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Abstract9

Recent advances in animal tracking have allowed us to uncover the drivers of move-10

ment in unprecedented detail. This has enabled modellers to construct ever more realistic11

models of animal movement, which aid in uncovering detailed patterns of space use in12

animal populations. Partial differential equations (PDEs) provide a popular tool for13

mathematically analysing such models. However, their construction often relies on sim-14

plifying assumptions which may greatly affect the model outcomes. Here, we analyse the15

effect of various PDE approximations on the analysis of some simple movement mod-16

els, including a biased random walk, central-place foraging processes and movement in17

heterogeneous landscapes. Perhaps the most commonly-used PDE method dates back18

to a seminal paper of Patlak from 1953. However, our results show that this can be a19

very poor approximation in even quite simple models. On the other hand, more recent20

methods, based on transport equation formalisms, can provide more accurate results, as21

long as the kernel describing the animal’s movement is sufficiently smooth. When the22

movement kernel is not smooth, we show that both the older and newer methods can lead23

to quantitatively misleading results. Our detailed analysis will aid future researchers in24

the appropriate choice of PDE approximation for analysing models of animal movement.25

Keywords: transport equation; theoretical ecology; movement ecology; central-place26

foraging; home range27
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1 Introduction28

Spatial considerations are relevant to many issues in animal ecology. Space use patterns29

emerge from individual movements and interactions both with each other and the envi-30

ronment. For example, home range and territory formation from individual behaviour31

processes has been studied extensively (Börger et al. 2008, Lewis and Murray 1993,32

Moorcroft et al. 1999, Potts and Lewis 2014a, 2014b, 2016), while resource selection in33

a heterogeneous space resulting from movement decisions is also a well-explored topic34

(Forester et al. 2009, Fortin et al. 2005, Potts et al. 2014, Thurfjell et al. 2014).35

One of the main goals of current research is to predict population space use patterns36

from the rules of individual movement. Environmental change often impacts animal37

movement; for example, the alteration of the relationship between wolves and caribous38

resulting from industrial constructions (Latham et al. 2011), and the movement decisions39

of birds in fragmented landscapes (Gillies et al. 2011). This makes effective predictions40

especially critical to help assess the impact on animals and make appropriate policies to41

ensure the sustainability of species (Kays et al. 2015, Potts and Lewis 2014a, Thurfjell42

et al. 2014). To achieve the goal of constructing predictive models from individual43

behavioural mechanisms, it is essential to construct mathematical theories that derive44

population distributions from individual-level mechanisms.45

However, making such theory analytically tractable often requires approximate tech-46

niques. Consequently, the various methods that enable spatial patterns to be derived47

from individual-level decisions can sometimes lead to quite different results. In this pa-48

per, we are interested in models that convert movement decisions into partial differential49

equation (PDE) models. We investigate three methods for deriving PDEs from descrip-50

tions of small-scale animal movements, which all give slightly different results (Potts et51

al. 2016). The first dates back to Patlak (1953), and the other two come from more52

recent analysis of transport equations (Hillen and Painter 2013. Othmer et al. 1988).53

The aim of this paper is to investigate conditions under which each PDE method most54

accurately captures the emergent population distribution in a few example scenarios: a55

biased random walk, central-place foraging and movement in heterogeneous environments.56
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We focus in particular detail on the three central-place foraging models, each of which57

describes a biased movement to a fixed point in a one-dimensional space.58

This paper is organised as follows. In Section 2, we introduce the three PDE ap-59

proaches used in our study. Then we compare these PDE approaches in two stages.60

First, in Section 3, we examine the accuracy of the three approaches using a simple61

biased random walk model that can be solved exactly for all time. Here, we demon-62

strate that Patlak’s (1953) approach fails to capture accurately even for some very basic63

movement rules, whereas the newer methods (Hillen and Painter 2013) correct the error.64

Next, we consider the long-term behaviour of these three approximations by comparing65

the steady-state distributions that they produce. Section 4 describes three central-place66

foraging models and presents their approximations using each of the three PDE methods.67

Section 5 compares the results of each PDE approach in Section 4 using numerical anal-68

ysis. Section 6 briefly considers some examples beyond central-place foraging: namely69

examples of movement on heterogeneous landscapes, and analyses the emergent steady-70

state distributions using the same three PDE methods. Some discussion and concluding71

remarks are given in Section 7.72

2 Movement kernel analysis73

A movement kernel kτ (z|x) is a function that describes the probability of an animal74

moving from its current position x to position z after a period of time τ . Movement75

kernels only represent movement over a small time-step, τ . Thus understanding long-76

term spatial patterns requires methods for projecting movement kernels forward in time.77

In this section, we describe three such methods, using the formalism of PDEs. These78

three methods are based on different assumptions. The first method, the Hyperbolic79

Scaling technique (Hillen and Painter 2013, Othmer et al. 1988), assumes that the drift80

component of movement dominates over the diffusion component. Another method, the81

Moment Closure approach, is based on the assumption that movement can be derived82

accurately using only the first and second moments of the movement kernel. The higher83
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moments are assumed to be at equilibrium (Hillen and Painter 2013). Patlak’s approach is84

the third method we use, which uses similar assumptions about higher moments, but also85

relies on the assumption that the movement kernel changes slowly across space (Patlak86

1953). The results in this section are present in previous studies (e.g. Hillen and Painter87

2013, Patlak 1953, Potts et al. 2016), but we summarise them here for the purpose of88

introducing both notation and some key results used in this paper.89

2.1 Hyperbolic Scaling method90

Given a movement kernel kτ (z|x), the Hyperbolic Scaling method gives rise to a PDE91

describing the probability distribution uH(x, t) of the animal at time t (we use the sub-92

script “H” to stand for “Hyperbolic Scaling”). In 1D, this PDE is given as (Potts et al.93

2016)94

∂uH

∂t
(x, t) =

τ

2

∂2

∂x2
[D(x)uH(x, t)]−

∂

∂x
[c(x)uH(x, t)] +

τ

2

∂

∂x

[

c(x)
∂c(x)

∂x
uH(x, t)

]

, (1)

where95

c(x) =
1

τ

∫ ∞

−∞

(z − x)kτ (z|x)dz, (2)

and96

D(x) =
1

τ 2

∫ ∞

−∞

(z − x)2kτ (z|x)dz − c(x)2. (3)

Here, c(x) is the mean drift velocity of the animal, while the diffusion coefficient, D(x),97

is the variance of this velocity.98

The long-term population distribution in which we are interested can be represented99

by the steady-state solution to PDE (1). To derive the steady-state distribution, the100

left-hand side of Equation (1), is set to 0, resulting in the following ordinary differential101

equation (ODE)102

τ

2

d2

dx2
[D(x)u∗

H(x)]−
d

dx
[c(x)u∗

H(x)] +
τ

2

d

dx

[

c(x)
dc(x)

dx
u∗
H(x)

]

= 0, (4)

where u∗
H(x) is the steady-state distribution. Assuming that flux is zero at the steady103
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state, the solution to Equation (4) is given by104

u∗
H(x) =

CH

D(x)
exp

(

1

τ

∫ x

0

2c(s)− τ dc
ds
c(s)

D(s)
ds

)

, (5)

where CH is a normalising constant, ensuring that u∗
H(x) integrates to 1 across its domain105

of definition.106

2.2 Moment Closure method107

When using the Moment Closure method, the PDE derived in 1D is (Potts et al. 2016)108

∂uM

∂t
(x, t) =

τ

2

∂2

∂x2
[D(x)uM(x, t)]− ∂

∂x
[c(x)uM(x, t)] (6)

with c(x) and D(x) defined by Equations (2) and (3). We use the subscript “M” here to109

refer to “Moment Closure”. To obtain the steady-state distribution, we solve110

τ

2

d2

dx2
[D(x)u∗

M(x)]− d

dx
[c(x)u∗

M(x)] = 0, (7)

where u∗
M(x) is the steady-state distribution. The solution to Equation (7) is111

u∗
M(x) =

CM

D(x)
exp

(

2

τ

∫ x

0

c(s)

D(s)
ds

)

, (8)

where CM is a normalising constant ensuring that u∗
M(x) integrates to 1 across its domain112

of definition.113

2.3 Patlak’s approach114

The third method we use dates back to Patlak (1953), but was popularised in the ecology115

literature by Turchin (1991). In one dimension, the PDE that Patlak (1953) uses to116

approximate the movement kernel is (Potts et al. 2016)117

∂uP

∂t
(x, t) =

∂2

∂x2

[

M2(x)

2τ
uP (x, t)

]

− ∂

∂x

[

M1(x)

τ
uP (x, t)

]

(9)
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with118

M1(x) =

∫ ∞

−∞

(z − x)kτ (z|x)dz, (10)

and119

M2(x) =

∫ ∞

−∞

(z − x)2kτ (z|x)dz, (11)

where M1(x) and M2(x) are the first and second moments of the distance moved respec-120

tively. Here, the subscript “P” refers to the fact that we are using Patlak’s formalism.121

Note that this differs from the Hyperbolic Scaling and Moment Closure approaches,122

where the diffusion function is proportional to the variance of the velocity, rather than123

the second moment. To obtain the steady-state distribution, u∗
P (x), requires solving the124

following ODE125

d2

dx2

[

M2(x)

2τ
u∗
P (x)

]

− d

dx

[

M1(x)

τ
u∗
P (x)

]

= 0. (12)

The solution to (12) is126

u∗
P (x) =

CP

M2(x)
exp

(∫ x

0

2M1(s)

M2(s)
ds

)

(13)

with CP a normalising constant ensuring that u∗
P (x) integrates to 1 across its domain of127

definition.128

3 A simple analytic example129

Having built three models of population density distributions by using different PDE130

approximation methods, the next goal is to determine which method is the best at rep-131

resenting the space use pattern. To examine this analytically, note that the movement132

kernel, kτ (z|x), is the probability density of an animal being at location z in time τ given133

it is now at x. On the other hand, the distributions uH(x, t), uM(x, t) or uP (x, t) all134

attempt to describe the animal’s probability density at position x at time t. Therefore,135

the population density distributions at time τ - uH(x, τ), uM(x, τ) or uP (x, τ) - should136

each equal the movement kernel kτ (x|x0) when given initial condition u(x, 0) = δ(x0),137
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where δ(·) is the Dirac delta function.138

Here, we show that, even for a very simple movement kernel, Patlak’s model, uP (x, t),139

fails to give the correct result when evaluated at t = τ . Moreover, the Hyperbolic Scaling140

and Moment Closure models succeed in this regard. The movement kernel we use is a141

Normal distribution, with mean µ and variance σ2, so that142

kτ (z|x) =
1√
2πσ

exp

(−(z − x− µ)2

2σ2

)

. (14)

This represents a biased random walk.143

To calculate the various steady state distributions in Equations (5), (8), and (13), we144

need to calculate the mean and variance of the velocity (Equations 2 and 3), as well as the145

first and second moments of the distance moved in one time step (Equations 10 and 11),146

using the movement kernel from Equation (14). This leads to the following expressions147

c(x) =
µ

τ
, (15)

148

D(x) =
σ2

τ 2
, (16)

149

M1(x) = µ, (17)
150

M2(x) = σ2 + µ2. (18)

Since c(x) is constant, the term with the derivative of c(x) in the PDE (1) from the151

Hyperbolic Scaling method is 0 and so Equation (1) is equal to the PDE in Equation (6)152

obtained by using the Moment Closure technique. Consequently, both the Hyperbolic153

Scaling and Moment Closure methods leads to the following PDE154

∂uM

∂t
(x, t) =

σ2

2τ

∂2

∂x2
uM(x, t)− µ

τ

∂

∂x
uM(x, t). (19)

This is an advection-diffusion equation with constant coefficients.155

For Patlak’s approach, we substitute Equations (17) and (18) into Equation (9), to156
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(a) (b)

Figure 1: Errors arising from Patlak’s approximation are corrected by the (more recent) Moment Closure
approach. Here, we show the movement kernel from Equation (14) with values of mean, µ, and standard
deviation, σ, as given in the panels, together with solutions of the PDEs for Patlak’s approximation
(uP (x, τ); Equation 22) and the Moment Closure method (uM (x, τ); Equation 21), given at time τ .
Progressing from the left panel to the right, we see that a higher µ leads to a greater difference between
the two methods, but the Moment Closure method always gives the correct result.

obtain the following PDE157

∂uP

∂t
(x, t) =

∂2

∂x2

[

σ2 + µ2

2τ
uP (x, t)

]

− ∂

∂x

[µ

τ
uP (x, t)

]

. (20)

With the assumption that uM(x, 0) = δ(x0), the solution to Equation (19) at time158

t = τ is the density distribution (Grimmett and Stirzaker 2001, Montroll and Shlesinger159

1984)160

uM(x, τ) =
1√
2πσ2

exp

(−(x− x0 − µ)2

2σ2

)

. (21)

Similarly, with uP (x, 0) = δ(x0), the solution to Equation (20) at time t = τ is161

uP (x, τ) =
1

√

2π(σ2 + µ2)
exp

(−(x− x0 − µ)2

2(σ2 + µ2)

)

. (22)

We immediately see that uM(x, τ) = kτ (x|x0), as required. Since uH = uM , we also have162

uH(x, τ) = kτ (x|x0). However, comparing Equation (22) with Equation (14) reveals that163

uP (x, τ) 6= kτ (x|x0). Thus Patlak’s approach fails to represent the probability distribution164

correctly even in this simple case, whereas the other PDE methods succeed in this regard.165

The difference between Patlak’s approach and the others arises because the diffu-166
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sion coefficient of Equation (19) is proportional to the variance of velocity, whereas the167

diffusion coefficient of Equation (20) is proportional to the second moment of velocity.168

This causes Patlak’s approximation to predict a transient probability distribution with169

an overly-high variance (see Figure 1).170

In general, it would be inaccurate to use the second moment for the diffusion coefficient171

unless the drift term is very small compared to the diffusion term. This is because the172

diffusion term in any advection-diffusion equation with constant coefficients describes the173

variance over time. If this is significantly different to the second moment then inaccuracies174

will arise in Patlak’s formulation (Figure 1). This analytical example suggests that the175

Hyperbolic Scaling and Moment Closure methods may tend to be better, in general, at176

representing the population distribution than Patlak’s approach.177

4 Three models of home-ranging movement178

Having shown that Patlak’s PDE approach can give an inaccurate picture of transient179

dynamics in certain situations, we now explore the effect of using the three different PDE180

techniques for understanding steady-state distributions. In practice, the PDEs we study181

here are useful tools for steady-state analysis, since they admit exact analytic solutions182

(given in Equations 5, 8, and 13). Furthermore, from a biological perspective, steady-183

state analysis is useful for understanding broad-scale population patterns that might184

emerge from movement decisions. We proceed by examining three models of a simple,185

yet classical, biological phenomenon: that of central-place foraging. These models have186

broad ecological interest, as many animals exhibit home-ranging or site-fidelity behaviour187

(Börger et al. 2008).188

4.1 Discontinuous mean velocity model189

Our first model is a version of the classical Hogate-Okubo localising tendency model190

(Holgate 1971, Okubo 1980). Here, we assume animals have a constant-velocity bias191

towards the central place, which for convenience is located at the origin x = 0. A192
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movement kernel that describes this movement, using a Normal distribution, is given by193

k1

τ (z|x) =







































1√
2πσ

exp

(−(z − x− µ)2

2σ2

)

if x < 0,

1√
2πσ

exp

(−(z − x+ µ)2

2σ2

)

if x > 0,

1√
2πσ

exp

(−(z − x)2

2σ2

)

if x = 0,

(23)

where µ is the average distance the animal moves over a time τ , and σ2 is the variance194

of displacement. In the following, we use the three PDE methods defined in Section 2 to195

calculate the steady-state probability distribution derived from this movement kernel.196

The steady-state distribution derived by using the Hyperbolic Scaling method is (see197

Equation 5 and Appendix A.1)198

u1

H(x) =



















µ

σ2
exp

(

2µ

σ2
x

)

if x < 0,

µ

σ2
exp

(

−2µ

σ2
x

)

if x ≥ 0.

(24)

As the corresponding mean velocity function, c1(x), is constant (see Appendix A.1),199

the Moment Closure method leads to the same steady-state distribution as the Hyperbolic200

Scaling method, that is, u1

M(x) = u1

H(x).201

Next, using Patlak’s approach (see Equation 13) leads to the following steady-state202

distribution for objects moving in accordance with the movement kernel in Equation (23)203

(see Appendix A.2):204

u1

P (x) =



















µ

σ2 + µ2
exp

(

2µ

σ2 + µ2
x

)

if x < 0,

µ

σ2 + µ2
exp

(

− 2µ

σ2 + µ2
x

)

if x ≥ 0.

(25)

Note that because the PDEs are not defined at x = 0 in this case, we solve them piecewise205

on the assumption that the solutions are continuous. In addition, Equations (24) and206

(25) are examples of the well-known Holgate-Okubo model (Holgate 1971, Okubo 1980).207
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4.2 Continuous mean velocity model208

The movement kernel defined by Equation (23) implies that the animal tends to move209

in the direction towards the central place with a fixed average velocity. As such, the210

mean velocity is discontinuous at the central point, so PDE solutions can only be defined211

weakly. Therefore we analyse two further models of central-place foraging, one where212

the mean velocity is continuous (this section) and another where the mean velocity is213

continuously differentiable (Section 4.3). The first model is given as follows214

k2

τ (z|x) =







































1√
2πσ

exp

(−(z − x− µ)2

2σ2

)

if x < −µ,

1√
2πσ

exp

(−z2

2σ2

)

if −µ ≤ x ≤ µ,

1√
2πσ

exp

(−(z − x+ µ)2

2σ2

)

if x > µ.

(26)

By using the Hyperbolic Scaling method, the steady-state distribution for the movement215

kernel in Equation (26) is (Appendix B.1)216

u2

H(x) =







































C2

H exp

(

2µ

σ2
x+

µ2

2σ2

)

if x < −µ,

C2

H exp

(

− 3

2σ2
x2

)

if −µ ≤ x ≤ µ,

C2

H exp

(

−2µ

σ2
x+

µ2

2σ2

)

if x > µ,

(27)

where C2

H is a constant ensuring the distribution integrates to 1 (see Appendix B.1).217

When applying the Moment Closure method, the steady-state distribution obtained218

for the movement kernel in Equation (26) is (Appendix B.2)219

u2

M(x) =







































C2

M exp

(

2µ

σ2
x+

µ2

σ2

)

if x < −µ,

C2

M exp

(

−x2

σ2

)

if −µ ≤ x ≤ µ,

C2

M exp

(

−2µ

σ2
x+

µ2

σ2

)

if x > µ,

(28)

where C2

M is a normalising constant (see Appendix B.2).220
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The steady-state distribution arising from Patlak’s approach is (Appendix B.3)221

u2

P (x) =







































C2

P

(σ2 + µ2)2
exp

(

2µ

σ2 + µ2
x+

2µ2

σ2 + µ2

)

if x < −µ,

C2

P

(σ2 + x2)2
if −µ ≤ x ≤ µ,

C2

P

(σ2 + µ2)2
exp

( −2µ

σ2 + µ2
x+

2µ2

σ2 + µ2

)

if x > µ,

(29)

where C2

P is a normalising term (see Appendix B.3).222

Note that the solutions in Equations (27), (28) and (29) are all defined weakly, since223

the PDE is undefined at x = ±µ. As in Section 4.1, we have implicitly assumed that the224

solutions are continuous.225

4.3 Differentiable mean velocity model226

As a third example, we introduce a movement kernel where the mean displacement of a227

step decreases as the animal proceeds toward the central place. Here, the mean velocity228

function c3(x) is continuously differentiable (see Appendix C.1). The movement kernel229

we use is230

k3

τ (z|x) =



















1√
2πσ

exp

(−(z − x− µx2)2

2σ2

)

if x < 0,

1√
2πσ

exp

(−(z − x+ µx2)2

2σ2

)

if x ≥ 0.

(30)

231

The steady-state distribution obtained by the Hyperbolic Scaling method is (see Ap-232

pendix C.1)233

u3

H(x) =



















C3

H exp

(

2µ

3σ2
x3 − µ2

2σ2
x4

)

if x < 0,

C3

H exp

(

− 2µ

3σ2
x3 − µ2

2σ2
x4

)

if x ≥ 0,

(31)

where C3

H is a constant ensuring the distribution integrates to 1 over the domain (see234

Appendix C.1).235
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The Moment Closure method gives (see Appendix C.2)236

u3

M(x) =



















C3

M exp

(

2µ

3σ2
x3

)

if x < 0,

C3

M exp

(

− 2µ

3σ2
x3

)

if x ≥ 0,

(32)

where C3

M is a normalising constant (see Appendix C.2).237

The steady-state distribution obtained using Patlak’s approach is (see Appendix C.3)238

u3

P (x) =















































































































C3

P

σ2 + µ2x4
exp



−
√

1

µσ



2−
3

2 ln





|µ
σ
x2 +

√

2µ

σ
x+ 1|

|µ
σ
x2 −

√

2µ

σ
x+ 1|





+
1√
2
arctan

(

−
√

2µ

σ
x+ 1

)

+
1√
2
arctan

(

−
√

2µ

σ
x− 1

)])

if x < 0,

C3

P

σ2 + µ2x4
exp



−
√

1

µσ



2−
3

2 ln





|µ
σ
x2 −

√

2µ

σ
x+ 1|

|µ
σ
x2 +

√

2µ

σ
x+ 1|





+
1√
2
arctan

(

√

2µ

σ
x+ 1

)

+
1√
2
arctan

(

√

2µ

σ
x− 1

)])

if x ≥ 0,

(33)

where C3

P is a normalising constant, ensuring that the probability distribution integrates239

to 1 over the real line.240

5 Numerical analysis241

We now examine which of the PDE formalisms is most accurate at capturing the long-242

term behaviour of an animal moving in accordance with a given movement kernel kτ (z|x).243

Doing this requires an exact technique for propagating the movement kernel forward in244

time. Such a technique is given by the Master Equation as follows245

uI(x, t+ τ) =

∫ ∞

−∞

kτ (x|y)uI(y, t)dy, (34)
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where uI(x, t) is the probability density of the animal’s position at time t. As t → ∞,246

Equation (34) becomes247

u∗
I(x) =

∫ ∞

−∞

kτ (x|y)u∗
I(y)dy, (35)

where u∗
I(x) = lim

t→∞
uI(x, t). In general, it is difficult to find the analytic solution to248

Equation (35), thus numerical computation is required to obtain u∗
I(x). (For a special249

case which can be solved analytically, see Barnett and Moorcroft 2008.)250

We do this by iterating Equation (34), then setting u∗
I(x) = uI(x, t + nτ) when251

the Kullback-Leibler divergence (Kullback and Leibler 1951) between uI(x, t + nτ) and252

uI(x, t+(n−1)τ) is less than 10−6. Having found u∗
I(x), we compare the three approximate253

PDE methods given in Section 2 by calculating the KL-divergence of u∗
I(x) from the254

steady-state distributions derived by the approximation PDEs. The PDE method with255

the lowest KL-divergence from u∗
I(x) is deemed to be the best model for understanding256

the long-term distribution of an animal moving in accordance with the kernel kτ (z|x).257

Note that our results are essentially unchanged when Euclidean distance is used instead258

of KL-divergence (see Supplementary Material), indicating that they are not sensitive to259

the metric used.260

In the following sections, the long-term distributions derived using the Master Equa-261

tion (34) with the movement kernels from Equations (23), (26), and (30), are denoted by262

u1

I(x), u
2

I(x), and u3

I(x) respectively.263

5.1 Numerical analysis of the discontinuous mean velocity model264

To understand how µ and σ influence the KL-divergence between u1

I(x) and the distri-265

butions derived by PDE methods, we plot contour lines of the KL-divergence on the µ-σ266

plane (Figures 2a,b). The contour lines indicate that both the KL-divergence of u1

I(x)267

from u1

M(x), which equals u1

H(x) (see Section 4.1), and the KL-divergence of u1

I(x) from268

u1

P (x) increase with growing µ/σ.269

Figure 2 shows that the KL-divergence of u1

I(x) from u1

M(x) is greater than the KL-270

divergence of u1

I(x) from u1

P (x). This is in contrast with the analytical analysis, from271

which one might guess that u1

I(x) should be closer to u1

M(x) than u1

P (x). However,272

14



(a) Moment Closure (b) Patlak’s method

(c) 0.05 ≤ µ ≤ 0.2, σ = 0.05 (d) µ = 0.05, 0.05 ≤ σ ≤ 0.2

(e) µ = 0.01, σ = 0.05 (f) µ = 0.1, σ = 0.05

Figure 2: Discontinuous mean velocity movement kernel k1
τ
(z|x) with µ the mean move length in one

step and σ the standard deviation of move length: (a) The contours of the KL-divergence of the numer-
ical solution, u1

I
(x), from the analytic solution, u1

M
(x) (Equation 24), derived using a moment closure

technique, µ, σ ∈ [0.05, 0.2]. (b) The contours of the KL-divergence of u1

I
(x) from the analytic solution,

u1

P
(x) (Equation 25), derived using Patlak’s method, µ, σ ∈ [0.05, 0.2]. (c) KL-divergence between u1

M
(x)

and u1

I
(x) (N), and u1

P
(x) and u1

I
(x) (⋆) with 0.05 ≤ µ ≤ 0.2 and σ = 0.05. (d) KL-divergence between

u1

M
(x) and u1

I
(x) (N), and u1

P
(x) and u1

I
(x) (⋆) with 0.05 ≤ σ ≤ 0.2 and µ = 0.05. (e) steady-state

distributions with µ = 0.01 and σ = 0.05. (f) steady-state distributions with µ = 0.1 and σ = 0.05.
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note that both methods – Patlak’s and the Moment Closure – are bad at capturing the273

dynamics of this movement kernel. Figures 2e and 2f show that u1

M(x) and u1

P (x) have274

sharp peaks at x = 0, whereas u1

I(x) is relatively smooth. Both u1

P (0) and u1

M(0) are275

larger than u1

I(0), but since µ/σ
2 > µ/(σ2+µ2), we see from Equations (24) and (25) that276

u1

M(x) has lower variance than u1

P (x) so u1

P (0) < u1

M(0). (Note that this lower variance277

concords with the analytic observations of Section 3.) Hence the KL-divergence between278

u1

P (x) and u1

I(x) is less than that between u1

M(x) and u1

I(x). In summary, the apparent279

improved performance of Patlak’s model appears to be an artefact of the discontinuous280

advection terms used in these models.281

5.2 Numerical analysis of the continuous mean velocity model282

Numerical comparison between the three steady-state distributions for the second move-283

ment kernel reveals more interesting patterns. The contour lines of KL-divergence show284

similar patterns to those with the first movement kernel (Figures 3a-c), but the µ-σ plane285

is split into two regions, one where u2

P (x) is closer to u
2

I(x) than u2

M(x), and another where286

u2

M(x) is closer (Figure 3d). The latter occurs for higher and lower values of µ/σ. In the287

region where u2

P (x) is nearer to u2

I(x), u
2

M(x) and u2

P (x) are in fact quite close, which288

indicates that both the Moment Closure method and Patlak’s approach work well in289

that region (Figures 3e-g). For larger µ, although the Moment Closure method seems to290

perform best, all three methods diverge visibly from the real long-term pattern (Figures291

3e,h). As in Section 5.1, Patlak’s approach leads to a higher variance in the steady-state292

pattern, which is in agreement with the analytic observations of Section 3.293

In summary, either the Moment Closure method works a lot better than the others (for294

high µ/σ) or all three methods are very similar in which case sometimes Patlak’s approach295

slightly outperforms the others. Nonetheless, as for the first movement kernel, the PDE296

approximations often perform poorly, and this might be due to the non-differentiable297

point at x = 0.298
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(a) Hyperbolic Scaling (b) Moment Closure

(c) Patlak’s method (d)

(e) 0.05 ≤ µ ≤ 0.3, σ = 0.2. (f) µ = 0.2, 0.05 ≤ σ ≤ 0.3.

(g) µ = 0.05, σ = 0.2 (h) µ = 0.2, σ = 0.2

Figure 3: Continuous mean velocity movement kernel k2
τ
(z|x) with µ (resp. |x|) the mean move length

in one step for |x| > µ (resp. |x| ≤ µ) and σ the standard deviation of move length: (a) The contours
of the KL-divergence of the numerical solution, u2

I
(x), from the analytic solution, u2

H
(x) (Equation 27),

derived from a Hyperbolic Scaling method. (b) The contours of the KL-divergence of u2

I
(x) from the

analytic solution, u2

M
(x) (Equation 28), derived from a moment closure technique. (c) The contours

of the KL-divergence of u2

I
(x) from the analytic solution, u2

P
(x) (Equation 29), derived from Patlak’s

method. (d) Turquoise region: the KL-divergence of u2

I
(x) from u2

P
(x) is smaller than from u2

M
(x) or

u2

H
(x). Blue region: the KL-divergence of u2

I
(x) from u2

M
(x) is the smallest. (e) KL-divergence between

u2

H
(x) and u2

I
(x) (•), u2

M
(x) and u2

I
(x) (N), and u2

P
(x) and u2

I
(x) (⋆) with 0.05 ≤ µ ≤ 0.3 and σ = 0.2.

(f) KL-divergence between u2

H
(x) and u2

I
(x) (•), u2

M
(x) and u2

I
(x) (N), and u2

P
(x) and u2

I
(x) (⋆) for

µ = 0.2, 0.05 ≤ σ ≤ 0.3. (g) steady-state distributions with µ = 0.05 and σ = 0.2. (h) steady-state
distributions with µ = 0.2 and σ = 0.2. 17



(a) Hyperbolic Scaling (b) Moment Closure

(c) Patlak’s method (d) 0.05 ≤ µ ≤ 0.5, σ = 0.1

(e) µ = 0.05, σ = 0.05 (f) µ = 0.8, σ = 0.5

Figure 4: Differentiable mean velocity movement kernel k3
τ
(z|x) with µx2 the mean move length in

one step and σ the standard deviation of the move length: (a) The contours of the KL-divergence of
the numerical solution, u3

I
(x), from the analytic approximation, u3

H
(x) (Equation 31), obtained using

a Hyperbolic Scaling method, µ, σ ∈ [0.05, 0.5]. (b) The contours of the KL-divergence of u3

I
(x) from

the analytic approximation, u3

M
(x) (Equation 32), obtained using a moment closure technique, µ, σ ∈

[0.05, 0.5]. (c) The contours of the KL-divergence of u3

I
(x) from the analytic approximation, u3

P
(x)

(Equation 33), obtained using Patlak’s method, µ, σ ∈ [0.05, 0.5]. (d) KL-divergence between u3

H
(x)

and u3

I
(x) (•), u3

M
(x) and u3

I
(x) (N), and u3

P
(x) and u3

I
(x) (⋆) with 0.05 ≤ µ ≤ 0.5 and σ = 0.1. (e)

steady-state distribution with µ = 0.05 and σ = 0.05. (f) steady-state distribution with µ = 0.8 and
σ = 0.5.
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5.3 Numerical analysis of the differentiable mean velocity model299

For the third model in Equation (30), the movement kernel is differentiable. The contour300

lines of KL-divergence illustrate substantially different patterns from the previous cases301

in Sections 5.1 and 5.2. For small µ and σ, the KL-divergence is very low, and all PDE302

methods perform well (Figure 4e). As µ and σ are increased, the PDE methods become303

increasingly worse, but the Moment Closure method outperforms the others (Figure 4a-304

d).305

This trend is rather different to the trends observed in the non-differentiable models306

(Figures 2a-b and 3a-c). There, the inaccuracy came about from having a sharp peak at307

the origin in the PDE models. This peak is sharper if the drift term (µ) is large compared308

to the diffusion term (σ), leading to aggregation near the origin. Hence inaccuracies309

increase as µ/σ increases.310

However, for the differentiable mean velocity model, the main cause of error is that311

the PDE approaches underestimate the width of the steady-state “home range”. As σ312

is increased, the home range width increases. Yet, this increase in width is greater for313

u3

I(x) than for the PDE approximations (Figure 4f), so the disparity between u3

I(x) and314

the PDE steady-states increases with σ. Likewise, an increase in µ causes an increase in315

the overestimation of the probability distribution near the peak, so a greater KL distance316

between u3

I(x) and each of u3

P (x), u
3

M(x), and u3

H(x).317

This overestimation is larger for the Hyperbolic Scaling and Patlak’s method. The318

Moment Closure method appears to give a better estimator of the height of the steady-319

state distribution’s peak, but it gives a “flatter” peak, so overestimating the height of the320

probability distribution near (but not at) the peak (Figure 4f). The slightly fatter tails321

in Patlak’s approximation from Figure 4f, as compared with the other approximations,322

is a result of the overestimation of the variance observed in Figure 1.323
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(a)
wt(x) = 1 if x ∈ [0, 1/3] ∪ (2/3, 1]

2 if x ∈ (1/3, 2/3]
(b) ws(x) = sin(3πx) + 2

(c) (d)

(e) (f)

Figure 5: Steady-state distributions emerging from movement on heterogeneous landscapes. (a) The
weighting function wt(x) (Equation 39). (b) The weighting function ws(x) (Equation 40). (c) Movement
according to kernel k4

τ
(z|x) (Equation 41) based on a Normal distribution with wt(x) as the weighting

function. (d) Movement according to kernel k5
τ
(z|x) (Equation 42) based on a Normal distribution with

ws(x) as the weighting function. (e) Movement according to kernel k6
τ
(z|x) (Equation 43) based on a

Laplace distribution with wt(x) as the weighting function. (f) Movement according to kernel k7
τ
(z|x)

(Equation 44) based on a Laplace distribution with ws(x) as the weighting function.
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6 Models of movement on heterogeneous landscapes324

Finally, we examine a few situations beyond central-place foraging. In particular, we325

consider some models describing movement on a heterogeneous landscape, based on the326

type of step selection functions described in Potts et al. (2014). The general form of the327

movement kernels we will study, which describe the probability of moving to position z328

from position x in time τ , is as follows:329

kτ (z|x) =
φτ (z|x)w(z)

∫

Ω
φτ (y|x)w(y)dy

. (36)

The function φτ (z|x) represents the probability of changing location from x to z on a330

homogeneous landscape in a time-interval τ , while w(z) is a weighting function taking331

account of environmental factors (such as resources) at position z.332

Here, we use Normal and Laplace distributions as examples to describe the probability333

of an animal moving from x to z without considering habitat conditions. The superscripts334

“n” and “l” stand for Normal and Laplace distributions respectively:335

φn
τ (z|x) =

1√
2πσ

exp

(−(z − x)2

2σ2

)

, (37)

336

φl
τ (z|x) =



















1

2b
exp

(

z − x

b

)

if z < x,

1

2b
exp

(

x− z

b

)

if z ≥ x,

(38)

where σ2 and 2b2 are the variance of move length.337

As for the landscapes, we assume that the resources are uneven across the land and338

we use two types of weighting functions to describe the quality of resources. The first339

weighting function for resources, which we call a “top hat” function, is (Figure 5a)340

wt(x) =











1 if x ∈ [0, 1/3] ∪ (2/3, 1],

2 if x ∈ (1/3, 2/3],
(39)

where the subscript “t” stands for “top hat”. For example, such a function was used by341
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Moorcroft and Barnett (2008) to model resource heterogeneity.342

As well as a top-hat function, it is worth investigating environments that change343

smoothly over space (a similar strategy to using both smooth and non-smooth central-344

place foraging models in Section 4). Therefore we also use a sine function, indicated by345

a subscript “s”, to describe the resource distribution (Figure 5b):346

ws(x) = sin(3πx) + 2. (40)

We investigate the four possible movement kernels constructed by substituting either347

Equations (37) or (38) in place of φτ (z|x) in Equation (36), and either Equations (39) or348

(40) in place of w(z) in Equation (36). These movement kernels are as follows:349

k4

τ (z|x) =
φn
τ (z|x)wt(z)

∫

1

0
φn
τ (y|x)wt(y)dy

, (41)

350

k5

τ (z|x) =
φn
τ (z|x)ws(z)

∫

1

0
φn
τ (y|x)ws(y)dy

, (42)

351

k6

τ (z|x) =
φl
τ (z|x)wt(z)

∫

1

0
φl
τ (y|x)wt(y)dy

, (43)

352

k7

τ (z|x) =
φl
τ (z|x)ws(z)

∫

1

0
φl
τ (y|x)ws(y)dy

. (44)

Exact formulae for k4

τ (z|x), k5

τ (z|x), k6

τ (z|x), and k7

τ (z|x) are given in Appendix D.353

We use the three PDE approximating methods – the Hyperbolic Scaling (Equation354

5) and Moment Closure (Equation 8) methods, and Patlak’s approach (Equation 13) –355

to derive steady-state distributions, which represent the long-term space use patterns.356

Unlike the examples discussed in Sections 3 and 4, it is not possible to solve analytically357

the PDEs for approximating space use using the models in this section (Equation 41-44).358

Therefore, in this section, the steady-state distributions are obtained numerically.359

In Figure 5, we show an example of the steady-state distributions for the models360

derived above when the variance of the function φτ (z|x) is fixed at 10−4. We use subscripts361

“H”, “M”, “P” and “I” to refer to the steady-state distributions obtained from the362
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Hyperbolic Scaling method, the Moment Closure method, Patlak’s approach, and the363

integration of the Master Equation (34) respectively, and superscript numbers 4-7 to364

refer to the movement kernels number 4-7 in Equations (41)-(44) (cf. Sections 4 and 5).365

For example, u4

H(x) is the steady-state distribution of the Hyperbolic Scaling PDE (given366

in Equation 5), using movement kernel number 4 in Equation (41).367

The steady-state distributions derived from the three PDE methods are not signif-368

icantly different, but are all quite inaccurate at discontinuous points (Figures 5c, 5e).369

Among all these four examples in this section, only the Normal-sine model k5

τ (z|x) (Equa-370

tion 42) is based on a smooth movement rule and a smooth landscape. In this case, the371

Moment Closure method gives the best approximation. These qualitative observations372

mirror those which we saw for the central-place foraging models in Section 5.373

7 Discussion374

The PDE approximation methods illustrated in this paper are efficient tools to derive375

population-level distribution from underlying movement rules, particularly when the376

movement rules vary over space - i.e. when the animal is moving in a heterogeneous377

environment. They have been applied in a wide range of studies of animal movement378

(e.g., Hillen and Painter 2013, Painter 2014, Potts et al. 2016, Turchin 1991, 1998).379

However, our work suggests that the accuracy of the approximate distributions depends380

on the movement kernel used and which PDE method is applied.381

By investigating analytically a simple movement kernel, representing a biased random382

walk, Patlak’s approach is shown to be unable to capture the movement process. The383

main reason for this is that it leads to use of the second moment of the movement384

kernel for the diffusion coefficient, rather than the variance. This leads, in even the385

simplest case of a normally distributed movement kernel, to transient distributions that386

have an overestimated variance (Figure 1). In contrast, the Hyperbolic Scaling and387

Moment Closure methods describe the movement process correctly. Numerical results of388

central-place foraging models indicate that when the mean velocity of the movement is389
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differentiable, then the Moment Closure methods outperforms the other methods (Figure390

4).391

We have focussed here on three simple movement kernels for central-place forag-392

ing models. Although more complicated movement kernels could be investigated (e.g.,393

Forester et al. 2009, Potts et al. 2014, Rhodes et al. 2005), our analysis of these simple394

cases allows us to gain concrete insight into the capability of each PDE method for giving395

a correct representation of long-term behaviour. In addition, we have shown that qual-396

itatively similar results also hold for some simple models of movement in heterogeneous397

environments – i.e. PDE methods work poorly with non-smooth models, but the Moment398

Closure method outperforms the other methods for smooth models, although often only399

marginally better for the cases we studied.400

In general, our results show that when there is a significant disparity between the401

second moment and the variance of a movement kernel, the choice of PDE formalism can402

cause large differences in the resulting distributions. These appear to be more apparent403

at transient times, where Patlak’s approach can fail drastically (Figure 1) but can also404

be observed at steady state (Figures 2-5).405

Patlak’s approach will tend to lead to solutions with larger variances than the other406

approaches. When the movement kernel is sufficiently smooth – so that the Moment407

Closure method works reasonably well – this can cause Patlak’s approximation to pre-408

dict broader distributions than the other approaches. That said, for a wide variety of409

examples of differentiable movement kernels (e.g. Figures 4e, 5d, and 5f), we found Pat-410

lak’s approach to give a relatively reasonable approximation in the steady state, which411

is somewhat surprising due to its analytic shortcomings. This perhaps goes some way to412

explaining why it has remained popular for many decades.413

For non-smooth kernels, we see that all three PDE approaches can cause very unre-414

alistic spikes in the steady-state distribution – predicting probability densities that peak415

at a point many times higher than the real distribution in certain cases (e.g. Figure 3h).416

Since Patlak’s approach overestimates the variance of the distribution, this error can end417

up dampening the effect of the high peaks, leading to Patlak’s approach giving estima-418
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tions that are closer to the real distribution than the other approaches. However, this419

is merely a serendipitous cancelling of two opposing inaccuracies. In general, one should420

be very wary of using any of the PDE approximations studied here when the movement421

kernels are non-smooth. They may give results with a vague qualitative similarity to422

reality, but quantitatively they can be wildly wrong.423

In summary, when applying PDE methods for approximating movement kernels, we424

suggest two things. First, be careful if the movement kernel leads to advection terms that425

are not differentiable: the PDEs will require weak analysis that may give quantitatively426

misleading results. Second, we generally recommend using the Moment Closure method427

over Patlak’s approach.428
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435

Appendix A Discontinuous mean velocity model436

A.1 Movement kernel k1τ(z|x) with the Hyperbolic Scaling method437

Here, we use the Hyperbolic Scaling method to analyse the movement kernel k1

τ (z|x)438

given by Equation (23). To use the Hyperbolic Scaling method, we place Equation (23)439

into Equations (2) and (3) in Section 2.1 to give440

c1(x) =































µ

τ
if x < 0,

−µ

τ
if x > 0,

0 if x = 0,

(A.1.1)
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and441

D1(x) =
σ2

τ 2
. (A.1.2)

The mean velocity function, c1(x), is discontinuous at x = 0. Thus the resulting PDEs,442

and steady-state ODEs, can only be defined piecewise. We thus solve Equation (4) in443

the two cases where x < 0 and x > 0, and make an assumption that the solution is444

continuous. The resulting solution is a weak solution on the real line (similar to that445

in Potts et al. 2016, Appendix B). Substituting expressions (A.1.1) and (A.1.2) into446

Equation (5) gives:447

u1

H(x) =



















C1

H1

τ 2

σ2
exp

(

2µ

σ2
x

)

if x < 0,

C1

H2

τ 2

σ2
exp

(

−2µ

σ2
x

)

if x > 0,

(A.1.3)

where C1

H1
and C1

H2
are arbitrary constants, and u1

H(x) is the steady-state distribution.448

Our continuity assumption means we must have C1

H1
= C1

H2
. To ensure u1

H(x) integrates449

to 1, we calculate450

C1

H1
=

[∫

0

−∞

τ 2

σ2
exp

(

2µ

σ2
x

)

dx+

∫ ∞

0

τ 2

σ2
exp

(

−2µ

σ2
x

)

dx

]−1

=
µ

τ 2
.

(A.1.4)

Inserting Equation (A.1.4) into Equation (A.1.3) and setting u1

H(0) = limx→0 u
1

H(x) =451

µ/σ2 yields452

u1

H(x) =



















µ

σ2
exp

(

2µ

σ2
x

)

if x < 0,

µ

σ2
exp

(

−2µ

σ2
x

)

if x ≥ 0,

(A.1.5)

which is Equation (24) in Section 4.1.453

Note that c1(x) is piecewise constant, therefore the derivative of c1(x) is 0 for x 6= 0454

and the steady-state distribution obtained using the Hyperbolic Scaling method is the455

same as using the Moment Closure method (compare Equations (5) and (8) in Sections456

2.1 and 2.2). That is, u1

H(x) = u1

M(x).457
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A.2 Movement kernel k1τ(z|x) with Patlak’s approach458

Here, we apply Patlak’s approach to derive the steady-state distribution from movement459

kernel k1

τ (z|x) defined by Equation (23). This requires that we place the movement kernel460

in Equation (23) into Equations (10) and (11) to give461

M1

1
(x) =



























µ if x < 0,

−µ if x > 0,

0 if x = 0,

(A.2.1)

and462

M1

2
(x) = σ2 + µ2. (A.2.2)

Placing these expressions for M1

1
(x) and M1

2
(x) into Equation (13) and making the con-463

tinuity assumption lim
x→0+

u1

P (x) = lim
x→0−

u1

P (x), as in Section A.1, leads to the following464

solution as Equation (25) in Section 4.1:465

u1

P (x) =



















µ

σ2 + µ2
exp

(

2µ

σ2 + µ2
x

)

if x < 0,

µ

σ2 + µ2
exp

(

− 2µ

σ2 + µ2
x

)

if x ≥ 0.

(A.2.3)

Appendix B Continuous mean velocity model466

B.1 Movement kernel k2τ(z|x) with the Hyperbolic Scaling method467

Here, we consider the movement kernel k2

τ (z|x) defined by Equation (26) in Section 4.2.468

To use the Hyperbolic Scaling method, c2(x) and D2(x) are computed, using Equations469

(2) and (3), to give:470

c2(x) =































µ

τ
if x < −µ,

−x

τ
if −µ ≤ x ≤ µ,

−µ

τ
if x > µ,

(B.1.1)
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and471

D2(x) =
σ2

τ 2
. (B.1.2)

In this case, the mean velocity, c2(x), is continuous and decreases to 0 as the animal472

approaches the central place.473

By solving the ODE (4) given in Section 2.1, the Hyperbolic Scaling steady-state474

distribution for the movement kernel in Equation (26) is (Equation 27)475

u2

H(x) =







































C2

H exp

(

2µ

σ2
x+

µ2

2σ2

)

if x < −µ,

C2

H exp

(

− 3

2σ2
x2

)

if −µ ≤ x ≤ µ,

C2

H exp

(

−2µ

σ2
x+

µ2

2σ2

)

if x > µ,

(B.1.3)

where476

C2

H =

[

σ2

µ
exp

(

−3µ2

2σ2

)

+

√
2πσ√
3

erf

(√
3µ√
2σ

)]−1

. (B.1.4)

B.2 Movement kernel k2τ(z|x) with the Moment Closure method477

To apply the Moment Closure method when analysing movement kernel k2

τ (z|x) given by478

Equation (26) in Section 4.2, we place Equations (B.1.1) and (B.1.2) into Equation (7)479

in Section 2.2 to give the steady-state distribution in Equation (28):480

u2

M(x) =







































C2

M exp

(

2µ

σ2
x+

µ2

σ2

)

if x < −µ,

C2

M exp

(

−x2

σ2

)

if −µ ≤ x ≤ µ,

C2

M exp

(

−2µ

σ2
x+

µ2

σ2

)

if x > µ,

(B.2.1)

where481

C2

M =

[

σ2

µ
exp

(

−µ2

σ2

)

+
√
πσerf

(µ

σ

)

]−1

. (B.2.2)
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B.3 Movement kernel k2τ(z|x) with Patlak’s approach482

For using Patlak’s approach to analyse the movement kernel k2

τ (x) in Equation (26), we483

use Equations (10) and (11) to compute M2

1
(x) and M2

2
(x), so that484

M2

1
(x) =























µ if x < −µ,

−x if −µ ≤ x ≤ µ,

−µ if x > µ,

(B.3.1)

and485

M2

2
(x) =











σ2 + µ2 if x < −µ or x > µ,

σ2 + x2 if −µ ≤ x ≤ µ.
(B.3.2)

The steady-state distribution arising from Patlak’s approach is obtained by placing Equa-486

tions (B.3.1) and (B.3.2) into Equation (13), giving Equation (29):487

u2

P (x) =







































C2

P

(σ2 + µ2)2
exp

(

2µ

σ2 + µ2
x+

2µ2

σ2 + µ2

)

if x < −µ,

C2

P

(σ2 + x2)2
if −µ ≤ x ≤ µ,

C2

P

(σ2 + µ2)2
exp

( −2µ

σ2 + µ2
x+

2µ2

σ2 + µ2

)

if x > µ,

(B.3.3)

where488

C2

P =

[

1

µ(σ2 + µ2)
+

arctan(µ/σ)

σ3
+

µ

σ2(σ2 + µ2)

]−1

. (B.3.4)

Appendix C Differentiable mean velocity model489

C.1 Movement kernel k3τ(z|x) with the Hyperbolic Scaling method490

Here, we use PDE methods introduced in Section 2 to obtain the long-term population491

distributions from the underlying movement kernel k3

τ (z|x) given by Equation (30). To492

apply the Hyperbolic Scaling and Moment Closure methods, the corresponding mean and493

29



variance of the velocity are calculated, using Equations (2) and (3):494

c3(x) =















µx2

τ
if x < 0,

−µx2

τ
if x ≥ 0,

(C.1.1)

and495

D3(x) =
σ2

τ 2
. (C.1.2)

The steady-state distribution obtained by the Hyperbolic Scaling method is obtained by496

placing Equations (C.1.1) and (C.1.2) into Equation (5) to give497

u3

H(x) =



















C3

H exp

(

2µ

3σ2
x3 − µ2

2σ2
x4

)

if x < 0,

C3

H exp

(

− 2µ

3σ2
x3 − µ2

2σ2
x4

)

if x ≥ 0,

(C.1.3)

where498

C3

H =

[∫

0

−∞

exp

(

2µ

3σ2
x3 − µ2

2σ2
x4

)

dx+

∫ ∞

0

exp

(

− 2µ

3σ2
x3 − µ2

2σ2
x4

)

dx

]−1

. (C.1.4)

C.2 Movement kernel k3τ(z|x) with the Moment Closure method499

To use the Moment Closure method when analysing movement kernel k3

τ (z|x) given by500

Equation (30) in Section 4.3, we place Equations (C.1.1) and (C.1.2) into Equation (7)501

to give502

u3

M(x) =



















C3

M exp

(

2µ

3σ2
x3

)

if x < 0,

C3

M exp

(

− 2µ

3σ2
x3

)

if x ≥ 0,

(C.2.1)

where503

C3

M =

[∫

0

−∞

exp

(

2µ

3σ2
x3

)

dx+

∫ ∞

0

exp

(

− 2µ

3σ2
x3

)

dx

]−1

. (C.2.2)
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C.3 Movement kernel k3τ(z|x) with Patlak’s approach504

For Patlak’s approach, M3

1
(x) and M3

2
(x) are computed by placing Equation (30) into505

Equations (10) and (11), to give:506

M3

1
(x) =











µx2 if x < 0,

−µx2 if x ≥ 0,
(C.3.1)

and507

M3

2
(x) = σ2 + µ2x4. (C.3.2)

The steady-state distribution is then given by placing Equations (C.3.1) and (C.3.2) into508

Equation (12) to give509

u3

P (x) =















































































































C3

P

σ2 + µ2x4
exp



−
√

1

µσ



2−
3

2 ln





|µ
σ
x2 +

√

2µ

σ
x+ 1|

|µ
σ
x2 −

√

2µ

σ
x+ 1|





+
1√
2
arctan

(

−
√

2µ

σ
x+ 1

)

+
1√
2
arctan

(

−
√

2µ

σ
x− 1

)])

if x < 0,

C3

P

σ2 + µ2x4
exp



−
√

1

µσ



2−
3

2 ln





|µ
σ
x2 −

√

2µ

σ
x+ 1|

|µ
σ
x2 +

√

2µ

σ
x+ 1|





+
1√
2
arctan

(

√

2µ

σ
x+ 1

)

+
1√
2
arctan

(

√

2µ

σ
x− 1

)])

if x ≥ 0,

(C.3.3)

where C3

P is a normalising constant, ensuring that the probability distribution integrates510

to 1 over the real line.511

512
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Appendix D Movement on heterogeneous landscapes513

Here we give exact expressions for the functions k4

τ (z|x), k5

τ (z|x), k6

τ (z|x), and k7

τ (z|x) in514

Equations (41-44). These are as follows.515

k4

τ (z|x) =
φn
τ (z|x)wt(z)

∫

1

0
φn
τ (y|x)wt(y)dy

=























1

g4(x)
√
2πσ

exp

(−(z − x)2

2σ2

)

if z ∈ [0, 1/3] ∪ (2/3, 1],

2

g4(x)
√
2πσ

exp

(−(z − x)2

2σ2

)

if z ∈ (1/3, 2/3],

(D.1)

where516

g4(x) =
1

2

[

erf

(

x√
2σ

)

+ erf

(

x− 1/3√
2σ

)

− erf

(

x− 2/3√
2σ

)

− erf

(

x− 1√
2σ

)]

(D.2)

is a normalising function used to ensure that the probability distribution (D.1) integrates517

to 1.518

k5

τ (z|x) =
φn
τ (z|x)ws(z)

∫

1

0
φn
τ (y|x)ws(y)dy

=
1

g5(x)
√
2πσ

exp

(−(z − x)2

2σ2

)

(sin(3πz) + 2),

(D.3)

where519

g5(x) =

∫

1

0

1√
2πσ

exp

(−(z − x)2

2σ2

)

(sin(3πz) + 2)dz. (D.4)
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520

k6

τ (z|x) =
φl
τ (z|x)wt(z)

∫

1

0
φl
τ (y|x)wt(y)dy

=











































































































































































































1

2bg61(x)
exp

(

z − x

b

)

if x ∈ [0, 1/3] and z ∈ [0, x],

1

2bg61(x)
exp

(

x− z

b

)

if x ∈ [0, 1/3] and z ∈ [x, 1/3] ∪ (2/3, 1],

1

bg61(x)
exp

(

x− z

b

)

if x ∈ [0, 1/3] and z ∈ (1/3, 2/3],

1

2bg62(x)
exp

(

z − x

b

)

if x ∈ (1/3, 2/3] and z ∈ [0, 1/3],

1

bg62(x)
exp

(

z − x

b

)

if x ∈ (1/3, 2/3] and z ∈ (1/3, x],

1

bg62(x)
exp

(

x− z

b

)

if x ∈ (1/3, 2/3] and z ∈ (x, 2/3],

1

2bg62(x)
exp

(

x− z

b

)

if x ∈ (1/3, 2/3] and z ∈ (2/3, 1],

1

2bg63(x)
exp

(

z − x

b

)

if x ∈ (2/3, 1] and z ∈ [0, 1/3] ∪ (2/3, x],

1

bg63(x)
exp

(

z − x

b

)

if x ∈ (2/3, 1] and z ∈ (1/3, 2/3],

1

2bg63(x)
exp

(

x− z

b

)

if x ∈ (2/3, 1] and z ∈ (x, 1],

(D.5)

where521

g61(x) = 1− 1

2

[

exp

(−x

b

)

− exp

(

x− 1/3

b

)

+ exp

(

x− 2/3

b

)

+ exp

(

x− 1

b

)]

,

(D.6)522

g62(x) = 2− 1

2

[

exp

(−x

b

)

+ exp

(

1/3− x

b

)

+ exp

(

x− 2/3

b

)

+ exp

(

x− 1

b

)]

,

(D.7)523

g63(x) = 1− 1

2

[

exp

(−x

b

)

+ exp

(

1/3− x

b

)

− exp

(

2/3− x

b

)

+ exp

(

x− 1

b

)]

.

(D.8)
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524

k7

τ (z|x) =
φl
τ (z|x)ws(z)

∫

1

0
φl
τ (y|x)ws(y)dy

=



















1

2bg7(x)
exp

(

z − x

b

)

(sin 3πz + 2) if z < x,

1

2bg7(x)
exp

(

x− z

b

)

(sin 3πz + 2) if z ≥ x,

(D.9)

where525

g7(x) = 2− 4

(18π2b2)2 − 4
sin(3πx)− 108π3b3

(18π2b2)2 − 4
cos(3πx)

+

(

3πb

18π2b2 + 2
− 1

)

exp

(−x

b

)

−
(

3πb

18π2b2 − 2
+ 1

)

exp

(

x− 1

b

)

.

(D.10)
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