene regulation modifications can cause the major phenotypic
differences that underlie adaptive change. For example, adaptive camouflage in beech mice
[9], melanisation in Drosophila [10], beak morphology in Darwin’s finches [11] have all
been shown to be the result of gene expression changes rather than changes in protein
structure. These studies represent compelling evidence for the role of gene regulation in
phenotypic evolution.

The above examples of phenotypic change due to gene expression are primarily due to
changes in the expression of a single locus of very large effect, and most of these cases were
discovered via candidate gene or QTL methods. However, many phenotypes are far more
complex, especially where multiple phenotypes are expressed within a single species. For
example, the polyphenism underlying ant castes is due to complex suites of hundreds of
genes [12,13]. Condition-dependent phenotypes [14] and sex-specific phenotypes [15] are
also composed of hundreds of loci, and broad expression changes can be detected in
response to a range of environmental and developmental factors [16]. In these cases,
candidate gene and QTL methods lack sufficient power or are wholly inappropriate for
identifying the suites of genes and regulatory loci underlying adaptive evolution of these
traits.

In order to understand how these types of phenotypes are encoded, and more broadly how
they evolve among lineages, we require comparative transcriptomics in conjunction with
models of gene expression evolution. This permits transcriptome-wide scans for loci
showing accelerated rates of change, a similar approach to models of sequence evolution
that are implemented on coding regions. Just as the next-generation sequencing revolution
has reshaped the research horizon in DNA sequencing abilities, so too has it reshaped our
ability to quantify the expression of all the genes expressed in a given tissue, with or without
a prior reference genome sequence.

Although the next-generation sequencing revolution has facilitated the generation of
transcriptomic data, the models with which to study gene expression evolution are less
sophisticated than those used to understand changes in coding sequence. For example,
consensus has yet to be reached regarding the null model of neutral evolution for gene
expression. This is a key requirement, as an accurate and robust null model is the necessary
first step in differentiating loci that have undergone rapid adaptive change from those where
change is due to genetic drift. At this point, these alternative explanations are often
indistinguishable [17]. Additionally, the regulatory changes underlying the evolution of
complex phenotypes remain largely unknown at this point. For instance, although maleness
and femaleness are ancient phenotypes, the gene expression patterns underlying them can
vary extensively even among closely related species [18–21]. Changes in these phenotypes
presumably are due to the observed differences in sex-specific expression, but the direct link
remains elusive.

2. Studies of gene expression evolution for understanding complex

phenotypes

The first step in understanding the gene expression changes underlying the adaptive
evolution of complex phenotypes is scanning comparable transcriptome data for specific loci
that show differences in expression. Observed differences are due to two alternate processes.
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Large differences in expression between taxa, populations or lineages can result entirely
from neutral processes related to genetic drift, where relaxation of evolutionary constraints
results in non-adaptive changes. Alternatively, adaptive changes in expression, resulting
from positive selection for advantageous traits, can also cause large changes in gene
expression over evolutionary time. Determining whether differences in gene expression are
the result of neutral or adaptive evolution is a challenging and important problem, as these
alternatives have significant implications as to the nature of mutation, selection and
evolutionary change.

Studying the evolution of gene regulation requires models based on different evolutionary
predictions. The data can then be tested against these models to explain the observed pattern
and identify outliers that may represent loci changing at accelerated rates, either due to
adaptive or neutral evolution. For such studies of transcriptome evolution, the validity of the
conclusions relies heavily on the robustness of the null neutral model. Despite its
importance, parameters of the model, such as the mutation rate and level of constraint,
remain difficult to define. Current approaches to infer the mode of transcriptome evolution
can be broadly divided into pairwise methods that test expression divergence between two
related taxa, and multiple taxa approaches that additionally infer the relative rate of
expression among related lineages over evolutionary timescales.

2.1. Pairwise tests of gene expression evolution

The neutral theory of genetic evolution [22] predicts that selectively neutral changes are
based solely on the underlying mutation rate [23]. Mutation leads to polymorphism, which
can be inferred in expression data through intra-population expression variation. When
applied to expression data, with all factors such as effective population size and mutation
rate being equal, genetic drift explains instances where variation in expression within
lineages is equal or exceeds divergence between them. Genes where expression divergence
and variation are both low are shaped primarily by purifying selection. Finally, sites
evolving by positive selection have higher levels of divergence than polymorphism in
expression, as variation in expression is removed due to selection acting to maintain the
optimal phenotype. Therefore, the different selective pressures can be inferred
experimentally by calculating the ratio of within to between population variation in
expression for a given locus (Fig. 1).

Applying these models to transcriptomic data requires multiple replicates for each assessed
taxon in order to estimate expression variance. Using this approach with two species of
killifish, Oleksiak et al. [24] demonstrated that far more variation was detected within
species than between them, indicating that most gene expression evolves under neutral
expectations of genetic drift. This neutral expectation was then used to identify loci that
departed significantly from the model, allowing the identification of a number of genes
related to temperature tolerance that showed high divergence between species but low
variation within. Similarly, Rifkin et al. [25] scanned expression data from replicate
populations of Drosophila melanogaster and outgroup populations of D. simulans and D.
yakuba by classifying genes into three different quadrants outlined in Fig. 1. This study
tested neutral evolution by elimination, rather than testing deviations from a null neutral
model directly. In doing so, the authors concluded that only 17% of genes were consistent
with a neutral model, whereas 44% fit the model of purifying selection, and 39% of genes
were consistent with positive selection. The distribution of genes among the three classes
suggested that although purifying selection was most prominent, genes with both adaptive
and neutral evolutionary changes could be differentiated.

Unlike the previous two studies above, Lemos et al. [26] used data from mammals and
Drosophila to explicitly test expression data against a null neutral model, albeit one based on
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a number of assumptions. Mutational variance, the per generation increase in variance solely
resulting from mutation, is a key component of the null neutral model but difficult to
measure explicitly in expression data. Instead, it was assumed that the mutational variance
affecting gene expression could be estimated from other quantitative traits, such as
Drosophila alcohol dehydrogenase activity, bristle number and viability. In order to establish
the minimum and maximum rates of gene expression divergence that could still be
considered neutral, the authors combined these phenotype estimates of mutation with the
assumption that environmental variance accounts for half of the within-population variance.
Genes that diversified less than neutral predictions were assumed to be shaped by purifying
selection, whereas those that diversified more were categorised as evolving under directional
selection. Under this model, stabilising selection acting within species was found to be the
dominant evolutionary force shaping gene expression.

Pairwise studies such as these are useful for identifying loci that differ between two related
taxa, and have an advantage in that they do not require the estimation of an ancestral gene
expression state at internal nodes of a phylogeny. However, they represent a rather narrow
view of evolutionary history. To broaden the evolutionary window of gene expression
evolution, a phylogenetic history of expression employing multiple taxa is required.

2.2. Multiple taxa and relative rates in gene expression evolution

An alternative to the studies discussed thus far is to assess the relative rate of evolution
across multiple taxa within a phylogenetic context, thereby creating a more dynamic
understanding of gene expression evolution across clades. Just as models of sequence
evolution require the inference of ancestral proteins, multi-species studies of gene
expression evolution require the estimation of ancestral gene expression from the levels
observed in extant descendant species. However, unlike phylogenetic models of gene
sequence evolution, where ancestral protein sequences have some experimental validation
[27], no such validation exists for inference of ancestral gene expression levels, making this
key parameter largely untested.

By incorporating a measure of divergence time into the null neutral model Khaitovich et al.
[28] showed that divergence between primate species in brain-expressed genes accumulate
approximately linearly with time, consistent with neutral evolution. Importantly, the
microarrays that formed the technological basis of this study were species-specific, and data
from species-specific arrays cannot be easily compared. Gilad et al. [29] partly overcame
this problem by using multi-species arrays, and did not find evidence for a linear trend of
divergence with time in primates, rather a pattern dominated by purifying selection and little
expression change among species.

Multi-species studies have also demonstrated that constraints in gene expression, and
therefore the degree that the transcriptome is shaped by purifying selection, are somewhat
defined by tissue. Rates of sequence evolution vary by tissue in mammals [17], with
neurological transcriptomes evolving slower than reproductive ones. Additionally, broadly
expressed genes show lower divergence rates than genes with narrower or tissue-specific
expression [30,31], consistent with conclusions that pleiotropic forces resulting from broad
expression act to constrain gene expression change [32]. These studies suggest that a single
neutral model of gene expression evolution may not be possible, rather tissue-specific
models may be required.

In addition to tissue-specific patterns, the pattern of gene expression evolution is also
influenced by regulatory differences. For example, up- and down-regulation may be
governed by different evolutionary factors and therefore may have different implications for
adaptive phenotypic change. In primate neurological samples, up-regulation of expression is
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less frequent but of greater magnitude than down-regulation [33], suggesting that major
innovations, such as human cognition, may be attributed to the lineage-specific up-
regulation of a few genes. This result has been upheld even when improved models were
implemented on the same data [34]. Incidentally, the costs of up- and down-regulation may
differ, offering a potential explanation for the observed pattern in primates [33,34]. If up-
regulation is more costly than down-regulation, potentially due to constraints acting on the
transcriptional machinery (discussed in more detail in Section 3.1), then increases in
expression may be more often the result of positive selection, and reductions more
dominated by genetic drift.

Beyond differences in the evolution of up- and down-regulation, other differences in the
regulatory mechanisms underlying gene expression change are conflated in current models,
which often do not account for copy number variation, cellular mechanisms [17], or cis-
versus trans-acting effectors of gene expression change. These different regulatory
underpinnings may have very different transcriptomic signals, requiring the development of
sophisticated models to effectively parse their evolutionary implications.

3. Developing a robust model of gene expression evolution

The studies described above indicate that although gene expression change across lineages is
a dynamic and complex process, much of the fine detail is condensed and simplified in
current models of expression evolution. Additionally, whereas coding sequence change can
be understood and tested against a well-developed null model of neutral evolution [22], this
is often not the case for gene expression evolution. As the pace of transcriptomic data
acquisition increases exponentially with the implementation of next-generation sequencing
methods, developing a robust null model is absolutely essential if we hope to integrate this
data into a meaningful model of transcriptome evolution.

3.1. The relationship between mutation and expression level is complex

Current models of gene expression evolution assume a clock like rate of mutations in
regulatory regions [17,22,24,29,34] that generate consistent incremental gene expression
changes, thus setting the stage for null models of gene expression evolution similar to
sequence evolution [28]. However, this simplistic assumption masks the complex nature of
the relationship between mutation and expression change.

A regular accumulation of mutations in regulatory elements may generate an additive linear
increase in expression, however, it is easy to envisage situations where this is not the case. If
the importance of individual nucleotides in determining overall expression level differs,
mutations would produce a labile irregular pattern of expression change. Additionally, an
additive function does not accurately describe the relationship between regulatory mutation
and transcription level close to levels of gene expression saturation, where a parabolic
function with diminishing returns is more appropriate. Results from eQTL studies have the
potential to shed light on these questions by identifying individual SNPs responsible for
differences in expression level [36–38]. Nonetheless, these are still preliminary and further
work is needed to accurately describe the relationship between regulatory mutation and
expression level.

In addition to non-additivity, the work described in the previous section suggests that it is
vital to examine not only the magnitude of expression change, but also the direction. Models
that fail to distinguish between up- and down-regulation are unrealistic because they require
the assumption that saturation, the point at which the additive relationship between mutation
and transcriptional change breaks down, is the same for both types of expression change.
This assumption is unfair because although up-regulation is theoretically limited only by the
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efficiency of the transcriptional machinery, down-regulation is bounded by zero expression
[39]. Saturation of down-regulatory change is therefore defined as the loss of expression,
and is relatively easy to observe. Observed saturation of up-regulatory change is less
obvious, as an additive relationship between regulatory mutations and transcription is not
expected close to the optimal levels of transcriptional efficiency. This means that for up-
regulation, the exact parameters of saturation are poorly understood and the saturation point
may differ among genes.

Additionally, expression level is not solely determined by regulatory regions but by a large
number of genetic mechanisms such as DNA methylation [40], RNA degradation [41] and
alternate splicing [42–44]. Current additive models of change also do not account for gene
duplication, which produces a stepwise increase in expression [46–48]. The complex nature
of gene expression evolution is therefore unduly simplified in current evolutionary models,
primarily because the relationship between mutational events and expression is poorly
understood. Once a deeper understanding is attained, the effect of each class of mutational
event on expression level may need to be modelled separately in order to explore all modes
of gene expression evolution.

3.2. Modelling “noisy” gene expression data

Gene expression data is inherently noisier than sequence data, and this has important
implications for the transcriptome–phenotype relationship. Because the boundaries between
which change in expression does not affect protein level and therefore phenotype are not
clear [50,51], there is some uncertainty about the functional implications of variance in gene
expression. This uncertainty affects the limits of selective pressures and therefore the role of
neutral evolutionary processes. The environment also strongly influences gene expression
[52,53], and therefore environmental variation contributes to this noise in a way that is
wholly missing from sequence data. Minimising environmental variation is important, as all
expression change is classed as heritable in current models of expression evolution.

As a result, the “noisy” nature of gene expression data should be considered when
specifying the conditions over which expression change is considered neutral. Compared to
coding sequence evolution, neutral evolution likely accounts for a wider range of gene
expression patterns due to this extra variance. Therefore, the boundaries of neutral evolution
of gene expression should be less stringent than that of sequence evolution. This is even
more applicable for comparative transcriptomics in wild caught animals, where
environmental variance would widen the variance boundaries further.

3.3. Post-transcriptional and epigenetic changes as alternate routes to expression
evolution

Current models of gene expression fail to distinguish between different mechanisms
underlying expression change. One such mechanism is alternate splicing which has been
shown to have important phenotypic consequences [42–44]. Alternative splicing may
present a quick route to phenotypic innovation, as only a few mutations can generate new
splice variants, thereby dramatically changing the expression of a specific exon. Alternative
splicing varies across taxonomic lineages [45], however it is not clear by how much, or how
this form of post-transcriptional regulation evolves. A comparison of chimpanzee and
human transcriptomes revealed that 7% of genes expressed in the liver have conserved
splice variants [42] however, sex-specific splice variants appear to be more common and
strongly conserved across Drosophila species [44].

The role of methylation in determining expression level has been widely documented [54],
however the heritability and evolutionary signal of this genetic mechanism across lineages
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in unknown. Similarly, parent-of-origin expression, likely ultimately due to methylation, is
widely documented in mammals [55,56], and may be driven by sexual conflict [57,58].
However, the evolutionary patterns of imprinting across related species remain
uncharacterized.

3.4. Coding sequence evolution versus gene expression evolution

A major question in evolutionary genetics is the extent to which sequence and expression
evolution represent different routes in generating phenotypic divergence. Preliminary data
indicates a correlation between expression divergence and rates of coding sequence change
[31,50,59–64], however this may be largely due to neutral processes acting on relatively
unconstrained genes, which would be expected to affect sequence and expression data in
similar ways.

Genes responsible for adaptive phenotypic divergence are shaped primarily by positive
directional selection, and these genes may not show a correlation between sequence and
expression evolution [9–11]. Adaptive change in expression and sequence may therefore
represent alternate routes for responding to selection pressures, as expression change may
avoid negative pleiotropic effects when sequence is constrained [65] and vice versa.
Additionally, if expression change is more labile than sequence change, it could facilitate
rapid phenotypic divergence.

4. A next-generation sequencing approach to gene expression evolution

Evolutionary models are only useful in the extent to which they can accurately predict the
biological relationships they supposedly mirror. This relates not only to the efficacy of
parameters and constraints, but also to the appropriateness and accuracy of the data used to
construct and implement them. Therefore, in addition to the development of improved
models of gene expression evolution, careful consideration of the design of the studies that
employ such models is equally important.

Our current understanding of the relationship between complex phenotypes and gene
expression evolution is largely based on data obtained from microarray studies. Recent
advances in the application of high-throughout sequencing technology has made it possible
to sequence the entire transcriptome of a sample by direct sequencing of cDNA fragments
derived from sample RNA [66]. This method, referred to as RNA-Seq, provides accurate
quantification of the relative levels of each transcript present in the sample through mapping
of reads to reference sequences [67]. A comparison of the same samples using both
technologies highlights the advantages of RNA-Seq over microarrays for comparative
transcriptomics (Fig. 2). Although there is a reasonable correlation across the majority of the
expression spectrum (ͳ = 0.743), microarrays suffer technical limitations at low and high
levels of expression due to background levels of hybridisation and probe saturation
respectively. Crucially, it is within these extremes of expression that the most differentially
expressed genes are found. It is also worth noting that no comparison can be made at very
low expression, as unlike RNA-Seq, microarrays are simply unable to detect expression at
this level.

RNA-Seq has also removed the necessity of prior knowledge for designing probes and
therefore measuring expression. The development of de novo transcriptome assembly allows
for the identification of novel genes and alternate splice isoforms without reference genomes
[68,69], as well as the sequencing of non-model organisms [70,71].

Comparing RNA-Seq-based expression estimates across species is relatively straightforward
once orthology is determined within transcriptomes. This is in stark contrast to the
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difficulties associated with comparing array data, as separate species-specific arrays cannot
be directly compared with a high-level of accuracy and non-specific arrays must be
optimised for one focal species at the cost of specificity for the others [72], a particular
problem for highly divergent lineages. This loss of comparative power is particularly
important when determining the mode of evolution due to the requirement for accurate
measures of between species divergence. Multi-species arrays provide comparable
expression data, but the probes from multi-species arrays have to be constructed specifically
for each study combination.

The ability of RNA-Seq to efficiently and accurately assess the gene expression of an entire
sample has enabled powerful comparative studies between different sexes [73], species [42],
tissues [74], conditions [75] and developmental time points [76]. However, RNA-Seq
studies are far from perfect. Inadequate experimental design results in serious limits to the
implementation of models of transcriptome evolution. The sequencing depth required for a
transcriptome project largely depends both on the availability and quality of a reference
genome and the complexity of the transcriptome [77]. Calculating required coverage for
RNA-Seq experiments is more difficult than for traditional genomic sequencing, due to the
difficulty of quantifying lowly expressed genes or rare isoforms as samples are dominated
by a few highly expressed genes. Additionally, even with clear evidence from many years of
microarray analyses that biological replicates are crucial for meaningful results to be
obtained with appropriate statistical power [78], many RNA-Seq studies have not included
replicates [17,79–82]. Despite advances in variation estimation that allow otherwise
underpowered projects to obtain at least conservative results [83], it remains the case that
without appropriate replication the biological meaningfulness of the experiments will be
limited. An ideal study should include numerous biological replicates and should also
consider a randomised/blocked sequencing design to account for technological bias [84].

Additionally, for models to be effective, transcriptome sequencing studies should be
designed to minimize as much sampling and environmental variation as possible. This
means that sampling from controlled, captive populations is preferred, especially when
generating data for modelling, as captive populations offer the advantages of known
pedigree, condition, diet, stress and immunological state. Controlled populations also allow
greater command over the age of samples, which should be as similar as possible as
expression profiles vary dramatically at different developmental stages [85]. Depending
upon the aims of the study the point of sampling needs to be carefully selected, as for
example adult phenotypes can be programmed early on in development far before adulthood
is reached [86]. Additionally, corrections in sampling are required when comparisons are
made between species that may develop at different rates. This allows for accurate
comparisons to be made of the same developmental stage [87,88].

Although studying wild populations with RNA-Seq has the advantage of assessing natural
ecological and evolutionary conditions [71], it introduces a number of confounding factors
related to age, disease state and environmental influences. Environmental and
developmental factors introduce considerable noise to expression profiling with global and
targeted expression responses, and can influence long-term expression patterns [89]. A key
question for future studies is whether studies of transcriptome evolution can be performed
on natural populations with sufficient accuracy. If it is just a matter of sample size, then the
continuing advances in sequence technology will likely overcome the sampling restriction as
larger and more complex studies become feasible and affordable. However, many model
parameters are difficult to estimate even in well-studied model organisms, so it may still
prove extremely difficult to account for the levels of environmental variation present in
uncontrolled populations.
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The phenotypic locus is also important in expression studies. Rather than sampling the
whole organism, a better strategy is to sample the specific tissue, or even a specific subpart
of a given tissue, where phenotypes of interest are expressed. For example, whole-brain
preparations have failed to identify the basis of behavioural differences [20] and in such
studies, it may be necessary to identify and select the appropriate region of the brain that
controls for the desired behavioural phenotypes.

Data accuracy is also affected by the sequencing technology itself. The inherent biases of the
different sequencing platforms need to be understood and, if possible, methods implemented
to counteract them. For example, random hexamer priming in Illumina RNA-Seq standard
library preparation [82] causes positional biases, but these can be corrected through read
count adjustments [90]. More fundamentally, the methods of estimation of gene expression
levels need to be carefully selected. For example, the widely used measurement of reads per
kilobase of gene length per million reads (RPKM) suffers from gene-length, G + C and
dinucleotide frequency bias [91]. Statistical methods, such as DESeq [83], have been
developed to control for these biases and to additionally allow for reads that map to multiple
locations to be appropriately accounted for.

Technological advances in next-generation sequencing have also opened other avenues for
furthering our understanding of gene expression evolution. An alternative to studying
expression changes is to explicitly determine alterations to regulatory regions at the
sequence level. The complexity of regulatory regions makes them difficult to study, but
advances in next-generation sequencing may provide a more complete picture of gene
regulation and expression. For example, microRNA-sequencing [92] is able to detect small
regulatory RNAs and ChIP-Seq allows the identification of DNA–protein interactions, such
as those of transcription factors [93]. It is only through coupling the advances in sequencing
technology with the development of improved models of gene expression evolution that the
full relationship between genome and phenotype will be understood.

5. Concluding remarks

Next generation sequencing provides the necessary tools to identify, with unprecedented
power and precision, regulatory changes underlying complex phenotypic adaptation across
the whole genome. However, a robust model framework with which to interpret this
transcriptomic data is lacking, and thus current methods to distinguish signatures of adaptive
change from neutral processes are inadequate. As a result our understanding of the nature of
gene expression evolution remains limited.

Developing a null model of neutral evolution that acknowledges the inherently noisy nature
of gene expression and the multitude of complex genetic routes to generate regulatory
change is key. The incorporation of distinct factors to govern different mutational
mechanisms, such as alternative splicing and gene duplication, will reflect with greater
accuracy the complex dynamics of transcriptome evolution. This null model, when
combined with next generation transcriptomic data, has the potential to revolutionise our
understanding of the role of the transcriptome-phenotype relationship over broad
evolutionary scales. In doing so, this will bring our understanding of regulatory evolution in
line with that of sequence evolution so that the full relationship between the genome and
phenotype can be understood.
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Fig. 1.
Mode of gene expression evolution inferred from levels of polymorphism and divergence, or
within and between population variance respectively. This graph can be divided into regions
where positive or purifying selection pressures prevail (quadrants I and II), or where neutral
evolutionary processes drive changes in expression (quadrant III).
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Fig. 2.
Affymetrix microarray and RNA-Seq expression estimates compared for identical RNA
pools from Gallus gallus testes and ovaries. Each pool comprised four same-sex samples.
Microarrays were run with standard hybridization, quality control, pre-processing and
normalization procedures; RNA-Seq estimates are based on Illumina GAII 50 bp reads with
approximately 17 million reads per sample. Male (A) and female (B) gonad expression data
were combined for each technology in a comparison of male to female fold change (C).
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