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Abstract—The problem of estimating the dynamic direction
of arrival of far field signals impinging on a uniform linear
array, with mutual coupling effects, is addressed. This work
proposes two novel approaches able to provide accurate solu-
tions, including at the endfire regions of the array. Firstly, a
Bayesian compressive sensing Kalman filter is developed, which
accounts for the predicted estimated signals rather than using
the traditional sparse prior. The posterior probability density
function of the received source signals and the expression for
the related marginal likelihood function are derived theoretically.
Next, a Gibbs sampling based approach with indicator variables
in the sparsity prior is developed. This allows sparsity to be
explicitly enforced in different ways, including when an angle
is too far from the previous estimate. The proposed approaches
are validated and evaluated over different test scenarios and
compared to the traditional relevance vector machine based
method. An improved accuracy in terms of average root mean
square error values is achieved (up to 73.39% for the modified
relevance vector machine based approach and 86.36% for the
Gibbs sampling based approach). The proposed approaches prove
to be particularly useful for direction of arrival estimati on when
the angle of arrival moves into the endfire region of the array.

Index Terms—Dynamic DOA estimation, Bayesian compressive
sensing, Kalman filter, Gibbs sampling, Relevance vector machine

I. I NTRODUCTION

Direction of arrival (DOA) estimation is the process of
determining which direction a signal impinging on an array has
arrived from. Commonly used methods of solving this problem
are: MUSIC [1], [2], ESPRIT [3]–[6] and the maximum
likelihood DOA estimator [7]–[9]. However, these methods
have some disadvantages, in particular they require knowledge
of the number of signals present beforehand and evaluation of
a covariance matrix of the array output (adding computational
complexity).

Compressive Sensing (CS) theory says that when certain
conditions are met it is possible to recover signals from fewer
measurements than used by traditional methods [10], [11].
Hence, CS can be applied to the problem of DOA estimation
[12]–[15] by splitting the angular region intoN potential
DOAs, where onlyL << N of the DOAs have an impinging
signal (alternativelyN − L of the angular directions have a

zero-valued impinging signal present). These DOAs are then
estimated by finding the minimum number of DOAs with a
non-zero valued impinging signal that still give an acceptable
estimate of the array output.

The problem can also be converted into a probabilistic form
and solved via Bayesian compressive sensing (BCS) [16],
implemented with a relevance vector machine (RVM) [17]–
[19]. Such a method has been used to solve the problem of
static DOA estimation [20], [21], where a belief of having
a sparse received signal is made and the most likely values
found.

The Kalman filter (KF) can be used to track dynamic DOAs,
with the angular range narrowed to focus in more closely on
the DOA estimate from the previous iteration [22]. However,
this prevents directly working with the measured array signals
and introduces an additional stage of having to reevaluate
the steering vector of the array at each iteration of the KF.
Hierarchical KFs have been used to track dynamic sparse
signals [23], [24], where the predicted mean of the signals
at each iteration is taken as the estimate from the previous
iteration and the hyperparameters are estimated using BCS,
hence the term Bayesian compressive sensing Kalman Filter
(BCSKF).

However, a problem remains when a BCSKF is applied
to dynamic DOA estimation with a uniform linear array
(ULA). The estimation accuracy can be reduced when the
DOA approaches the endfire region of the array, i.e. when
the impinging signal arrives parallel to or almost parallelto
the array. This can be particularly problematic when there is
a lot of noise present.

An additional challenge to address when considering the
DOA estimation problem is that of mutual coupling. One way
of modeling the mutual coupling effects is to use a mutual
coupling matrix [25], [26]. In [25] the mutual coupling matrix
is found using two methods: minimum mean-square matching
and the mutual impedance method. The method in [26] applies
a symmetric Toeplitz matrix, where only antennas within a set
separation of each other can cause mutual coupling effects.In
this work the method in [26] is used to ensure mutual coupling
effects are included in the signal model.
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Fig. 1. Linear array structure being considered, consisting of M antennas
with a uniform adjacent antenna separation of∆d.

The contributions of this paper are:i) A BCSKF with a
modified RVM, where the traditional sparsity prior is replaced
with a belief that the estimated signals will instead match
predicted signal values, is proposed. The result of this new
prior is that a new posterior distribution and marginal likeli-
hood have been derived. Initial results for this method using
a signal model without mutual coupling have been reported
in [27]. ii ) A Gibbs sampling approach is proposed. In this
approach zero valued signals can be explicitly enforced when
there is too large a change in DOA in order to alleviate the
estimation accuracy problem for the endfire region of the array.
iii ) A comprehensive performance evaluation is provided, with
the proposed methods being compared to a BCSKF using the
traditional RVM approach. Significant improvements in terms
of the average root mean square error (RMSE) values are
observed (up to 73.39% for the BCSKF with modified RVM
and up to 86.36% for the Gibbs sampling approach).

The remainder of this paper is structured in the following
manner: Section II gives details of the proposed estimation
methods, including the array model with mutual coupling
effects (II-A), the modified RVM framework for BCS (II-B),
the BCSKF (II-C) and the Gibbs sampling implementation
(II-D). In Section III an evaluation of the effectiveness ofthe
proposed approaches is presented and conclusions are drawn
in Section IV.

II. PROPOSEDESTIMATION METHODS

A. Array Model

A narrowband ULA structure consisting ofM omnidirec-
tional antennas, with identical responses is shown in Figure
1. Here, a plane-wave signal mode is assumed, i.e. the signal
impinges upon the array from the far field and the angle of
arrival is limited to 0◦ ≤ θ ≤ 180◦. The distance from the
first antenna to subsequent antennas is denoted asdm for
m = 1, 2, . . . ,M , with d1 = 0, i.e. the distance from the
first antenna to itself. Note, these values are multiples of a
uniform adjacent antenna separation of∆d.

The steering vector of the array is given by

a(Ω, θ) = [1, e−jµ2Ω cos θ, . . . , e−jµMΩ cos θ]T , (1)

whereΩ = ωTs is the normalised frequency withTs being
the sampling period,µm = dm

cTs

for m = 1, 2, . . . ,M , c gives
the wave propagation speed and{·}T denotes the transpose
operation.

The array output,yk, at time snapshotk is then given by

yk = Astxk + nk, (2)

wherexk = [xk,1, xk,2, ..., xk,N ]T ∈ C
N×1 gives the received

source signals,nk = [nk,1, nk,2, ..., nk,M ]T ∈ CM×1 is a
noise term, given by a zero mean multivariate Gaussian ran-
dom variable andAst = [a(Ω, θ1), a(Ω, θ2), ..., a(Ω, θN )] ∈
CM×N is the matrix containing the steering vectors for each
angle of interest. Note,N is the number of points in the
grid of potential DOAs the angular region has been split into.
However, onlyL << N of these angular directions will have
an impinging signal present.

In practice there will also be mutual coupling effects
present, which alter the pattern of an individual antenna as
compared to if it was being used on its’ own. As a result (2)
has to be altered to account for this fact. A mutual coupling
matrix is used to achieve this [26], by giving the true steering
vector matrix as

A = MMCAst. (3)

HereMMC ∈ CM×M is the mutual coupling matrix given by

MMC =

























1 m2 . . . mD−1 . . . mM

m2 1 m2 . . .
. . .

...
... m2 1 m2 . . . mD−1

mD−1 . . .
. . .

. . .
. . .

...
...

. . . . . . m2 1 m2

mM . . . mD−1 . . . m2 1

























.

(4)

In (4) the mutual coupling coefficients are given by
mi = ρi exp{jφi} for i = 2, ..., D − 1, D, ...,M , where
ρi and φi give the amplitude and phase, respectively. The
variableD places a limit on the separation between antennas
above which there will be no mutual coupling effects. In other
words wheni > D, thenρi = 0. This then gives the following:

yk = MMCAstxk + nk

= Axk + nk. (5)

Equation (5) can then be split into real and imaginary
components (given byR(·) andI(·), respectively) as follows

ỹk = Ãx̃k + ñk
[

R(yk)
I(yk)

]

=

[

R(A) −I(A)
I(A) R(A)

] [

R(xk)
I(xk)

]

+

[

R(nk)
I(nk)

]

.

(6)

The difference betweenyk and ỹk is that yk has been split
into its real and imaginary components inỹk. As a result the
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dimensions of̃yk are increased. A similar relationship exists
betweenA and Ã, xk and x̃k andnk and ñk.

B. Modified Relevance Vector machine for DOA Estimation

The aim is to now find a solution for̃xk which gives the
closest possible match to a predicted set of signal values. To
achieve this one can follow a modified RVM framework [27],
by evaluating the following

x̃k,opt = maxP(x̃k, σ2
k, pk|ỹk, x̃p), (7)

where σ2
k is the variance of the Gaussian noisenk,

pk = [pk,1, pk,2, ..., pk,2N ]T contains the hyperparameters
that are to be estimated and̃xp = [R(xp)T , I(xp)T ]T =
[R(xp,1), ...,R(xp,N ), I(xp,1), ..., I(xp,N )]T holds the pre-
dicted values of̃xk.

From (6) it is possible to find:

P(ỹk|x̃k, σ
2
k) = (2πσ2

k)
−M exp

{

−
1

2σ2
||ỹk − Ãx̃k||22

}

. (8)

The traditional RVM would now apply a belief that̃xk is
sparse. However, here this is changed to a belief thatx̃k will
match the predicted signals̃xp:

P(x̃k|pk, x̃p) = (2π)−N |Pk|
1

2

× exp
{

−
1

2
(x̃k − x̃p)TPk(x̃k − x̃p)

}

.(9)

Note, whenx̃p = [0, 0, ..., 0]T then (9) reverts to the hierar-
chical prior used in the traditional RVM [16], [17] and|Pk|
indicates the determinant ofPk, wherePk = diag(pk).

It is also necessary to define the hyperparameters overpk

andσ2
k. There are various possibilities for the structuring of

the priors onpk, which represent mixing parameters in a scale
mixture of normals representation of the marginal distribution
of xk, which will here be in the Student-t family, see e.g. [28].
One possibility would be to treat the complex components of
xk as complex Student-t distributed, as detailed in [29], [30].
However, this work treats the real and imaginary components
of xk as independent Student-t distributed random variables,
and hence there are independent Gamma priors for the mixing
variablespk,n over all real and imaginary components ofxk:

P(pk) =
2N
∏

n=1

G(pk,n|β1, β2). (10)

A Gamma prior can also be used forσ2
k

P(σ2
k) = G(σ−2

k |β3, β4), (11)

whereβ1, β2, β3 andβ4 are scale and shape priors.
It is known that

P(x̃k, σ2
k, pk|ỹk, x̃p) = P(x̃k|ỹk, σ

2
k, pk, x̃p)P(σ2

k, pk|ỹk, x̃p)
(12)

and

P(x̃k|ỹk, σ
2
k, pk, x̃p) =

P(ỹk|x̃k, σ
2
k)P(x̃k|pk, x̃p)

P(ỹk|σ
2
k, pk, x̃p)

= (2π)−N |Σ|−1/2 exp

{

−
1

2
(x̃k − µ)TΣ−1(x̃k − µ)

}

, (13)

where the covariance matrix and the mean are given by

Σ = (σ−2

k Ã
T

Ã + Pk)
−1 (14)

and
µ = Σ(σ−2

k Ã
T

ỹk + Pkx̃p), (15)

respectively. Note, the maximum of (13) is the posterior
meanµ. For a derivation of (13) please see Appendix A.

Similarly to [17], the probabilityP(σ2
k, pk|ỹk, x̃p) can be

represented in the following form:

P(σ2
k, pk|ỹk, x̃p) ≈ P(ỹk|σ

2, p, x̃p)P(σ2
k)P(pk)P(x̃p), (16)

where P(x̃p) is constant as fixed values are used and the
second two terms on the right of are constant ifβ1 =
β2 = β3 = β4 = 1 × 10−4 as in [17]. Therefore, max-
imising P(σ2

k, pk|ỹk, x̃p) is roughly equivalent to maximising
P(ỹk|σ

2
k, pk, x̃p). This can be achieved by a type 2 max-

imisation of its logarithm, which is given by (please see
Appendix B):

L(σ2
k, pk) = log

{

(2πσ2
k)

−M |Σ|
1

2 |Pk|
1

2 exp
(

−
1

2

× (ỹTk Bỹk + x̃Tp Cx̃p − 2σ2
kỹTk ÃΣPkx̃p)

)

}

= −
1

2

(

2M log(2π) + 2M log σ2
k − log |Σ| −

log |Pk|+ σ−2

k ||ỹk − Ãµ||22 + µ
TPkµ

+x̃Tp Pkx̃p − x̃Tp Pkµ

)

, (17)

whereB = (σ2
kI + ÃP−1

k Ã
T
)−1 andC = Pk − PT

kΣPk.
This is now differentiated with respect topk,n andσ−2

k to
obtain the update expressions

pnewk,n =
γn

µ2
n + x̃2

p,n − x̃p,nµn
, (18)

whereγn = 1− pk,nΣnn, Σnn is thenth diagonal element of
Σ and

σ2
k,new =

||ỹk − Ãµ||22
2M −

∑

n
γn

. (19)

For the derivation of (18) and (19) please see Appendix C.
The maximisation is then achieved by iteratively findingΣ

andµ, followed bypnewk,n for n = 1, ..., N andσ2
k,new until a

convergence criterion is met [16], [17]. In other words, thenew
estimates for the noise variance and precision hyperparameters
found from (19) and (18) are then used in (14) and (15) to
find new estimates of the covariance matrix and mean of the
distribution in (13). Note that wheñxp = [0, 0, ..., 0]T the
update expressions match those used by the traditional RVM.

The final estimate of the received signals is then given by

x̃k,opt =
( Ã

T
Ã

σ2
k,opt

+ Pk,opt

)−1( Ã
T

ỹk
σ2
k,opt

+ Pk,optx̃p
)

(20)

whereσ2
k,opt andPk,opt = diag(pk,opt,1, pk,opt,2, ..., pk,opt,2N )

are the result of optimising the noise estimate and hyperpa-
rameters, respectively. Now̃xk,opt can be used to reconstruct
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the estimated signals as

xk,opt,n = x̃k,opt,n + jx̃k,opt,N+n, (21)

wheren = 1, 2, ..., N .
The thresholding scheme in [20] can then be applied to keep

the L̃ most significant signals. To do this find the total energy
content of the estimated received signals and then sort them. A
threshold value,η, is then defined as a percentage of the energy
content that is to be retained. Starting with the most significant
estimated signal, the estimated signals are summed until the
threshold is reached and the remaining signals are then set
to be equal to 0. The remaining non-zero valued signals then
give the DOA estimates and̃L is an estimate of the number
of far field signals impinging on the array.

C. Bayesian Compressive Sensing Kalman Filter

In order to track the changes in the DOA estimates at
each time snapshot the modified RVM based DOA estimation
procedure detailed above is combined with a Bayesian KF,
giving a BCSKF for DOA estimation [27]. The signal model
described above is again used along with the prediction

x̃k|k−1 = x̃k−1|k−1 +∆x Σk|k−1 = Σk−1 + P−1

k

ỹk|k−1 = Ãx̃k|k−1 ỹe,k = ỹk − ỹk|k−1 (22)

and update steps

x̃k = x̃k|k−1 + Kkỹe,k Σk|k = (I − KkÃ)Σk|k−1

Kk = Σk|k−1Ã
T
(σ2

kI + ÃΣk|k−1Ã
T
)−1 (23)

of the BCSKF. Here,k|k − 1 indicates prediction at time
instancek given the previous measurements and∆x is de-
termined by the assumed DOA change. Note,∆x is fixed by
the predetermined constant motion rather than being a random
noise term. For example, if the angular range is sampled every
1◦ and the DOA is assumed to increase by2◦ then∆x will be
selected to increase the index of the non-zero valued entries
in x̃k−1|k−1 by two to give the index of the non-zero valued
entries inx̃k|k−1.

At each time snapshot it is necessary to estimate the
noise variance and hyperparameters in order to evaluate the
prediction and update steps of the BCSKF. This is done by
considering the log likelihood function given by

L(σ2
k, pk) = −

1

2

(

2M log(2π) + 2M log σ2
k − log |Σ|

− log |Pk|+ σ−2

k ||ỹe,k − Ãµ||22 + µ
TPkµ

+x̃Tk|k−1Pkx̃k|k−1 − x̃Tk|k−1Pµ
)

, (24)

which can be optimised by following the procedure described
in Section II-B. In other words we apply the modified RVM
framework to ỹe,k, using the KF predictioñxk|k−1 as the
expected estimate valuesx̃p.

It is worth noting that the continued accuracy of the pro-
posed BCSKF relies on the accuracy of the initial estimate
and the parameter values selected. If the initial estimate
(made using the framework described in Section II-B and
x̃p = [0, 0, ..., 0]T ) of the received signals is accurate and

sparse, then the priors that are enforced will ensure this
continues to be the case. However, an inaccurate initial DOA
estimate or poorly matched expected DOA change can lead
to the introduction of inaccuracies in subsequent estimates.
Similarly, if the initial estimate of the received signals is not
sparse then subsequent estimates are likely to not be sparse.
As a result, care should be taken when choosing the initial
parameter values and determining the likely DOA change.

D. Gibbs Sampling for DOA Estimation

The method described in the previous sections based on
a BCSKF with a modified RVM required the use of prior
knowledge of the predicted change in DOA. However, in
practice this may not always be known, making it important
to have an alternative method that can still give improved
accuracy for the endfire region.

This work proposes using a sparsity prior which is given
as a combination of a point mass concentrated at zero (Dirac
delta function) and a zero mean Gaussian distribution, [31]–
[33], giving

P(x̃k|pk, z̃k) =
2N
∏

n=1

(1− z̃k,n)δ0+ z̃k,nN (x̃k,n|0, pk,n), (25)

wherez̃k = [zTk , z
T
k ]

T andzk = [zk,1, zk,2, ..., zk,N ]T .
Note, z̃k,n is the indicator variable for̃xk,n and determines

which of the two components in (25) is selected. When
z̃k,n = 0, the value ofx̃k,n is determined solely by the
point mass concentrated at zero. As a result,x̃k,n = 0 and
sparsity is explicitly introduced. Alternatively, wheñzk,n = 1
the value ofx̃k,n is determined by the Gaussian distribution
allowing a non-zero valued estimate. The repetition ofzk in
z̃k means that the same indicator variable is used for both the
real and imaginary parts of each entry inxk.

This indicator value can also be used to address the endfire
accuracy problem by selecting the value ofzk,n = 0 if |n−i| >
j. Here i is the index of the closet non-zero valued estimate
from the previous time snapshot andj defines a maximum
allowed change in the DOA estimate. Onlyn = 1, 2, ..., N is
considered to get the entries forzk, with z̃k then being found
as previously stated.

This leaves the following

zk,n =

{

z1k,n if |n− i| ≤ j,

z2k,n if |n− i| > j,
(26)

wherez1k,n andz2n are defined by the following Beta distribu-
tions

z1k,n = B(z1k,n|β
1
5 , β

1
6),

z2k,n = B(z2k,n|β
2
5 , β

2
6). (27)

In order to enforce zero-valued estimates when|n− i| > j, it
is necessary to selectβ2

5 andβ2
6 to ensure a zero-valuedzk,n is

preferred. However, when|n− i| ≤ j it is necessary to choose
β1
5 andβ1

6 so that the chances ofzk,n = 0 and zk,n = 1 are
equal. This can be achieved by

P(z1k,n|β5, β6) = B(z1k,n|β5, β6),

P(z2k,n|β5, β6) = B

(

z2k,n|β5 −
1

j
, β6 +

1

j

)

, (28)
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whereβ5 = β6 = 1.
The posterior distribution of̃xk can be written as [33]

P(x̃k|ỹk, σ
2
k, pk, z̃k) ∝

{

2N
∏

n=1

[(1− z̃k,n)δ0 + z̃k,n

×N (x̃k,n|0, pk,n)]
}

N (ỹk|Ãx̃k, σ−2

k ). (29)

Now also defineÃn as being the entries iñA relating to
the index n and Ã−n are the entries of̃A excluding the
entries relating to indexn (and similarly for x̃k). Then as
per Appendix D this gives

P(x̃k,n|ỹk, x̃k,−n, σ
2
k, pk, z̃k) = (1− ẑk,n)δ0 + ẑk,n

× N (x̃k,n|µ̂k,n, p̂k,n),(30)

p̂k,n = pk,n + p0Ã
T

n Ãn, (31)

µ̂k,n = p̂−1

k,np0Ã
T

n ỹk,n, (32)

ẑk,n
1− ẑk,n

=
z̃k,n

1− z̃k,n

×
N (0|0, pk,n)

N (0|µ̃k,n, p̂k,n)
, (33)

wherep0 = 1/σ2
k and ỹk,n = ỹk − Ã−nx̃k,−n.

There are two further posterior distributions that have to be
considered. That is the distributions forpk,n andp0 which are
given by

P(pk,n|xk−1) = G(β1 + ||xk−1,nj ||0, β2 + ||xk−1,nj ||
2
2) (34)

and

P(p0|ỹk, x̃k) = G(β3 +M,β4 +
1

2
||ỹk − Ãx̃k||22), (35)

respectively. Note, in (34)xk−1,nj gives the entries within
xk−1 that have an index within the distancej of indexn. By
using x rather thañx to find xk−1,nj it guarantees the same
value of ||xk−1,nj ||22 and ||xk−1,nj ||0 for both the real and
imaginary components.

As a result the Gibbs sampling steps are as detailed below:
1) Samplex̃k,n from P(x̃k,n|ỹk, x̃k,−n, σ

2
k, pk, z̃k).

2) Samplepk,n from P(pk,n|xk−1).
3) if n ≤ N then Samplez1k,n from P(z1k,n|β5, β6),

elsez1k,n = z1k,n−N .
4) if n ≤ N then Samplez2k,n from P(z2k,n|β5, β6),

elsez2k,n = z2k,n−N .
5) Samplep0 from P(p0|ỹk, x̃k).
These steps are done for each of theT iterations of the

Gibbs sampler, where the firstTBI iterations are the burn-
in iterations. The final estimate of the received array signals
is then given by the mean values of the finalT − TBI

iterations [32]. The DOA estimate can then be found using
the previously described thresholding scheme (see II-B), with
the remaining non-zero valued estimates corresponding to the
DOA estimates.

Note, the performance of this method will again heavily
depend on the accuracy of the first estimate. As a result, it is
possible to use the traditional BCS DOA estimation method
(Section II-B with x̃p = [0, 0, ..., 0]T ) to ensure an as accurate
as possible intial estimate at the first time snapshot. The

proposed Gibbs sampling based method can then be used at
the subsequent time snapshots to get the next DOA estimate.

III. PERFORMANCEEVALUATION

In this section a comparison in performance of the proposed
methods and the traditional RVM based BCSKF method will
be made over five example scenarios, under the same test
conditions. Firstly, an example is considered where the initial
DOA starts outside of the endfire region and then moves into
it. Secondly, an example is given where the DOA remains out
of the endfire region. In the third scenario the initial DOAs and
the signal values are randomly generated. Then the evaluation
will also consider the scenario where there is a mismatch
between the actual and assumed change in DOA. Finally, the
evaluation will consider a random change in DOA at each
time snapshot. This means that∆x which is selected for the
modified RVM based BCSKF will not be a true reflection of
how the DOA actually changes for the last two examples.

Note, the term traditional RVM based BCSKF method
means the entries ofPk in the prediction step of the BCSKF
are found using the RVM optimisation method as detailed
in [16], [17]. In other words this is the method detailed in
Section II-B withx̃p = 0. All of the examples are implemented
in Matlab on a computer with an Intel Xeon CPU E3-1271
(3.60GHz) and 16GB of RAM.

The performance of each method will be measured using
theRMSE in the DOA estimate. This is given by

RMSE =

√

√

√

√

√

√

Q
∑

q=1

L̃
∑

l=1

|θl − θ̂l|2

QL̃
, (36)

whereθl is the actual DOA,̂θl is the estimated DOA andQ
is the number of Monte Carlo simulations carried out, with
Q = 100 being used in each case. This gives a measure of the
estimation accuracy and the computation time will be used as
a measure of the complexity of each method.

For the Gibbs sampling method a burn-in period of 250
iterations is used and then 50 further iterations used to findthe
final estimate of the received array signals. When a distance
of j = 5◦ is exceeded a zero-valued estimate of the received
signals is enforced in order to alleviate the endfire accuracy
problem.

For all the design examples considered the selection of
σ2
k = 0.4 as the noise variance is used, with an initial estimate

of the noise variance given byσ2
k,0 = 0.1. The array geometry

being used is that of a ULA withM = 20 antennas and an
adjacent antenna separation ofλ

2
, whereλ is the wavelength

of the signal of interest. This gives an array aperture of9.5λ.
For the mutual coupling matrix a value ofD = 3 is selected,
meaning that a separation of1.5λ or greater gives negligible
mutual coupling effects. The valuesρ1 = 0.65, ρ2 = 0.25,
φ1 = π/7 andφ2 = π/10 are then also used. Finally, in each
example a single narrowband signal impinging on the array is
considered, meaningL = 1.
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TABLE I
PERFORMANCE SUMMARY FOR THE ENDFIRE REGION EXAMPLE.

AverageRMSE Average Computation
Method (degrees) Time (seconds)
RVM 19.88 0.76

Modified RVM 6.46 0.98
Gibbs 3.82 17.83 excluding burn-in

107.84 including burn-in
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Fig. 2. RMSE values for the endfire region example.

A. Endfire Region

For this example the initial DOA of the signal isθ = 20◦,
which then decreases by1◦ at each time snapshot. The signal
value at each snapshot is set to be 1. Table I summarises the
performance of the three methods for this example, with the
RMSE values at each time snapshot being shown in Figure 2.

Here it can be seen that there has been a significant decrease
in the averageRMSE values for both the modified RVM
method (67.51% improvement) and the Gibbs sampling based
method (80.78% improvement). Overall this suggests that a
more accurate estimate of the DOA is possible. It is worth
noting that there has still been an increase in the RMSE for
the modified RVM based approach in the endfire region of
the angular range. However, this has come much later on the
than for the traditional RVM based approach (indicating a
degradation in performance for a smaller angular range) and
the maximumRMSE value reached is lower (indicating the
degradation is less severe).

These improvements have come at the cost of an increased
computation time in both instances. For the modified RVM
method this increase is insignificant as the average compu-
tation time is still less than one second. The increase for
the Gibbs sampling based method is larger, illustrating an
increase in computational complexity. However, it is worth
remembering that this increase has resulted in a more accurate
DOA estimate being achieved without prior knowledge about
what the change in DOA will be.

In this instance the results suggest that one of the two
proposed methods should be used when the estimated DOA
approaches the endfire region of the array. If the change in
DOA is known in advance and computational complexity is
a primary concern then the modified RVM based method is
the most suitable (a more accurate estimate can be achieved

TABLE II
PERFORMANCE SUMMARY FOR THE ENDFIRE REGION EXAMPLE WITH

REDUCED ADJACENT ANTENNA SEPARATIONS.

AverageRMSE Average Computation
Method (degrees) Time (seconds)
RVM 2.21 0.98

Modified RVM 0.86 1.25
Gibbs 3.02 16.81 excluding burn-in

101.65 including burn-in
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Fig. 3. RMSE values for the endfire region example with reduced antenna
separation.

without a large increase in computation time). However, when
this information is not available, or computational complexity
is not a concern, it is possible to get a significant improvement
in accuracy (at the cost of computation time) using the Gibbs
sampling based method.

In the previous simulation an adjacent antenna separation of
λ/2 is used as it is known that this is the largest separation that
can be used while still avoiding a degraded performance due to
the introduction of grating globes [34]. However, an example
of what the relative performance of the methods is when a
smaller adjacent antenna separation will now be considered.

In this instance an adjacent antenna separation ofλ/4 is
selected. As the array aperture is kept constant (to allow a fair
comparison between adjacent antenna separation sizes) this
means the number of antennas is given byM = 39. This also
means a value ofD = 9 is required to keep the same distance
limits on mutual coupling occurring. The values ofρi andφi

are then selected to be uniformly spread over the range of
0.65 to 0.25 andπ/7 to π/10, respectively. The remaining
parameters are kept constant and the same test scenario as for
the previous example is used.

The performances of each of the methods in this instance
are summarised in Table II and Figure 3, respectively. Here
it can be seen that the larger number of antennas used has
resulted in a lower averageRMSE values for all three of
the methods. In this instance only the modified RVM method
has performed better that the traditional RVM based method
when comparing averageRMSE values (decrease in average
RMSE of 61.09%). However, by looking at the maximum
RMSE values it can be seen that the largest estimation error
possible with the traditional RVM based method is larger than
that for the Gibbs sampling based method (16.42◦ as compared
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TABLE III
PERFORMANCE SUMMARY FOR THE NON-ENDFIRE REGION EXAMPLE.

AverageRMSE Average Computation
Method (degrees) Time (seconds)
RVM 2.91 0.73

Modified RVM 1.85 0.78
Gibbs 1.46 13.08 excluding burn-in

79.57 including burn-in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

Time Snapshot

R
M

S
E

 (
de

gr
ee

s)

 

 
RVM
Modified RVM
Gibbs

Fig. 4. RMSE values for the non-endfire region example.

to 3.71◦).
It is worth noting that such an array configuration is unlikely

to be used in practice. This is due to the costs associated with
the number of antennas required. As a result, the remaining
examples will stick to the adjacent antenna separation ofλ/2
and associated parameters previously defined.

B. Non-Endfire Region

For this example the initial DOA isθ = 100◦ with the
DOA increasing by1◦ at each time snapshot, with the signal
value remaining constant at -1. The performance of the three
methods is summarised in Table III, with theRMSE values
illustrated in Figure 4.

In this instance it can be seen that there has not been as
large an increase inRMSE for the traditional RVM method,
as the DOA does not enter the endfire region. However, both
the modified RVM and Gibbs sampling based methods have
managed to achieve improvements in averageRMSE values
of 36.42% and50.00%, respectively. For the Gibbs sampling
based method this comes at the expenses of an increase in
computation time, whereas the time for the modified RVM
based method is comparable to the traditional RVM based
method. As with the previous test scenario this would suggest
that the modified RVM based method should be used when the
expected DOA change information is available and the Gibbs
sampling based method when this is not the case, or when
computational complexity is not a major concern.

C. Random Initial DOA

Next consider the case where the initial DOA is randomly
chosen from the entire angular range and increased by1◦ at
each time snapshot. The signal value is randomly selected

TABLE IV
PERFORMANCE SUMMARY FOR THE RANDOM INITIALDOA EXAMPLE.

AverageRMSE Average Computation
Method (degrees) Time (seconds)
RVM 12.10 0.74

Modified RVM 3.22 0.86
Gibbs 2.89 13.88 excluding burn-in

84.19 including burn-in
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Fig. 5. RMSE values for the random initial DOA example.

as±1 for each simulation and remains constant as the DOA
changes.

Table IV and Figure 5 summarise the performance of the
various methods in this instance. Again, it can be seen that
the modified RVM based method has offered improvements
in terms ofRMSE(73.39%), without a significant increase
in computation time. The Gibbs sampling based method has
also given an estimation accuracy improvement (76.12%) and
has even outperformed the modified RVM based method,
without prior knowledge of how the DOA was going to
change. However, this has come at the expense of an increased
computation time.

D. Mismatched Actual and Assumed DOA Change

This subsection compares the performances of the estima-
tion methods for two situations where the actual change in
DOA is not known. First, consider the case where there is
an initial DOA of θ = 100◦ which increases by1◦ for 9
time snapshots before decreasing by1◦ for the remaining time
snapshots. In this instance, assume a constant signal valueof
1 throughout.

The performance comparison is now made between the
traditional RVM based method, the modified RVM based
method with the assumed DOA change set to a constant
increase of1◦, the modified RVM based method with the
assumed DOA change set to a constant decrease of1◦ and
the Gibbs sampling based method. The performances for each
are summarised in Figure 6 and Table V, respectively.

In this instance the averageRMSE values suggest a com-
parable performance in terms of estimation accuracy between
the traditional RVM based methods and the two modified
RVM based examples. This can be explained by the fact that
for both of the modified RVM based examples, the assumed



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2017.2655013, IEEE

Transactions on Antennas and Propagation

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

Time Snapshot

R
M

S
E

 (
de

gr
ee

s)

 

 
RVM
Modified RVM
Gibbs

Fig. 6. RMSE values for the increasing DOA followed by decreasing DOA
example.

TABLE V
PERFORMANCE SUMMARY FOR THE INCREASINGDOA FOLLOWED BY

DECREASINGDOA EXAMPLE.

AverageRMSE Average Computation
Method (degrees) Time (seconds)
RVM 4.49 0.69

Modified RVM with 4.45 0.77
constant+1◦ DOA change

Modified RVM with 4.08 0.79
constant−1◦ DOA change

Gibbs 1.41 16.12 excluding burn-in
97.59 including burn-in

DOA change does not match the actual DOA changes for the
entire time range which means the same improvements as for
the previous scenario can no longer be guaranteed. Figure
6 highlights this in the results for the two modified RVM
examples. It demonstrates that with an assumed increasing
DOA the modified RVM offers some initial improvements,
while the performance is significantly degraded when the DOA
starts to decrease again. On the other hand, the example with
an assumed decreasing DOA performs worse than the tradi-
tional RVM based method initially and then offers significant
improvements when the actual DOA also starts to decrease.

It can also be seen that for the Gibbs sampling based method
there has been an improvement in DOA estimation accuracy. In
terms of averageRMSE values this is a decrease of 68.60%,
which has been achieved without any knowledge of how the
DOA was going to change. However, there is again an increase
in the computation time.

To illustrate how a larger mismatch between actual and
assumed DOA changes effects the performance of the modified
RVM based method now consider an example where the actual
DOA is increasing by1◦ in each snapshot, while the assumed
change is a decrease of3◦. Here, the initial DOA is100◦,
with a constant signal value of -1. TheRMSE values for the
methods are shown in Figure 7 and summarised in Table VI
along with the computation times.

Here it can be seen that the Gibbs sampling based method
has offered an86.36% improvement in averageRMSE as
compared to the traditional RVM based method. There has
again been a significant increase in the computational com-
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Fig. 7. RMSE values for the increasing DOA with an assumed decrease
in DOA of 3◦ example.

TABLE VI
PERFORMANCE SUMMARY FOR THE INCREASINGDOA WITH AN

ASSUMED DECREASE INDOA OF 3◦ EXAMPLE.

AverageRMSE Average Computation
Method (degrees) Time (seconds)
RVM 10.70 0.66

Modified RVM 8.07 0.77
Gibbs 1.46 13.99 excluding burn-in

84.72 including burn-in

plexity.
For the modified RVM based method the averageRMSE

values suggests that there has been an improvement in estima-
tion accuracy. However, this is smaller than when the actual
and assumed DOA changes match. It is also unlikely that
this improvement would be obtained in every scenario the the
method could be applied to. From looking at Figure 7 we can
see that the traditional and modified RVM based methods are
showing comparable performance for the just over half of the
time frame considered. This is the relative performance that
would be expected in the majority of cases.

E. Random Changes in Direction of Arrival

Finally, consider the example where the initial signal value
is assumed to be equal to 1 and the initial DOA is chosen to
be100◦. The actual DOA is then allowed to randomly change
by up to±3◦ for each time snapshot. For the modified RVM
method assume that the actual DOA change is an increase
of 3◦. This gives the results as summarised in Table VII and
Figure 8.

It can be seen that the Gibbs sampling based method has
again outperformed the modified RVM based method in terms
of estimation accuracy, due to the fact that no prior knowledge
of how the DOA will change is required. As compared to the
traditional RVM based method there has been an improvement
in RMSE of 78.81%. However, as is expected this is at the
cost of computation time.

It is also worth noting that the averageRMSE values
suggest that the modified RVM and traditional RVM have
offered a comparable performance. This is due to the fact that
the assumption of how the DOA will change is not valid,
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TABLE VII
PERFORMANCE SUMMARY FOR THE RANDOM CHANGES INDOA WITH AN

ASSUMED INCREASE INDOA OF 3◦ EXAMPLE.

AverageRMSE Average Computation
Method (degrees) Time (seconds)
RVM 6.89 0.64

Modified RVM 6.37 0.86
Gibbs 1.46 22.26 excluding burn-in

134.56including burn-in
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Fig. 8. RMSE values for the random DOA change example.

meaning the modified RVM no longer offers any improve-
ments. Therefore, in this situation the Gibbs sampling based
method would be the best to use, assuming computational
complexity is not the main motivating factor.

IV. CONCLUSIONS

This paper has proposed two novel approaches for the
estimation of a dynamic direction of arrival using uniform
linear arrays with mutual coupling. The first approach is a
Bayesian compressed Kalman filter with a modified relevance
vector machine, where the traditional sparsity assumptionis
replaced by an assumption that the estimated signals will
instead match predicted signal values. This results in the
derivation of a new posterior probability density functionof
the received signals and the expression for the related marginal
likelihood function. The second proposed approach is a Gibbs
sampling approach, where sparsity is explicitly enforced if
there is a large difference between the previous direction of
arrival estimate and the angle currently being considered.The
proposed approaches will be particularly useful when applied
to the problem of dynamic direction of arrival estimation in
the endfire region of antenna arrays. Such problems can arise
in numerous application areas such as in communications and
surveillance.

An extensive performance evaluation is provided and shows
that both of the proposed approaches outperform the traditional
relevance vector machine based Bayesian compressive sensing
Kalman filter in terms of mean root mean square error values,
by up to 73.39% for the modified relevance vector machine
based method and 86.36% for the Gibbs sampling based
method.

APPENDIX

A. Derivation of Posterior Distribution

Bayes’ rule gives

P(x̃k|ỹk, σ
2
k, pk, x̃p)P(ỹk|σ

2
k, pk, x̃p) =

P(ỹk|x̃k, σ
2
k)P(x̃k|pk, x̃p), (37)

whereP(ỹk|x̃k, σ
2
k) andP(x̃k|pk, x̃p) are known from (8) and

(9), respectively.
Now following the method suggested in [17] carry out the

multiplication on the right hand side of (37), collect termsin
x̃k in the exponential and complete the square.

−
1

2

[

σ−2

k (ỹk − Ãx̃k)T (ỹk − Ãx̃k) +

(x̃k − x̃p)TPk(x̃k − x̃p)
]

= −
1

2

[

σ−2ỹTk ỹk − σ−2

k ỹTk Ãx̃k − σ−2x̃Tk Ã
T

ỹk +

σ−2

k x̃Tk Ã
T

Ãx̃k + x̃Tk Pkx̃k − x̃Tk Pkx̃p − x̃Tp Pkx̃k

+x̃Tp Pkx̃p
]

= −
1

2

[

(x̃k − µ)TΣ−1(x̃k − µ)− µ
T
Σ

−1
µ+

σ−2ỹTk ỹk + x̃Tp Pkx̃p
]

(38)

whereΣ andµ are given by (14) and (15), respectively. This
then gives the posterior distribution as (13), with the remaining
exponential terms

−
1

2

[

σ−2

k ỹTk ỹk + x̃Tp Pkx̃p − µ
T
Σ

−1
µ

]

. (39)

B. Derivation of Marginal Likelihood

From (37) the following is known:

P(ỹk|σ
2
k, pk, x̃p) =

P(ỹk|x̃k, σ
2
k),P(x̃k|pk, x̃p)

P(x̃k|ỹk, σ
2
k, pk, x̃p)

, (40)

meaning the term in the exponential will be (39) where

µ
T
Σ

−1
µ = (σ−2

k Ã
T

ỹk + Pkx̃p)TΣ
T
Σ

−1

× Σ(σ−2

k Ã
T

ỹk + Pkx̃p)

= (σ−2

k Ã
T

ỹk + Pkx̃p)T (σ−2

k ΣÃ
T

ỹk +ΣPkx̃p)

= σ−4

k ỹTk ÃΣÃ
T

ỹk + σ−2ỹTk ÃΣPkx̃p +

σ−2

k x̃Tp PT
k Ã

T
ỹk + x̃Tp PT

k ΣPkx̃p. (41)

Therefore the exponential term is given by

−
1

2

[

σ−2

k ỹTk ỹk + x̃Tp Pkx̃p − σ−4

k ỹTk ÃΣÃ
T

ỹk −

σ−2

k ỹTk ÃΣPkx̃p − σ−2

k x̃Tp PT
k Ã

T
ỹk − x̃Tp PT

kΣPkx̃p

]

= −
1

2

[

ỹTk [σ
−2

k − σ−4

k ÃΣÃ
T
]ỹk + x̃Tp [Pk − PT

kΣPk]x̃p

−σ−2

k ỹTk ÃΣPkx̃p − σ−2

k x̃Tp PT
k Ã

T
ỹk

]

(42)
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The term outside of the exponential is given by

(2πσ2
k)

−M (2π)−N |Pk|1/2

(2π)−N |Σ|−
1

2

= (2πσ2
k)

−M |Σ|
1

2 |Pk|
1

2 . (43)

This gives the marginal likelihood as

P(ỹk|σ
2
k, pk, x̃p) = (2πσ2

k)
−M |Σ|

1

2 |Pk|
1

2

× exp
{

−
1

2
[ỹTk Bỹk + x̃Tp Cx̃p − 2σ2

kỹTk ÃΣPkx̃p]
}

, (44)

where B and C are defined as in Section II-B. The log
likelihood is then given by

L(σ2
k, pk) = log

{

(2πσ2
k)

−M |Σ|
1

2 |Pk|
1

2

× exp
{

−
1

2
[ỹTk Bỹk + x̃Tp Cx̃p − 2σ2

kỹTk ÃΣPkx̃p]
}

}

= −M log(2π)−M log σ2
k +

1

2
log |Σ|+

1

2
log |Pk| −

1

2
[ỹTk Bỹk + x̃Tp Cx̃p − 2σ2

kỹTk ÃΣPkx̃p]. (45)

Using the Woodbury matrix inversion identity gives

B = σ−2

k I − σ−2

k Ã(Pk + σ−2

k Ã
T

Ã)−1Ã
T
σ−2

k , (46)

which means

ỹTk Bỹk = ỹTk σ
−2

k ỹk − ỹTk (σ
−2

k I − σ−2

k Ã

× (P+ σ−2

k Ã
T

Ã)−1Ã
T
σ−2

k )ỹk

= ỹTk σ
−2

k ỹk − ỹTk σ
−2

k ÃΣÃ
T
σ−2

k ỹk
= σ−2

k ỹTk (ỹk − Ãµ) + σ−2

k ỹTk ÃΣPkx̃p
= σ−2

k ||ỹTk − Ãµ||22 + µ
T Pkµ+ σ−2ỹTk ÃΣPkx̃p.

(47)

Also, we know thatPT
k = Pk asPk is a real valued diagonal

matrix. This means

x̃Tp Cx̃p = x̃Tp [Pk − PkΣPk]x̃p

= x̃Tp Pkx̃p − x̃Tp PkΣPkx̃p

= x̃Tp Pkx̃p − x̃Tp Pkµ+ σ−2

k ỹTk ÃΣPkx̃p, (48)

which then gives the log likelihood function in (17).

C. Derivation of Update Expressions for Modified RVM

Firstly, differentiating (17) with respect topk,n gives

−
1

2

[

Σnn −
1

pk,n
+ µ2

n + x̃2
e,n − x̃e,nµn

]

(49)

and equating to zero gives

Σnn −
1

pk,n
+ µ2

n + x̃2
e,n − x̃e,nµn = 0

1− pk,nΣnn − pk,nµ
2
n − pk,nx̃

2
e,n + pk,nx̃e,nµn = 0

γn − pk,n[µ
2
n + x̃2

e,n − x̃e,nµn] = 0 (50)

which leads to (18).
Now collect the terms withσ2

k in to give

−
1

2

[

2M log σ2
k − log |Σ|+ σ−2

k ||ỹk − Ãµ||22

]

(51)

and then defineτ = σ−2

k giving

−
1

2

[

2M log τ−1 − log |Σ|+ τ ||ỹk − Ãµ||22

]

= −
1

2

[

− 2M log τ − log |Σ|+ τ ||ỹk − Ãµ||22

]

. (52)

Now differentiate (52) with respect toτ and equate to zero to
give

−
2M

τ
+ tr(ΣÃ

T
Ã) + ||ỹk − Ãµ||22 = 0, (53)

where tr(·) indicates the trace. As tr(ΣÃ
T

Ã) can be written
asτ−1

∑

n
γn giving

τ−1(2M −
∑

n

γn) = ||ỹk − Ãµ||22, (54)

which in turn gives (19).

D. Derivation of (30), (31), (32) and (33)

From (29) it is known that

P(x̃k,n|ỹk,n, σ
2
k, pk,n, z̃k,n) ∝ (1 − z̃k,n)δ0

×N (ỹk,n|Ãnx̃k,n, σ
2
k)

+z̃k,nN (x̃k,n|0, pk,n)N (ỹk,n|Ãnx̃k,n, σ
2
k). (55)

If we then combine the exponential terms in the second term
in (55) we get

−
1

2

[

x̃T
k,npk,nx̃k,n + p0(ỹk,n − Ãnx̃k,n)

T

×(ỹk,n − Ãnx̃k,n)

]

= −
1

2

[

x̃T
k,npk,nx̃k,n + p0(ỹ

T
k,nỹk,n − ỹTk,nÃnx̃k,n

−x̃T
k,nÃ

T

n ỹk,n + x̃T
k,nÃ

T

n Ãnx̃k,n)

]

= −
1

2

[

x̃T
k,n[pk,n + p0Ã

T

n Ãn]x̃k,n + p0ỹTk,nỹk,n −

p0ỹTk,nÃnx̃k,n − p0x̃
T
k,nÃ

T

n ỹk,n

]

. (56)

Completing the square gives

−
1

2

[

(x̃k,n − µ̂n)
T p̂k,n(x̃k,n − µ̂n)− µ̂np̂k,nµ̂n

+p0ỹ
T
k,nỹk,n

]

, (57)

wherep̂k,n and µ̂k,n are given by (31) and (32), respectively.
In order to complete the expression given in (30) it is now

necessary to get a new indicator variable,ẑk,n for the new
posterior distribution for̃xk,n. To do this, assume that

z̃k,n
1− z̃k,n

N (0|0, pk,n) =
ẑk,n

1− ẑk,n
N (0|µ̂n, p̂k,n). (58)

Thus giving us (33), allowing us to write the posterior distri-
bution for xk,n in the form given in (30).
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