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Abstract—The problem of estimating the dynamic direction
of arrival of far field signals impinging on a uniform linear
array, with mutual coupling effects, is addressed. This wadk
proposes two novel approaches able to provide accurate selu
tions, including at the endfire regions of the array. Firstly, a
Bayesian compressive sensing Kalman filter is developed, wh
accounts for the predicted estimated signals rather than ueg
the traditional sparse prior. The posterior probability de nsity
function of the received source signals and the expressiororf
the related marginal likelihood function are derived theoretically.
Next, a Gibbs sampling based approach with indicator variates
in the sparsity prior is developed. This allows sparsity to le
explicitly enforced in different ways, including when an argle
is too far from the previous estimate. The proposed approacss
are validated and evaluated over different test scenarios ral
compared to the traditional relevance vector machine based
method. An improved accuracy in terms of average root mean
square error values is achieved (up to 73.38 for the modified
relevance vector machine based approach and 86.36for the
Gibbs sampling based approach). The proposed approachesgre
to be particularly useful for direction of arrival estimati on when
the angle of arrival moves into the endfire region of the array

Index Terms—Dynamic DOA estimation, Bayesian compressive
sensing, Kalman filter, Gibbs sampling, Relevance vector nthine

I. INTRODUCTION

zero-valued impinging signal present). These DOAs are then
estimated by finding the minimum number of DOAs with a
non-zero valued impinging signal that still give an accblga
estimate of the array output.

The problem can also be converted into a probabilistic form
and solved via Bayesian compressive sensing (BCS) [16],
implemented with a relevance vector machine (RVM) [17]-
[19]. Such a method has been used to solve the problem of
static DOA estimation [20], [21], where a belief of having
a sparse received signal is made and the most likely values
found.

The Kalman filter (KF) can be used to track dynamic DOAs,
with the angular range narrowed to focus in more closely on
the DOA estimate from the previous iteration [22]. However,
this prevents directly working with the measured array aign
and introduces an additional stage of having to reevaluate
the steering vector of the array at each iteration of the KF.
Hierarchical KFs have been used to track dynamic sparse
signals [23], [24], where the predicted mean of the signals
at each iteration is taken as the estimate from the previous
iteration and the hyperparameters are estimated using BCS,
hence the term Bayesian compressive sensing Kalman Filter
(BCSKF).

However, a problem remains when a BCSKF is applied

Direction of arrival (DOA) estimation is the process oto dynamic DOA estimation with a uniform linear array

determining which direction a signal impinging on an arrag h (ULA). The estimation accuracy can be reduced when the
arrived from. Commonly used methods of solving this probleDOA approaches the endfire region of the array, i.e. when
are: MUSIC [1], [2], ESPRIT [3]-[6] and the maximumthe impinging signal arrives parallel to or almost parattel
likelihood DOA estimator [7]-[9]. However, these methodghe array. This can be particularly problematic when there i
have some disadvantages, in particular they require kitimele a lot of noise present.
of the number of signals present beforehand and evaluation oAn additional challenge to address when considering the
a covariance matrix of the array output (adding computalionrDOA estimation problem is that of mutual coupling. One way
complexity). of modeling the mutual coupling effects is to use a mutual
Compressive Sensing (CS) theory says that when certawupling matrix [25], [26]. In [25] the mutual coupling madr
conditions are met it is possible to recover signals fromefiewis found using two methods: minimum mean-square matching
measurements than used by traditional methods [10], [1&hd the mutual impedance method. The method in [26] applies
Hence, CS can be applied to the problem of DOA estimati@symmetric Toeplitz matrix, where only antennas withinta se
[12]-[15] by splitting the angular region intdv potential separation of each other can cause mutual coupling effiects.
DOAs, where onlyL << N of the DOAs have an impinging this work the method in [26] is used to ensure mutual coupling
signal (alternativelyN — L of the angular directions have aeffects are included in the signal model.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2017.2655013, IEEE
Transactions on Antennas and Propagation

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 2

d,=(M-1)Ad ‘ The steering vector of the array is given by

a(Q,@) _ [Lefj,uzﬂcose".'7efj,uMﬂcos9]T, (1)

Ad where Q) = w7} is the normalised frequency with; being

3 3 j the sampling periody,, = ij form=1,2,..., M, c gives
5/476 /ﬁ o 5/476 the wave propagation speed afid” denotes the transpose
g operation.

The array outputy,, at time snapshat is then given by

Vi = AstXi + Ni, 2

wherex, = [zx.1, Tk.2, .., vin] T € CVX1 gives the received
source signalsn, = [ng1,nk2,...,nen]T € CM*Lis a
noise term, given by a zero mean multivariate Gaussian ran-
Yk dom variable andAs; = [a(€2,01),a(2,02),...,a(Q,0xn)] €
CMxN is the matrix containing the steering vectors for each
Fig. 1. Linear array structure being considered, congjstih }/ antennas angle of interest. Note]V is the number of points in the
with a uniform adjacent antenna separationfof. . . . L
grid of potential DOAs the angular region has been split.into
However, onlyL << N of these angular directions will have
an impinging signal present.

The contributions of this paper are: A BCSKF with a In practice there will also be mutual coupling effects
modified RVM, where the traditional sparsity prior is re@dc present, which alter the pattern of an individual antenna as
with a belief that the estimated signals will instead matotompared to if it was being used on its’ own. As a result (2)
predicted signal values, is proposed. The result of this ndws to be altered to account for this fact. A mutual coupling
prior is that a new posterior distribution and marginal like matrix is used to achieve this [26], by giving the true stegri
hood have been derived. Initial results for this method gisivector matrix as
a signal model without mutual coupling have been reported A =MuycAst. 3)
in [27]. ii) A Gibbs sampling approach is proposed. In thi MxM ; . L
ap[[)ro!clch)zero valued signalgs csg be explicFi)tIypenforceMNhE'ereMMC € €77 is the mutual coupling matrix given by
there is too large a change in DOA in order to alleviate the

estimation accuracy problem for the endfire region of thayarr 1 Mo o mpet . mu
iii) A comprehensive performance evaluation is provided, with
the proposed methods being compared to a BCSKF using the mo 1 mo
traditional RVM approach. Significant improvements in term m 1 m m
of the average root mean square err®\SE) values are M ¢ = 2 2 b=l
observed (up to 73.39 for the BCSKF with modified RVM mp_i
and up to 86.3% for the Gibbs sampling approach). .
The remainder of this paper is structured in the following my Lomg
mas e mp-—_1 e mo 1

manner: Section Il gives details of the proposed estimation (4)
methods, including the array model with mutual coupling
effects (II-A), the modified RVM framework for BCS (lI-B),

the BCSKF (II-C) and the Gibbs sampling implementation = " . a
(I1-D). In Section Il an evaluation of the effectivenesstoe "~ P exp{jo;} for i = 2,...D —1,D,..., M, where

proposed approaches is presented and conclusions are dr@Wﬁnd ¢i give the gm_plltude and pha_se, respectively. The
in Section IV variable D places a limit on the separation between antennas

above which there will be no mutual coupling effects. In othe
words when > D, thenp; = 0. This then gives the following:

In (4) the mutual coupling coefficients are given by

Il. PROPOSEDESTIMATION METHODS

Vi = MuycAaXe +ng

A. Array Model = AXj, + Ng. (6)

A narrowband ULA structure consisting dff omnidirec-  Equation (5) can then be split into real and imaginary
tional antennas, with identical responses is shown in Eigugomponents (given bR(:) andZ(-), respectively) as follows
1. Here, a plane-wave signal mode is assumed, i.e. the signal < Ao =
. : Vi = AXg + Ng
impinges upon the array from the far field and the angle of
arrival is limited to0° < @ < 180°. The distance from theT R(Yx) ] — [ R(A) —Z(A) ] { R(xr) } + { R(n) } _
first antenna to subsequent antennas is denoted, a$or Z(y) I(A)  R(A) Z(xx) Z(n)
m = 1,2,..., M, with d; = 0, i.e. the distance from the (6)
first antenna to itself. Note, these values are multiples ofTde difference betweeg, andy, is thaty, has been split
uniform adjacent antenna separation/od. into its real and imaginary componentsyp. As a result the
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dimensions ofy, are increased. A similar relationship existsvhere the covariance matrix and the mean are given by

betweenA andA, x; andX, andn; and#fy. ST
Y= (0,°AA+Py)! (14)

B. Modified Relevance Vector machine for DOA Estimationand oy

The aim is to now find a solution fak, which gives the 1=3(0°A" ¥, + Pi%y), (15)
closest possible match to a predicted set of signal values.
achieve this one can follow a modified RVM framework [27]
by evaluating the following

r-Espectiver. Note, the maximum of (13) is the posterior
meanu. For a derivation of (13) please see Appendix A.

Similarly to [17], the probabilityP (o7, p,.|Vx,Xp) can be
Keopt = Max P (Xe, 07, Pp Vi Xp), (7) represented in the following form:

where o2 is the variance of the Gaussian noise, (0% PilVi:Xp) = P(Vilo?, p.%,)P(07)P(py) P (%), (16)

Py = [Pk PR, - pran]” contains the jhyperparimete@,vhere P(%,) is constant as fixed values are used and the
that are to be estimated and = [R(x,)",Z(x,)"]" = gsecond wo terms on the right of are constantgif =
[7_3(%,1) JR(2p.n), L(p,1), . I(zp,n)]" holds the pre- Bo = B3 = By = 1 x 107* as in [17]. Therefore, max-
dicted value_s _Of(k' ) i imising P (o2, px|¥y, X,) is roughly equivalent to maximising
From (6) it is possible to find: P(Viloz,py,%p). This can be achieved by a type 2 max-
PR, 02) = (2702) M exp{ _2%2”37’@ —A)”(k||§}. ) imisation of its logarithm, which is given by (please see

Appendix B):
The traditional RVM would now apply a belief that, is 1
sparse. However, here this is changed to a belieffhatill  L£(o7,p,) = log {(erk) M52 [Py |2 exp ( 3
match the predicted signalks,:
PXilpp, %) = (2m) N|Py|? x (V4 BYy + X, CX, — 203V} Azpkxp))}

X

exp { — 50— %) Pu(R ~ %) }.(9 | 2
= —= (2M log(27) + 2M log oj, — log |X| —

Note, whenx, = [0,0,...,0] then (9) reverts to the hierar- 2 o < T

chical prior used in the traditional RVM [16], [17] an| log [Pi| + 0} 7[[V), — Apllz + 1" Pepe

indicates the determinant &, whereP, = diagp,,). +X) Py, — xZPku), (17)

It is also necessary to define the hyperparameters pyer

and ak There are various possibilities for the structuring ofshereB = (o3I +Ap 13T )~1 andC = P, — PL 2P,

the priors orp,,, which represent mixing parameters in a scale This is now d|fferent|ated with respect g, ,, and ok‘Q to

mixture of normals representation of the marginal distidiu  optain the update expressions

of Xx, which will here be in the Student-t family, see e.g. [28]. "

One possibility would be to treat the complex components of Pk = T3, 7 ; (18)

X as complex Student-t distributed, as detailed in [29], [30] Ha pinbin

However, this work treats the real and imaginary componemaere,, = 1 — py.,Ynn, Znn is then!” diagonal element of

of x; as independent Student-t distributed random variables,and

and hence there are independent Gamma priors for the mixing s |y —Aull3 (19)
variablespy, , over all real and imaginary components»gf konew = o p S
2N
_ For the derivation of (18) and (19) please see Appendix C.
P(py,) = 71:[1 (Pk,n|B1, B2 (10) The maximisation is then achieved by iteratively findag
_ - and u, followed byp,';i;” forn=1,..,N ando} ., untila
A Gamma prior can also be used fof convergence criterion is met [16], [17] In other words, tieev
P(02) = G(o; 2|3, Ba) (11) estimates for the noise variance and precision hyperpaease
found from (19) and (18) are then used in (14) and (15) to
wheref1, 32, B3 and 3, are scale and shape priors. find new estimates of the covariance matrix and mean of the
It is known that distribution in (13). Note that whe®, = [0,0,...,0]7 the

g 2 S 9N Do g 2 S 2 c o update expressions match those used by the traditional RVM.
PRk 0ics PilYies Xp) = PXel¥ics s Pros Xp P (0 p’“'“’ﬁ’;) The final estimate of the received signals is then given by

and

~T = -7
. (AA ~1/AY, )
o) Pl ot Pulpy ) Foom = (g Poane) (G 4 Prars) 20

P(XklYy: 07s Prs X . _
| fr R BT P(yk|01§apkaxp> 2 .
wherea; , , andPy opt = di@Q(Pk,opt, 15 Pk,opt,2, -+ Pk,opt,2N )
_ (2W>_N|2|—1/2 exp{ (e — )T (R — M)}, (13) are the result of optimising the noise estimate and hyperpa-

[t

2 rameters, respectively. Nowy, ,,,» can be used to reconstruct
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the estimated signals as sparse, then the priors that are enforced will ensure this
N . 21 continues to be the case. However, an inaccurate initial DOA
Tk,opt,n = Thopt,n T JTk.opt,Ntn (21)  estimate or poorly matched expected DOA change can lead
wheren = 1,2, ..., N. to the introduction of inaccuracies in subsequent estisnate

The thresholding scheme in [20] can then be applied to keggnilarly, if the initial estimate of the received signatsnot
the L most significant signals. To do this find the total energ§Parse then subsequent estimates are likely to not be sparse
content of the estimated received signals and then sort then?S & result, care should be taken when choosing the initial
threshold valuey, is then defined as a percentage of the ener§arameter values and determining the likely DOA change.
content that is to be retained. Starting with the most sicgifi . . L
estimated signal, the estimated signals are summed ugtil 91 Gibbs Sampling f(?r DOA Est|mat|9n .
threshold is reached and the remaining signals are then sefhe® method described in the previous sections based on
to be equal to 0. The remaining non-zero valued signals thanBCSKF with a modified RVM required the use of prior

give the DOA estimates anfl is an estimate of the numberknowledge of the predicted change in DOA. However, in
of far field signals impinging on the array. practice this may not always be known, making it important

to have an alternative method that can still give improved
accuracy for the endfire region.
This work proposes using a sparsity prior which is given
In order to track the changes in the DOA estimates at a combination of a point mass concentrated at zero (Dirac
each time snapshot the modified RVM based DOA estimatidielta function) and a zero mean Gaussian distribution,{31]
procedure detailed above is combined with a Bayesian KB3], giving

C. Bayesian Compressive Sensing Kalman Filter

giving a BCSKF for DOA estimation [27]. The signal model 2N
described above is again used along with the prediction  P(x,|p,, z) = H(1 — Zkn)00 + ZknN (Zk.1 |0, Prn), (25)
n=1
Kilh—1 = Xp—1jh—1 + AX D1 = Zp_1 + P!
~k|k ! ~k~ k-1 k“f ! R i 1~ k wherez;, = [z}, z]1T andz, = (21,1, 2.2, s 20,
Yije—1 = AXkjr—1 Ve =6 = Vi1 (22) Note, % ,, is the indicator variable fof; ,, and determines
and update steps which of the two component_s in (25)_ is selected. When
~ Zrm = 0, the value ofz; , is determined solely by the
X = Xpjp—1 + KiYe . Bip = (I = KeA)Zp -1 point mass concentrated at zero. As a resijt, = 0 and

(23) sparsity is explicitly introduced. Alternatively, when , =1

the value ofzy, ,, is determined by the Gaussian distribution
of the BCSKF. Herek|k — 1 indicates prediction at time allowing a non-zero valued estimate. The repetitiorgpfin
instancek given the previous measurements aAd is de- Z; means that the same indicator variable is used for both the
termined by the assumed DOA change. Nak is fixed by real and imaginary parts of each entryxp.
the predetermined constant motion rather than being a rando This indicator value can also be used to address the endfire
noise term. For example, if the angular range is sampled/evéccuracy problem by selecting the value:pf, = 0 if [n—i| >
1° and the DOA is assumed to increaseythen Ax will be  j. Herei is the index of the closet non-zero valued estimate
selected to increase the index of the non-zero valued sntrigom the previous time snapshot ariddefines a maximum
in X_1/5—1 by two to give the index of the non-zero valuedillowed change in the DOA estimate. Only= 1,2, ..., N is
entries iNXj,;,_;. considered to get the entries for, with z; then being found

At each time snapshot it is necessary to estimate tB& previously stated.

noise variance and hyperparameters in order to evaluate thdhis leaves the following

~T ~ T
Ki = Zpp1A (0] + AZpp A )1

prediction and update steps of the BCSKF. This is done by 1 if |n—i| <j
considering the log likelihood function given by Zhm =4 0" L (26)
zp ., i |n—i]>j,
1 :
L(og,py) = —3 (2M log(27) + 2M log o — log | 3| wherez}, , andz2 are defined by the following Beta distribu-
o) ~ tions
—log |Pr| + ;%19 1, — Anll3 + p' Pep
+)~(T Pkf(k o — )~(T PIJ/) (24) Zli,n = B(Zli,n|6é’ Bé)7
e TR TR Fn = BGRB8, (27)

which can be optimised by following the procedure describqﬂ order to enforce zero-valued estimates wher i| > j, it

:{n Secuor:( II-B. In other W?]rds we apg_ly the modified ';:VMis necessary to sele6f and 32 to ensure a zero-valueg_,, is
ramework t0y, ;, using the KF predictionky ;1 as the 5 eferred. However, whem —i| < j it is necessary to choose

expe_cted estima?e values. . B2 and 3} so that the chances of,,, = 0 and 2z, = 1 are
It is worth noting that the continued accuracy of the Pr%qual. This can be achieved by

posed BCSKF relies on the accuracy of the initial estimate L )

and the parameter values selected. If the initial estimate P (%k.nl55, 56) B(24,|B5, B6)

(made using the framework described in Section 1I-B and 9 B 9 1 1

X, = [0,0,...,0]”) of the received signals is accurate and P(2nlBs,86) = Bl zj;alfs — 3»56 +3 , (28)
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where s = g = 1. proposed Gibbs sampling based method can then be used at
The posterior distribution ok, can be written as [33] the subsequent time snapshots to get the next DOA estimate.
2N
P(%ulVy, 02, Dy, 2 o<{ 1= 25.0)60 + Zam
(XelYies s P ) 711;[1[( k)0 + 2 I1l. PERFORMANCE EVALUATION

XN (Z1,n]0, pr.n)] }N(VMA)% o.2). (29)  Inthis section a comparison in performance of the proposed
methods and the traditional RVM based BCSKF method will
Now also defineA,, as being the entries i relating 10 e made over five example scenarios, under the same test
the indexn and A_,, are the entries oA excluding the ¢onitions. Firstly, an example is considered where thaini
entries relating to indexe (and similarly forx.). Then as pop starts outside of the endfire region and then moves into
per Appendix D this gives it. Secondly, an example is given where the DOA remains out
PEknlVi Xhmns 07, Pps Zk) = (1= 26n)80 + Zkm of th(=T endfire region. In the third scenario the initial DOAsla _
the signal values are randomly generated. Then the evatuati
. will also consider the scenario where there is a mismatch
Pk = Dk +PoALAL, (31) between the actual and assumed change in DOA. Finally, the

X N(ikn|ﬂkn;ﬁkn)(3o)

N — 51, ALY 32) evaluation will consider a random change in DOA at each
Hkn = P nPoAR Yk 32) . . .
. 7 time snapshot. This means thAk which is selected for the
Fn o _Fkn modified RVM based BCSKF will not be a true reflection of
L= Zkn L= Zkn how the DOA actually changes for the last two examples.
o N[0, prn) . (33) Note, the term traditional RVM based BCSKF method
N (Ot ,ns Prein) means the entries d¥;, in the prediction step of the BCSKF

are found using the RVM optimisation method as detailed
Bn [16], [17]. In other words this is the method detailed in
Section II-B withk,, = 0. All of the examples are implemented
in Matlab on a computer with an Intel Xeon CPU E3-1271
(3.60GHz) and 16GB of RAM.

P(prnlXi-1) = G(Br + |[Xe—1,mjll0; B2 + [[Xe—1.n113) (34)  The performance of each method will be measured using
the RM SE in the DOA estimate. This is given by

wherepy = 1/0} andy, ,, = ¥, — A_n X, —n.

There are two further posterior distributions that haveeo
considered. That is the distributions far ,, andp, which are
given by

and
I 1. ~
P(pol¥i,Xe) = G(Bs + M, s + §||yk — A%[3),  (35) Q L .
respectively. Note, in (34 gives the entries within Z1 zz1| o
X " k= Lng S : MSE = | F ———— 36
Xk—1 that have an index within the distangeof indexn. By RMS QL ’ (36)

using x rather thanx to find x;_1 ,; it guarantees the same
value of [[Xy—1,n;|[3 and |[Xx—1,4/lo for both the real and whereg, is the actual DOAJ, is the estimated DOA an@

imaginary components. is the number of Monte Carlo simulations carried out, with

As a result the Gibbs sampling steps are as detailed belQw= 100 being used in each case. This gives a measure of the

1) Sampleiy ,, from P(Z.n|Vi: Xk, —ns Op, Pr» Zk)- estimation accuracy and the computation time will be used as

2) Samplepy, ,, from P(pg n|Xi—1)- a measure of the complexity of each method.

3) if n < N then Samplez; , from P(z; |85, Bs), For the Gibbs sampling method a burn-in period of 250
else Zi,n = Zl%,'rL—N' iterations is used and then 50 further iterations used totfiad

4) ifn < N then Samplez,%yn from P(z£7n|ﬂ5,5a), final estimate of the received array signals. When a distance
elsezk L, =22 n—N- of j = 5° is exceeded a zero-valued estimate of the received

5) Samplepo from P(pol¥s, Xi)- signals is enforced in order to alleviate the endfire acqurac

These steps are done for each of tHdterations of the problem.
Gibbs sampler, where the fir§fz; iterations are the burn- For all the design examples considered the selection of
in iterations. The final estimate of the received array dgnas; = 0.4 as the noise variance is used, with an initial estimate
is then given by the mean values of the finBl— T; of the noise variance given by , = 0.1. The array geometry
iterations [32]. The DOA estimate can then be found usirzping used is that of a ULA withl/ = 20 antennas and an
the previously described thresholding scheme (see II-Bjy wadjacent antenna separation %),f where ) is the wavelength
the remaining non-zero valued estimates correspondinigeto tf the signal of interest. This gives an array apertur®.64.
DOA estimates. For the mutual coupling matrix a value @f = 3 is selected,

Note, the performance of this method will again heavilyneaning that a separation ©f5\ or greater gives negligible
depend on the accuracy of the first estimate. As a result, itnaitual coupling effects. The valugg = 0.65, po = 0.25,
possible to use the traditional BCS DOA estimation methati = 7/7 and 2 = /10 are then also used. Finally, in each
(Section 11-B with%, = [0,0, ..., 0]7) to ensure an as accurateexample a single narrowband signal impinging on the array is
as possible intial estimate at the first time snapshot. Thensidered, meaningy = 1.
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TABLE | TABLE I
PERFORMANCE SUMMARY FOR THE ENDFIRE REGION EXAMPLE PERFORMANCE SUMMARY FOR THE ENDFIRE REGION EXAMPLE WITH
REDUCED ADJACENT ANTENNA SEPARATIONS
Average RM SE Average Computation
Method (degrees) Time (seconds) Average RM SE Average Computation
RVM 19.88 0.76 Method (degrees) Time (seconds)
Modified RVM 6.46 0.98 RVM 221 0.98
Gibbs 3.82 17.83 excluding burn-in Modified RVM 0.86 1.25
107.84 including burn-in Gibbs 3.02 16.81 excluding burn-in
101.65 including burn-in

30 T T T -

—*—RWM 18 i T T

— — — Modified RVM - —#*—RVM

—0O— Gibbs | R R . 4 w6~ Modified RVM
—O— Gibbs

25

14

N
=]

RMSE (degrees)
=
w

10

RMSE (degrees)

I I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | I I I L I I I I
Time Snapshot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Snapshot

Fig. 2. RMSE values for the endfire region example.
Fig. 3. RM SFE values for the endfire region example with reduced antenna

separation.

A. Endfire Region

For this example the initial DOA of the signal és= 20°, without a large increase in computation time). However, whe
which then decreases [y at each time snapshot. The signathis information is not available, or computational conxithe
value at each snapshot is set to be 1. Table | summarisesithgot a concern, it is possible to get a significant improveime
performance of the three methods for this example, with tive accuracy (at the cost of computation time) using the Gibbs
RM SE values at each time snapshot being shown in Figuresampling based method.

Here it can be seen that there has been a significant decrease the previous simulation an adjacent antenna separation o
in the averageRM SE values for both the modified RVM )\/2 is used as it is known that this is the largest separation that
method (67.5% improvement) and the Gibbs sampling basecan be used while still avoiding a degraded performancealue t
method (80.7% improvement). Overall this suggests that e introduction of grating globes [34]. However, an exaenpl
more accurate estimate of the DOA is possible. It is worthf what the relative performance of the methods is when a
noting that there has still been an increase in the RMSE femaller adjacent antenna separation will now be considered
the modified RVM based approach in the endfire region of In this instance an adjacent antenna separation /df is
the angular range. However, this has come much later on #eected. As the array aperture is kept constant (to alloswra f
than for the traditional RVM based approach (indicating @mparison between adjacent antenna separation sizas) thi
degradation in performance for a smaller angular range) amgans the number of antennas is givenldy= 39. This also
the maximumRA SE value reached is lower (indicating themeans a value ob = 9 is required to keep the same distance
degradation is less severe). limits on mutual coupling occurring. The values @f and ¢;

These improvements have come at the cost of an increased then selected to be uniformly spread over the range of
computation time in both instances. For the modified RVN.65 to 0.25 andr/7 to 7/10, respectively. The remaining
method this increase is insignificant as the average commparameters are kept constant and the same test scenario as fo
tation time is still less than one second. The increase fiire previous example is used.
the Gibbs sampling based method is larger, illustrating anThe performances of each of the methods in this instance
increase in computational complexity. However, it is wortare summarised in Table Il and Figure 3, respectively. Here
remembering that this increase has resulted in a more decuiican be seen that the larger number of antennas used has
DOA estimate being achieved without prior knowledge aboutsulted in a lower averag8M SE values for all three of
what the change in DOA will be. the methods. In this instance only the modified RVM method

In this instance the results suggest that one of the tvimas performed better that the traditional RVM based method
proposed methods should be used when the estimated D@Aen comparing averageM S FE values (decrease in average
approaches the endfire region of the array. If the change i/ SE of 61.09%). However, by looking at the maximum
DOA is known in advance and computational complexity i®M S E values it can be seen that the largest estimation error
a primary concern then the modified RVM based method jssible with the traditional RVYM based method is largentha
the most suitable (a more accurate estimate can be achietret for the Gibbs sampling based meth6.42° as compared
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PERFORMANCE SUMMARY FOR THE NONENDFIRE REGION EXAMPLE

TABLE Il

AverageRM SE Average Computation AverageRM SE Average Computation
Method (degrees) Time (seconds) Method (degrees) Time (seconds)
RVM 2.91 0.73 RVM 12.10 0.74
Modified RVM 1.85 0.78 Modified RVM 3.22 0.86
Gibbs 1.46 13.08 excluding burn-in Gibbs 2.89 13.88 excluding burn-in
79.57 including burn-in 84.19 including burn-in
12 T T T 25 T T T
—%— RVM —*—RVM

— = — Modified RVM

PERFORMANCE SUMMARY FOR THE RANDOM INITIALDOA EXAMPLE.

TABLE IV

— = — Modified RVM
—O— Gibbs

-0~ Gibbs i

15

RMSE (degrees)
RMSE (degrees)

1 1
\
910q',e—o-"e—o—e—c*o-e‘o,eﬂyx)»e:g_é

v -~

——-mN -

I I 0 L L L L L L L L L L L I I I I I I I
18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time Snapshot

I
9 10 11 12 13 14 15 16 17
Time Snapshot

Fig. 4. RMSE values for the non-endfire region example. Fig. 5. RMSE values for the random initial DOA example.

to 3.71°). as=+1 for each simulation and remains constant as the DOA
It is worth noting that such an array configuration is unikelchanges.

to be used in practice. This is due to the costs associatéd wit Table 1V and Figure 5 summarise the performance of the

the number of antennas required. As a result, the remainivgfious methods in this instance. Again, it can be seen that

examples will stick to the adjacent antenna separatiok/af the modified RVM based method has offered improvements

and associated parameters previously defined. in terms of RM SE(73.3%), without a significant increase

in computation time. The Gibbs sampling based method has

, : also given an estimation accuracy improvement (7&.).and

B. NonEndfire Region has even outperformed the modified RVM based method,
For this example the initial DOA i® = 100° with the ithout prior knowledge of how the DOA was going to

DOA increasing byl® at each time snapshot, with the signathange. However, this has come at the expense of an increased

value remaining constant at -1. The performance of the thrggmputation time.

methods is summarised in Table IIl, with t&\/ SE values

illustrated in Figure 4. .
In this instance it can be seen that there has not beenDailesmatChed Actual and Assumed DOA Change

large an increase iRM SE for the traditional RVM method, This subsection compares the performances of the estima-

as the DOA does not enter the endfire region. However, bdti? methods for two situations where the actual change in
the modified RYM and Gibbs sampling based methods haldA is not known. First, consider the case where there is
managed to achieve improvements in aver®ge SE values an Initial DOA of ¢ = 100° which increases by® for 9

of 36.42% and 50.00%, respectively. For the Gibbs sampling!Mme Snapshots before decreasinglByfor the remaining time
based method this comes at the expenses of an increas&"f@PSNots. In this instance, assume a constant signal eglue
computation time, whereas the time for the modified RVt throughout. o

based method is comparable to the traditional RVM based'he Performance comparison is now made between the
method. As with the previous test scenario this would suggd&@ditional RVM based method, the modified RVM based
that the modified RVM based method should be used when fgthod with the assumed DOA change set to a constant
expected DOA change information is available and the GipB¥rease ofl°, the modified RVM based method with the

sampling based method when this is not the case, or whHatsumed DOA change set to a constant decrease aihd
computational complexity is not a major concern. the Gibbs sampling based method. The performances for each

are summarised in Figure 6 and Table V, respectively.

. In this instance the averageM S E values suggest a com-

C. Random Initial DOA parable performance in terms of estimation accuracy betwee
Next consider the case where the initial DOA is randomighe traditional RVM based methods and the two modified

chosen from the entire angular range and increaset’bgt RVM based examples. This can be explained by the fact that

each time snapshot. The signal value is randomly selecfied both of the modified RVM based examples, the assumed
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Fig. 6. RM SFE values for the increasing DOA followed by decreasing DOAFig. 7. RM SE values for the increasing DOA with an assumed decrease

example. in DOA of 3° example.
TABLE V TABLE VI
PERFORMANCE SUMMARY FOR THE INCREASINADOA FOLLOWED BY PERFORMANCE SUMMARY FOR THE INCREASINADOA WITH AN
DECREASINGDOA EXAMPLE. ASSUMED DECREASE INDOA OF 3° EXAMPLE.
AverageRMSE | Average Computation AverageRMSE | Average Computation
Method (degrees) Time (seconds) Method (degrees) Time (seconds)
RVM 4.49 0.60 RVM 10.70 0.66
Modified RVM with 4.45 0.77 Modified RVM 8.07 0.77
constant+1° DOA change Gibbs 1.46 13.99 excluding burn-in
Modified RVM with 4.08 0.79 84.72 including burn-in
constant—1° DOA change
Gibbs 1.41 16.12 excluding burn-in
97.59 including burn-in

plexity.
For the modified RVM based method the averdg®/ SE

DOA ch q h th | DOA ch ‘ alues suggests that there has been an improvement in estima
change does not maich the actua changes Tor th, accuracy. However, this is smaller than when the actual

entire time range Wh.iCh means the same improvements aS 2 assumed DOA changes match. It is also unlikely that
the Prévious scenario can no longer be guaran_t_eed. Flgmg improvement would be obtained in every scenario the the
6 highlights this in the results for_ the two mOd'f'eq RV'\/lmethod could be applied to. From looking at Figure 7 we can
examp:]es. It éj_?n:jonstratesﬁthat with an _alss_umed INCre€asyAR that the traditional and modified RVM based methods are
DOA the modified RVM offers some initial Improvementsshowing comparable performance for the just over half of the

while the performance is significantly degraded when the D%ne frame considered. This is the relative performanceé tha
starts to decrease again. On the other hand, the example Id be expected in the majority of cases

an assumed decreasing DOA performs worse than the tradi-
tional RVM based method initially and then offers signifitan
improvements when the actual DOA also starts to decreas&. Random Changes in Direction of Arrival

It can also be seen that for the Gibbs sampling based methogtinally, consider the example where the initial signal ealu
there has been an improvementin DOA estimation accuracyisnassumed to be equal to 1 and the initial DOA is chosen to
terms of averagét M SE values this is a decrease of 6860 be100°. The actual DOA is then allowed to randomly change
which has been achieved without any knowledge of how thg up to+3° for each time snapshot. For the modified RVM
DOA was going to change. However, there is again an increagethod assume that the actual DOA change is an increase
in the computation time. of 3°. This gives the results as summarised in Table VIl and

To illustrate how a larger mismatch between actual arigure 8.
assumed DOA changes effects the performance of the modifiedt can be seen that the Gibbs sampling based method has
RVM based method now consider an example where the actaghin outperformed the modified RVM based method in terms
DOA is increasing byi° in each snapshot, while the assumedf estimation accuracy, due to the fact that no prior knogted
change is a decrease 8f. Here, the initial DOA is100°, of how the DOA will change is required. As compared to the
with a constant signal value of -1. ThHeM SE values for the traditional RVM based method there has been an improvement
methods are shown in Figure 7 and summarised in Table Ml RM SE of 78.81%. However, as is expected this is at the
along with the computation times. cost of computation time.

Here it can be seen that the Gibbs sampling based methodt is also worth noting that the averageM SE values
has offered ar86.36% improvement in averag&M SE as suggest that the modified RVM and traditional RVM have
compared to the traditional RVM based method. There haffered a comparable performance. This is due to the fatt tha
again been a significant increase in the computational cothe assumption of how the DOA will change is not valid,
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TABLE VI
PERFORMANCE SUMMARY FOR THE RANDOM CHANGES INDOA WITH AN APPENDIX
ASSUMED INCREASE INDOA OF 3% EXAMPLE. A. Derivation of Posterior Distribution
AverageRMSE | Average Computation Bayes'’ rule gives
Method (degrees) Time (seconds) o 5 ~ o, ~
RVM 6.89 0.64 PXelYir s Pror Xp) P (Viel 0% Pis Xp) - =
Modified RVM 6.37 0.86 ~ i~ 2 ~ -
Gibbs 1.46 22.26 excluding burn-n P(¥5e[%se: 03) P (X [Pres Xp), (37)
134 56including burn-in whereP (¥, Xk, o7) and P (Xx|py, X,) are known from (8) and

(9), respectively.
R ey ‘ Now following the method suggested in [17] carry out the

Ll ol et M i | multiplication on the right hand side of (37), collect terins
Xj in the exponential and complete the square.

10

=[5 — A% T, — ARe) +

()~(k - )zp)TPk(f(k - )zp)}

©

RMSE (degrees)

1 o Y o xT .
— ——{U‘nyyk—ak WA, — o AT Y, +

N 2
—2cTAT R o T TIp T o
I/ S D Sl S GIp U S P S0 () S N 0, X A AXg + Xg PiXg — X, PeXp — X, PeXg
~T ~
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 +Xp kap:|
Time Snapshot 1
g Ty —1/g Ty—1
. = *—[(Xk*u)ﬁ (X —p) =" X7 p +
Fig. 8. RMSE values for the random DOA change example. 2
—2oT Ip o
o VieYe X, kap} (38)

whereX and i are given by (14) and (15), respectively. This

meaning the modified RVM no longer offers any improvemen gives the posterior distribution as (13), with the rizing
ments. Therefore, in this situation the Gibbs sampling d’aséx[)onential terms

method would be the best to use, assuming computationa

L . R 1
complexity is not the main motivating factor. —> [akzygyk n igpkf(p S S (39)
V. CONCLUSIONS B. Derivation of Marginal Likelihood
This paper has proposed two novel approaches for theFrom (37) the following is known:
estimation of a dynamic direction of arrival using uniform < e 9 - .
linear arrays with mutual coupling. The first approach is a P(y,|02,p,., %,) = P(yk|xk’ak)’7)(xk|p’“’xp), (40)

Bayesian compressed Kalman filter with a modified relevance P(Xe|55 o Prs %p)
vector machine, where the traditional sparsity assumgpgonmeaning the term in the exponential will be (39) where
replaced by an assumption that the estimated signals will._ o~ T . . _
instead match predicted signal values. This results in tﬁg o= (oA P TRTET
derivation of a new posterior probability density functiof X E(U,ZQATyk + PiXp)
the received signals and the expression for the relatedinzdrg _oxT_ T o T -
likelihood function. The second proposed approach is a &ibb = (oA ~y’f frTP’“X’J (o, ?A Vi + ZPXp)
sampling approach, where sparsity is explicitly enforced i = 0 WIAZA' Y, + 0 Y AZPX, +
there is a large difference between the previous direction o —2.TpT i Ty | <TpT S
arrival estimate and the angle currently being considéFad. Tk Xy Pi A Vi + X, Pl EPXg. (41)
proposed approaches will be particularly useful when agpli Therefore the exponential term is given by
to the problem of dynamic direction of arrival estimation in 1
the endfire region of antenna arrays. Such problems can arise =
in numerous application areas such as in communications and 2
surveillance. - T

An extensive performance evaluation is provided and shows 05 Vi AZP%, — 0, 2%, PLA" ¥, — %, PL P,
that both of the proposed approaches outperform the toaditi
relevance vector machine based Bayesian compressiveagensi 1| _p
Kalman filter in terms of mean root mean square error values, 2 Yi
by up to 73.3% for the modified relevance vector machine

. . . T

&a;stﬁgdfnethod and 86.%36for the Gibbs sampling based fo,fygAEPkf(p _ UEQXJZPZA ¥,

9T~ ~ ~ AT ~T _
O Ve + X P, — 0 'YLASA Y, —

_ AT - ~
(0,2 — 0, "AZA ]y, + X [Px — PLEPIX,

(42)
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The term outside of the exponential is given by

10

and then define = o, giving

2 2\—M D) -N P 1/2 1 _ _ ~
(2mo) ™ (27) |1 k| = (2102)"M|S|3 [P [, (43) -3 [ZMlogT ' —log|Z| + 7|y, —Au||§}
(2m)~N|z|~% 2 )
This gives the marginal likelihood as = =3 [ —2MlogT —log | ] + 7|y, — AH||§} -(52)
P(Yyloz, Py, Xp) = (Qng)*M|g|% |pk|é Now differentiate (52) with respect to and equate to zero to
Lrne T ~g 207 A - give
- = — 2M ~T ~ ~
<oxp{ - FURBY + % %, — 20ABPK)} (4) —— +U(EA A) + Iy, —AulE =0,  (53)
where B and C are defined as in Section II-B. The log

likelihood is then given by

ﬁ«%,pk>=1og{<2wa@-”ﬂzuﬂpkﬁ

1 . N N N T~ -
x eXp{ - §[nyy,c + % CX, — 20§yfAEkap]}}

1
—M log(27) — M logoi + 3 log |X| +
1 1 T e T <
5102 [Pk| = S [V By + X, CX, — 207§, AZPi, ). (45)
Using the Woodbury matrix inversion identity gives

B=0.2— 0. 2A(Py +0;2A A)'A 02, (46)

which means

Viow Ve — Vi (03,71 — o) A

P+ o 2A A A 012y,

~ 9. - 9~ ~T 5

Viow Vi —Vio. "AZA 0%,

0 Vi (Vi — Ap) + 07, Vi AZPLX,

o 2|E — Apl3 + pTPep + 072  AZPLK,,.
(47)

Also, we know thatP{ = P, asPy is a real valued diagonal
matrix. This means

X [P, — PeZPk]%,
X, PX, — X P EPX,,

X PX, — X Pept + 0 YL ASPX,, (48)

V1 B,
X

~T ~~
X, CXp

which then gives the log likelihood function in (17).

C. Derivation of Update Expressions for Modified RVM
Firstly, differentiating (17) with respect toy ,, gives
1

2
and equating to zero gives

1 . -
Ynn — p— + /Ji + fﬂg,n — Tenfin (49)

k,n

2nn -

+ M?L + iz,n — Zenpn =0

k,n
1-— pk,nznn - pk,nﬂ% - pk,nfin "l‘pk,nfe,nﬂn =0
Yn — Pk,n [/Ji + ‘ii,n - j:‘e,nlin] =0 (50)

which leads to (18).
Now collect the terms withs? in to give

1 U
5 [2Mlog o} — log ||+ oIy, — Aul3]  (51)

where tf-) indicates the trace. As (EATA) can be written
as7 > v, giving

THEM = ) = |19, — Anll3, (54)
n

which in turn gives (19).

D. Derivation of (30), (31), (32) and (33)
From (29) it is known that

,P(-%k,nw}c,nv Ulzapk,n; gk,n) X (1 - Zk,n)(so
XN(yk,n|An§ckﬁn7 0-13)
+§k,nN(§ck,n |07pk,n)N(§/k,n|Anik,n; O—Ii) (55)

If we then combine the exponential terms in the second term
in (55) we get

1

2 )T

~T ~ ~ O
[xk,npk,nxk,n + p()(yk,n - Anxk,n

x (yk,n - Anikﬂ)‘|

1

T - T TR -
9 [ knPknTlkn +p0(yk,nyk,n - yk,nAnxk,n

1] _
5 lﬂfgn[mn + poA

T A AT
PV nAnrn — PoTt A, y,w] : (56)

Completing the square gives
1

2 |f§3k’” - /jn)Tﬁk,n(-ik,n - ﬂn) - /lnﬁk,n/ln

+poy£nykm1 . (B7)

wherepy, , and i ,, are given by (31) and (32), respectively.
In order to complete the expression given in (30) it is now

necessary to get a new indicator variabig,, for the new

posterior distribution fofry, ,,. To do this, assume that

2k,n ~ ~
7N(O|Nnvpk,n)

Zk,’r
TN prn) = T 5
\n

1- Zk,n
Thus giving us (33), allowing us to write the posterior distr
bution for zy,,, in the form given in (30).

(58)
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