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Highlights

• Logistic model’s sustainability for perturbation in positive and/or negative feedback

• Maintenance of a long-term memory of initial conditions and distinct bimodal dist.

• Utility of Fisher information (FI) as a useful measure of sustainability.

• Optimal FI and its relation to the robustness against different perturbation.
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Sustainable theory of a logistic model - Fisher Information

approach

Avan Al-Saffara and Eun-jin Kima

a School of Mathematics and Statistics, The University of Sheffield, Sheffield, South Yorkshire S3 7RH, UK.

E-mail: asal-saffar1@sheffield.ac.uk and e.kim@sheffield.ac.uk

Abstract. Information theory provides a useful tool to understand the evolution of complex nonlinear

systems and their sustainability. In particular, Fisher information has been evoked as a useful measure

of sustainability and the variability of dynamical systems including self-organising systems. By utilising

Fisher information, we investigate the sustainability of the logistic model for different perturbations in

the positive and/or negative feedback. Specifically, we consider different oscillatory modulations in the

parameters for positive and negative feedback and investigate their effect on the evolution of the system

and Probability Density Functions (PDFs). Depending on the relative time scale of the perturbation to the

response time of the system (the linear growth rate), we demonstrate the maintenance of the initial con-

dition for a long time, manifested by a broad bimodal PDF. We present the analysis of Fisher information

in different cases and elucidate its implications for the sustainability of population dynamics. We also

show that a purely oscillatory growth rate can lead to a finite amplitude solution while self-organisation

of these systems can break down with an exponentially growing solution due to the periodic fluctuations

in negative feedback.

Keywords: Nonlinear system, Sustainability, Fisher Information, Driving parameters, Probability Den-

sity Function(PDF).

1 Introduction

Nonlinear dynamical systems have been widely used as simple models for complex phenomena,

e.g. in environmental, astrophysical and geophysical, and biological systems. In particular, the utility

of such models in understanding biosystems has grown significantly in recent years as ever-improved

experimental data has become available. A logistic model, first proposed by Verhults to describe the

growth of human populations in 1838 (see [1, 2]), is one of the most popular models for the growth in

biological systems, e.g. bacteria, tumor cells, etc (see e.g. [3] and references therein). As a mean field

equation, the logistic model describes the time-evolution of macroscopic (large-scale) variables where

the overall effect of micro-scale (small-scale) variables is incorporated by control parameters for the pos-

itive and negative feedback. The merit of this model lies in the simplicity of the incorporation of the two

complementary effects of a positive feedback (which drives the growth) and a negative feedback (which

regulates its growth), thereby serving the simplest model for a self-regulated system where the growth

is regulated within a system. The balance between the positive and negative feedback leads to a stable

equilibrium point (the so-called carrying capacity), to which a system stabilizes in a long time limit,

regardless of the initial condition. Thus, a unique value of a carrying capacity can be viewed as a loss of

the memory of the initial points.

Many researchers have extended the logistic model to include perturbations in the model parameters for

feedback by periodic or random modulation (e.g. [4–11]) or to couple the evolution of other systems (e.g.

[12]). In particular, the possibility of a bimodal Probability Density Function (PDF) was demonstrated
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in the presence of a correlation between a multiplicative noise (for the growth rate) and additive noise.

The purpose of this paper is to revisit this logistic model in view of the sustainability for different pertur-

bations. We compute PDFs for different modulations in the model parameters and elucidate fundamental

mechanisms determining the shape of PDFs. In particular, we demonstrate that when the characteristic

time scale associated with the perturbation is much shorter than the system’s response time, the system

maintains a long-term memory of initial conditions, thereby leading to a broad bimodal distribution. The

sustainability of a system in different cases is examined by computing Fisher information averaged over

the total time (FT ). To test the stability of the most sustainable state inferred from our analysis of FT ,

we add a periodic stimulus to our system and test the resilience of our system to the environmental per-

turbation, modeled by a periodic stimulus.

The influence of fluctuating environments on the growth of cell populations has been studied (see

e.g. [13, 14]); more interestingly, the effect of fluctuating parameters have been studied in other dy-

namical systems (e.g. [15–22]) while the dynamics of such systems has hardly been investigated from

the perspective of information theory. Simplicity of the logistic equation enables us to undertake a sys-

tematic investigation in this regards. The remainder of the paper is organised as follows. We introduce

our model in §2 and present PDFs and Fisher information in §3 and §4, respectively, when the model

parameters for both positive and negative feedback have the same periodic fluctuations. In §5, we test

the stability of our system by adding a periodic stimulus. Section 6 summarises the results for different

types of modulation of the model parameters. Conclusions are provided in §7.

2 Model and Motivation

We consider a population x (> 0) and its logistic equation in the following form:

dx

dt
= Nx

(

1 −
x

K

)

. (1)

Here, N is the net growth rate, and K (> 0) is the carrying capacity of the system representing the max-

imum population size that can be supported by the system. While x can represent the population of any

species of interest (e.g. tumor, rabbit, bacteria, etc). In this paper, we consider x to be the population

of bacteria to be specific unless stated otherwise. The linear term Nx with N > 0 represents a positive

feedback bf such as the net effect of bacteria growth (e.g. by eating food) and its death (e.g. by nature

death, or antibiotics) while the nonlinear term Nx2/K represents a negative feedback due to the crowd-

ing effect as their growth is inhibited by limited resources. We note that regardless of the initial value of

x(t = 0) = x0, x reaches the carrying capacity K as t → ∞ for a constant N > 0.

Compared to the case when the linear growth rate is constant or contains periodic fluctuations in the ab-

sence/presence of a periodic stimulus, it is less well understood what happens when the model parameter

for the negative feedback contains periodic fluctuations as would happen when the negative feedback is

delayed in time or is heterogeneous. Periodic fluctuations in negative feedback can provide an interesting

mathematical model for the decrease in self-regulation, e.g. in biosystems (e.g. [7, 10]). While we com-

ment on the cases where the model parameter for only positive or negative feedback contains periodic

fluctuations in §6, of particular interest in this paper is the case where the perturbation in positive and

negative feedback is strongly correlated. Specifically, in §2-4, we focus on the case of the following

periodic modulation:

N = B + N0 sin(ωt), (2)

where B is a constant growth while N0 and ω are the amplitude and frequency of the modulation. The

3
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exact solution to Eq. (1) with Eq. (2) is easily found as:

x(t) =

−Kx0 exp

(

Bt +
N0

ω
(1 − cos(ωt))

)

(x0 − K) − x0 exp

(

Bt +
N0

ω
(1 − cos(ωt))

) , (3)

where x0 is the initial value of x at t = 0. From this analytical solution, we can see the cross-over

behavior of x between x0 and K in the limit of t → ∞. For example, when ω = 0, cos (ωt) = 1 and

B = N0 = constant, x(t) tends to the carrying capacity K as t → ∞. On the other hand, when B = 0, the

net growth rate fluctuates between |N0| and −|N0| in time with zero average – specifically, at times when

cos (ωt) = 1, x(t) takes its minimum value xmin = x0 while at times when cos (ωt) = −1, x(t) reaches its

maximum value.

xmax =
Kx0

x0 + (K − x0) exp
(

− 2N0

ω

) . (4)

B = 0 is an interesting case where the killing effect from natural death or antibiotic is quite strong. In

population genetics, this case would correspond to the random sampling of gametes with no selective

advantage (see §6-7 in [23]) if the periodic modulation is replaced by a short-correlated noise. In the

following, we focus our analysis on the case B = 0. Furthermore, since t and x can always be re-scaled

by N0 and K, respectively, we fix the value of N0 and K to be N0 = 5 and K = 10. Of particular interest is

the effect of ω on the response of the logistic system. As shall be shown shortly, one of the consequences

of the same periodic fluctuations in positive and negative feedback is the maintenance of an initial con-

dition and bimodal distribution.
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Figure 1: Time trace of x(t) for different values of x0 = 0.1, 5 and ω = 1, 10. For a small value of ω, x(t) tends to

reach the carrying capacity K = 10 while for large ω, x(t) maintains the initial condition.

In Fig. 1, we first show the typical time history of x(t) for different values of ω and x0. We first observe

that the minimum value of x is equal to x0, as analytically predicted above. Furthermore, we can confirm
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that the maximum values in Fig. 1(a)-(d) are the same as Eq. (4). For instance, for K = 10, x0 = 0.1,

N0 = 5 and ω = 10, Eq. (4) gives xmax = 0.2672 and this can be seen in Fig. 1(b). For a sufficiently

small ω, the time-scale of the perturbation becomes much larger than the system’s response time (i.e.

the mean square root value of the growth rate), permitting enough time for the population x to reach the

carrying capacity regardless of x0. This means that the bacteria are able to expand as they have enough

time to grow during the time when N > 0 before decaying when N < 0. Mathematically, this is because

a fast exponential growth during the time with N > 0 wins over the decay during the time with N < 0.

In comparison, for sufficiently large ω such that the perturbation occurs on time scales much shorter

than the growth time, x starting far from x = x0 = 10 can never reach x = 10 due to frequent periodic

change in N, staying near x = x0 as the bacteria do not have enough time to undergo a substantial ex-

ponential growth before they decay. That is, the time interval when N > 0 is too short for large ω. As

a result, the population of the bacteria fluctuates only near x = x0, never reaching the carrying capacity K.

To demonstrate this cross-over between the case x → K and x → x0 for large t in detail, we show the

maximum and minimum values of x (in time) for different values of different ω in Fig. 2 (a)-(d). Here,

the x-axis represents ω while y shows the maximum and minimum values of x in blue solid line and red

dashed lines, respectively. Specifically, Panels (a) and (b) show the maximum and minimum values of x

when x0 = 0.1 and x0 = 5, respectively. To highlight the detailed feature for small ω, the same figures in

panels (a)-(b) are shown in log-log scale in panels (c)-(d), respectively. From this, we observe a general

tendency of the maximum x monotonically decreasing as ω increases.
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Figure 2: The maximum and minimum values of x as a function of ω for N0 = 5 and K = 10 using the initial

conditions panels, x0 = 0.1 in panels (a), (c) and (e) and x0 = 5 in panels (b), (d) and (f).

(c), (d), (e) and (f) are shown in log-log scales .

We also observe that the minimum of x approximately equals to x0 in panels (a), (b), (c) and (d) as
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predicted from the analytical solution. For the maximum value of x, the main difference between the two

cases with x0 = 0.1 and x0 = 5 is a much steeper decrease in the maximum x(t) for x0 = 0.1 than for

x0 = 5. As the maximum value of x(t) is obtained by the approach to the carrying capacity, the steep drop

in the maximum x(t) represents the inability of the system to grow and reach this carrying capacity when

the control parameter changes too rapidly in time for higher values of ω, as noted previously. In this

case, x(t) does not deviate far from its initial value, effectively leading to the maintenance of the memory

of its initial value. This is consistent with the results shown in Fig. 1. To strengthen this argument,

we utilise the measure of relative deviation of the maximum values of x to quantify the maintenance of

initial conditions. Specifically, we compute the ratio of the change in the maximum of x as follows:

(

Initial value −Maximum of x

Maximum of x

)

× 100%. (5)

The results are shown in Fig. 2(e)-(f) by using log-log scales. For sufficiently large ω ≫ 1, we observe

almost straight lines in Fig. 2(e)-(f), suggesting that the percentage change decreases with ω as a power-

law in both cases.

3 Probability Density Function

We now examine the effect of ω and x0 on Probability density functions (PDFs). To this end, we

compute the PDF of x by relating the probability of observing the system at a particular value of x to the

amount of time the system state spends at x (see [17, 18, 24]) through conservation of the probability:

p[x] dx = p[t] dt. (6)

Since t is a continuous variable with a uniform probability density:

p[t] = constant = A, (7)

we can obtain PDF of x from Eqs. (6)-(7) as:

p[x] = p[t]

∣

∣

∣

∣

∣

dt

dx

∣

∣

∣

∣

∣

= A

∣

∣

∣

∣

∣

dt

dx

∣

∣

∣

∣

∣

=
A

u
, (8)

where

u =
dx

dt
. (9)

Since u is simply given by Eqs. (1)-(2), we can express p[x] in Eq. (8) as

p[x] =
A

(B + N0 sin (ωt))x
(

1 − x
K

) . (10)

Since Eq. (10) involves the time-dependent function sinωt, we need to use Eq. (3) to replace it by a

function which only depends on x. To this end, we solve Eq. (3) for cosωt to obtain

cos (ωt) = 1 +
ω

N0

ln

[

x0(x − K)

x(x0 − K)

]

, (11)

and then obtain sin (ωt) in Eq. (10) from Eq. (11) by using the identity
(

sin (ωt) =
√

1 − cos2 (ωt)
)

. The

PDFs of x (p(x)) are shown for different values of ω in Fig. 3.

6



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

0 5 10
10

−2

10
0

10
2

10
4

10
6

10
8

(a) x
0
= 0.1, ω= 0.1

x

p
(x

)

0 5 10
10

−2

10
0

10
2

10
4

10
6

10
8

(b) x
0
= 0.1, ω= 0.5

x
p

(x
)

0 5 10
10

−2

10
0

10
2

10
4

10
6

10
8

(c) x
0
= 0.1, ω= 1

x

p
(x

)

0 2 4 6 8
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

(d) x
0
= 0.1, ω= 2

x

p
(x

)

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

(e) x
0
= 0.1, ω= 5

x

p
(x

)

0.1 0.2 0.3
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

(f) x
0
= 0.1, ω= 10

x

p
(x

)

Figure 3: PDF of x(t) for N0 = 5, K = 10, x0 = 0.1. Different values of ω = 0.1, 0.5, 1, 2, 5, 10 are used in panels

(a)-(f). A bimodal PDF is observed for all the cases.

In Fig. 3, we observe a bimodal PDF for all the cases with different distance between the two peaks. This

bimodal distribution results from the maintenance of the initial condition x0 = 0.1 against the tendency

of x approaching a carrying capacity (10 = K), as noted previously. Specifically, for small ω ≪ N0/2π

where the time-scale of the perturbation is much larger than the growth time 1/N, x reaches the carrying

capacity, regardless of x0, leading to the two peaks at x = 0.1 (initial condition) and x = 10 (= K the

carrying capacity). In comparison, for sufficiently large ω ≫ N0/2π, such that the perturbation occurs

on time scales much shorter than the growth time (in root mean square value), x starting far from x = 10

can never reach x = 10 due to frequent periodic change in N, leading to the formation of a very narrow

distribution near x = x0. This narrow PDF near x0 manifests the maintenance of the initial condition

when the perturbation occurs much faster than the system’s response time. Between these two extreme

cases, the bimodal PDF with the largest distance between the two PDF peaks appears for the parameter

N0/ω = 5. It is interesting to observe the gradual shift of the population from the right PDF peak to the

left PDF peak with the increase in ω, followed by the narrowing of the PDF. That is, the narrowing of

the PDF occurs after the left PDF peak around x0 = 0.1 has grown taller than the right PDF peak.

To demonstrate how the PDF depends on x0, we show another case in Fig. 4 by using the initial value

x0 = 5 much closer to the carrying capacity. Similarly to the case x0 = 0.1 in Fig. 3, Fig. 4 for x0 = 5

demonstrates a bimodal PDF for all cases; for small ω, x reaches the carrying capacity while for large

ω, x starting far from x = 10 can never reach x = 10 and only fluctuates around x0 = 5. Again the

distance between the two peaks shrinks as ω increases. However, in contrast to Fig. 3, there is no sig-

nificant growth of left PDF peak around x0 = 5 for any ω prior to the narrowing of the PDFs in Fig.4.

Narrowing of the PDF occurs while the right PDF peak is still larger than the left PDF peak. Specifically,

in Fig. 3(c) just before the narrowing of the PDF, the height of the left peak is about [99.9981]% of the

height of the right peak while in Fig. 4(b), the height of the left peak is only [49.6632] % of the right peak.
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Figure 4: PDF of x(t) for N0 = 5 and x0 = 5 by using different values of ω in panels (a)-(f).

The aforementioned difference in PDFs with x0 = 0.1 and x0 = 5 essentially arises from the fact that the

PDF p[x] takes very large value around x = 0 and x = K. Specifically, Eq. (10) blows up at x = 0 and

x = 10, which respectively correspond to the unstable and stable fixed points of the logistic equation in

the case of a constant N. Thus, the nearer x0 is to x = 0, the higher the left peak around x0, as seen in

the case of x0 = 0.1. When x0 is far from x = 0 (as in the case of x0 = 5), the PDF does not form such a

high peak around x0.

As shall be shown below, this has the following interesting consequence in Fisher information. For the

initial condition x0 = 0.1 (much less than the carrying capacity), there is an optimal value ofω (satisfying

N0/ω = 5), which can maintain the distinct bimodal PDF with the largest distance between the two PDF

peaks while for the initial condition x0 = 5 (closer to the carrying capacity), such an optimal value of

ω does not exist because the peak at x0 = 5 is not significant, as noted above. The implication of the

existence of such an optimal value of ω will later be related to the utility of Fisher information as a

measure of the sustainability.

4 Fisher Information

Results shown in the previous sections highlight a significant change to the logistic model due to

periodic modulation in model parameters. In this section, we examine this effect from the point view of

Fisher information. Fisher information is a function of the variability (order) of the observations such

that low variability (strong order) leads to high Fisher information. That is, a PDF bias to particular x

values has higher Fisher information whereas high variability (low order) with a lack of predictability

8
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of values of x leads to small Fisher information (e.g. “unbiased” PDF). This is demonstrated in Fig. 5.

Previous work suggested the following sustainability hypothesis: “sustainable systems do not lose or

gain Fisher information over time” [18, 24, 25].

Low variability

Higher variability

Flat distribution

(c) High Fisher Information

(b) Medium Fisher Information

     (a) Zero Fisher Information

Figure 5: (a) a uniform PDF with zero Fisher information, (b) a PDF of x with a smaller

Fisher information and (c) A steeply sloped PDF of x with a large Fisher information (High gradients).

One of the utilities of the Fisher information measure has been in the development of the basic theory

of sustainability, for instance, in order to determine whether a system is sustainable or not in diverse

physical systems (see [24, 26], [27] and references therein). We recall that Fisher information is a very

special uncertainty measure; in contrast to a global measure of uncertainty (e.g., variance, or Shannon’s

entropy), Fisher information strongly depends on the gradient of the PDF, consequently, it is sensitive to

the local oscillatory character of the PDF and relabeling [20, 27, 28].

By following Cabezac and Fath [18], for a single variable x, Fisher information is calculated from the

PDF of x, p(x, t), as follows:1

FT =

∫

1

p(x)

(

∂p(x)

∂x

)2

dx. (12)

We compute the time averaged Fisher information (FT ) by using Eqs. (8), (9) together with

∂p[x]

∂t
= − A

u2

du

dt
,

in Eq. (12) as follows:

FT =
A

T

∫ T

0

1

(u(t))4

(

du

dt

)2

dt =
1

T

∫ T

0

1

A

(

∂p(x)

∂t

)2

dt. (13)

Here, FT is the Fisher information averaged over the total time duration T . A is a normalization constant.

In the following, we investigate the sustainability/variability of our system by computing FT for different

cases. We use the same values of N0 = 5 and K = 10, as before, and present FT for different values of ω

and for the two initial values of x, x0 = 0.1 and 5.

For each case with the fixed parameter/initial values (ω and x0), we compute FT by varying the total

time duration T , for instance, by using t = [0, 10] with T = 10, t = [0, 20] with T = 20, and so forth

1We note that Eq. (12) can be extended to n-dimensional system.
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and present FT as a function of T . Fig. 6 shows FT against T for different ω = 0.1, 0.5, 1, 2, 5, 10 in

panels (a)-(f) for the fixed x0 = 0.1, corresponding to the case shown in Fig. 3. Specifically, we use

1000 data points for each panel for T = 10n (n = 1, 2, 3, ..., 1000). In each panel, we observe that FT

initially undergoes transient state and approaches an asymptotic value for a sufficiently large T . The

higher asymptotic value of Fisher information can be observed for ω = 1 while a small value is observed

for ω = 0.1. We show how this asymptotic value of Fisher information varies with ω in Fig. 7. A notable

feature of Fig. 7 is the presence of a distinct maximum of Fisher information around ω ∼ 1, and this is

related to the existence of the optimal ω which maintains the two well-separated peaks in the bimodal

PDFs, discussed in relation to Fig. 3.
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Figure 6: FT against the total time T for N0 = 5, x0 = 0.1, K = 10. Panels (a)-(f) are different values of ω. We

can observe the higher value of Fisher information is when ω = 1.
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Figure 7: Asymptotic value of FT against ω for x0 = 0.1.

In the following, this distinct maximum in Fisher information is shown to disappear in the case of x0 = 5,

the case corresponding to Fig. 4.
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Figure 8: FT for N0 = 5, K = 10 and x0 = 5. Panels (a)-(f) are for different values of ω.
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Figure 9: Asymptotic value of FT against ω for x0 = 5.

Figs. 8 and 9 show FT against T for different values of ω and the asymptotic value of FT against ω,

respectively, for x0 = 5. Of note is the monotonic increase of Fisher information in Fig. 9, in a sharp

contrast to Fig. 7 where we observe the smaller value of Fisher information is at ω = 1, such that

higher value appears at ω = 500. This means that we can note a general tendency of Fisher information

monotonically increasing as ω increases. This represents that an optimal ω, which maximise Fisher

information as in the case where x0 = 0.1, does not exist in this case when x0 = 5 and this is linked to

the lack of the two distinct peaks in bimodal PDFs for x0 = 5, as discussed previously in relation to Fig.

4.

5 Role of Fisher Information as a measure of sustainability

In previous sections we found that FT takes its maximum value around the optimal value of

ω ∼ N0/5 = 1 when x0 = 0.1 and B = 0. In order to test the sustainability of the optimal case with the

maximum FT , we examine the stability of this optimal case by adding a periodic stimulus B1sin(ω1t) as

follows:

dx

dt
= (B + N0 sin(ωt))x

(

1 −
x

K

)

+ B1sin(ω1t), (14)

and comparing results with those obtained in non-optimal cases (e.g. ω = 10). We have explored

different values of ω, B1 and ω1 and in the following, present the results for ω = 1 (optimal case),

ω = 10 (non-optimal case), B1 = 1, 10, ω1 = 1,
√

2 as example.

First, in Fig. 10, we show how PDFs are affected by different periodic stimulus for ω = 1 in left panels

and ω = 10 in right panels. In comparison with the PDFs in Fig. 3(c) and 3(f), respectively, we see that

the overall change in PDFs is much less in the optimal case (ω = 1), suggesting that the optimal case

with a large Fisher information is less affected by the periodic stimulus than in the non-optimal case. To
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Figure 10: PDF of x for x0 = 0.1 and N0 = 5, with periodic stimulus. Left panels are for the optimal case (ω = 1)

while right panels are for the non-optimal case (ω = 10). The PDFs with optimal value N0 = 5ω in left panels are

more resilient to the periodic stimulus than the PDFs for ω = 10.

strengthen this argument, we utilise the mean value as another measure to quantify the change of the sys-

tem. Specifically, we compute the mean value without periodic stimulus (shown in Table 1) and the mean

value after adding the periodic stimulus, and quantify the ratio of the change in the mean value as follows:

Mean value without periodic stimulus −Mean value with periodic stimulus

Mean value without periodic stimulus
× 100%. (15)

The results are shown in Table 2. We can see that in the optimal case ω = 1, the ratio of change in the

mean value for different periodic stimulus is much less than that in the non-optimal case (ω = 10). For

example, when the parameters in the periodic stimulus have values B1 = 1, ω1 = 1, the ratio of change

in the optimal case is 15.3% while it is 656.1% in the non-optimal case. This means the ratio of change

in the non-optimal case is roughly 44 times bigger than the ratio of change in the optimal case. Thus,

the optimal case is more resilient to the perturbation and thus more sustainable compared to non-optimal

case.

To complete our investigation on the implication of Fisher information for sustainability, we have also

performed similar experiments for x0 = 5 by adding a periodic stimulus of different amplitude and fre-

quencies, and have found no obvious link between the value of FT and sustainability as there isn’t any

particular value of ω which is most resilient to perturbation (results are not shown). This is due to the

lack of maximum in Fisher information for this initial condition. From these, we propose that the FT is a

useful measure in the case when the Fisher information has a distinct maximum (related to the presence

of the two distinct bimodal PDF peaks).
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Mean value in optimal case Mean value in non-optimal case

5.5433 0.1733

Table 1: Mean value in the optimal and non-optimal cases without periodic stimulus; x0 = 0.1

Optimal case Non-optimal case

Mean value % Change (11) Mean value % Change (11)

B1 = 1, ω1 = 1 6.3927 15.3 % 1.3103 656.1 %

B1 = 1, ω1 =
√

2 5.5515 0.2 % 0.8814 408.6 %

B1 = 10, ω1 = 1 8.8326 59.3 % 15.2631 8707.3 %

B1 = 10, ω1 =
√

2 6.5509 18.2 % 7.2068 4058.6 %

Table 2: % change in mean value in the optimal and non-optimal cases with periodic stimulus; x0 = 0.1

6 Comments on different modulation

We have so far focused on the case where the same periodic modulation is applied to both positive

and negative feedbacks. To complete our investigation, we now comment on the effect of the two differ-

ent modulations.

6.1 Case-1: Perturbation in the positive feedback

We consider a periodic modulation in the parameter for the positive feedback and a constant model

parameter in the negative feedback. Specifically, we consider:

dx

dt
= [B + N0 sin(ωt)]x − Cx2

K
, (16)

where the values of B, C, and K are kept constant. In Fig. 11, we illustrate the effect of different values

of ω and N0 on PDFs for B = 0, K = 10, C = 1, and x0 = 0.1. By taking B = 0, we are again modeling

the case where the growth is strongly inhibited and is driven only by periodic fluctuations. Even when

the linear growth rate has zero average, we observe the excitation of the finite amplitude solution, similar

to the result in [10]. This finite amplitude solution leads to PDFs centered around the initial position

x0 = 0.1 with a single peak, as shown in Fig. 11. That is, in contrast to the bimodal PDFs in the previous

sections, we observe a unimodal PDF in all cases. This reflects the main effect of periodic fluctuations

in driving a unimodal PDF. The width of PDFs near x = x0 becomes narrower as ω increases, similarly

to the behaviour of the bimodal PDFs in the previous sections.

14



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

0 1 2
0

2

4

6
N

0
=1,ω=1

x

p
(x

)

0 0.5
0

2

4 N
0
=1,ω=2

x

p
(x

)

0 0.2 0.4
0

2

4

6
N

0
=1,ω=5

x

p
(x

)

0 0.2 0.4
0

2

4

6

N
0
=1,ω=10

x

p
(x

)

0 5
0

2

4

6

8

N
0
=2,ω=1

x

p
(x

)

0 1 2
0

2

4

6

N
0
=2,ω=2

x

p
(x

)

0 0.5
0

2

4

x

p
(x

)

N
0
=2,ω=5

0 0.2 0.4
0

2

4 N
0
=2,ω=10

x

p
(x

)

0 50
0

2

4

6

8

N
0
=5,ω=1

x

p
(x

)

0 10 20
0

2

4

6

8

N
0
=5,ω=2

x

p
(x

)

0 1 2
0

2

4

6
N

0
=5,ω=5

x

p
(x

)

0 0.5
0

2

4 N
0
=5,ω=10

x

p
(x

)
Figure 11: PDFs of x for Case-1 for different N0 and ω. x0 = 0.1,B = 0, K = 10, C = 1. We observe a notable

unimodal PDFs for all the cases.

6.2 Case-2: Perturbation in the negative feedback

We finally consider that case where a periodic fluctuations in the parameter are included only in

the negative feedback as follows:

dx

dt
= Cx − [B + N0 sin(ωt)]x2

K
. (17)

The analytical solution to Eq. (17) can be found as:

x =
KabCx0

KCa + N0Cbx0c + N0Cωx0 + Bx0a(b − 1)
, (18)

where

a = C2 + ω2,

b = exp(Ct),

c = C sin(ωt) − ω cos(ωt).

As the amplitude of N0 relative to B increases, the solution starts growing exponentially as the nonlinear

damping becomes ineffective (e.g. [7, 10]).
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Figure 12: PDFs of x for two different N0 = 0.5 and 1 in the upper and lower panels, respectively. For all cases,

x0 = 0.1, B = 1, K = 10, and C = 1, PDFs are biomodal.

The resulting PDFs are shown in Fig. 12 for N0 = 0.5 in the upper panels and N0 = 1 in the lower

panels, respectively, for the same x0 = 0.1, B = 1, K = 10, and C = 1. We observe that when N0 = 1,

the PDFs become broader as ω decreases. The broadening of PDFs is related to the strong intermittency

of x, manifested by the high-amplitude peaks as ω decreases. This can be seen from the time trace in

Fig.13. In particular, we note that the solution grows exponentially for sufficiently large N0 and small ω,

as shown in panel (c) for ω = 0.1 and N0 = 10.
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Figure 13: x(t) against t for N0 = 1, 10 and ω = 0.1, 10. For all cases, x0 = 0.1, K = 10, B = 1, C = 1
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7 Conclusions and discussion

We have revisited the logistic model in view of sustainability for different perturbations in the model

parameters for both positive and/or negative feedback and investigated the effect of different modulations

and initial conditions. In particular, we demonstrated the possibility of the maintenance of a long-term

memory of initial conditions when the characteristic time scale associated with the disturbance is much

shorter than the system’s response time, as well as bimodal distributions. In the case of the same periodic

modulation of the model parameters for the positive and negative feedback, for the initial condition far

from the carrying capacity (x0 = 0.1), we found a distinct maximum value of Fisher Information for an

optimal value of parameters N0 ∼ 5ω due to a broad bimodal PDFs with two distinct peaks. In contrast,

for x0 = 5, Fisher Information was shown to monotonically increase with ω, with no distinct maximum.

The sustainability of a system under different perturbations is examined by computing FT from PDFs.

In particular, we found that Fisher Information is a useful measure of sustainability in the case when it

has a distinct maximum as a consequence of the presence of the two distinct bimodal PDF peaks.

Our results could have interesting implications for understanding the origin of the survival of small

populations of bacteria which do not get killed off by antibiotics (or tumour persisted) (e.g. [29]), as

manifested by a PDF peak around the small x0. That is, the initial population of bacteria of small size

(corresponding to small x0 in our model) can survive under the strong antibiotics, maintaining a broad

bimodal PDF for an optimal condition with the maximum Fisher Information. Thus, the optimal case

has the best survival likelihood. As the optimal perturbation frequency occurs when its time scale is

of order of the time scale of the linear growth rate (in root mean square value), it may well be that the

population with such growth rate would have the best fitness. Alternatively, this suggests that the best

killing efficiency would be achieved by choosing sufficiently large frequency ω above this optimal value.

It would be of interest to extend our work to other systems such as a coupled logistic equations and a

Gompertzian equation and study their implications in future work.
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