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Abstract

The effects of increased tropospheric ozone (O3) pollution levels on methane (CH4) emissions

from peatlands, and their underlying mechanisms, remain unclear. In this study, we exposed

peatland mesocosms from a temperate wet heath dominated by the sedge Schoenus nigricans

and Sphagnum papillosum to four O3 treatments in open-top chambers for 2.5 years, to

investigate the O3 impacts on CH4 emissions and the processes that underpin these responses.

Summer CH4 emissions, were significantly reduced, by 27% over the experiment, due to

summer daytime (8h day-1) O3 exposure to non-filtered air (NFA) plus 35 ppb O3, but were

not significantly affected by year-round, 24h day-1, exposure to NFA plus 10 ppb or NFA

plus 25 ppb O3. There was no evidence that the reduced CH4 emissions in response to

elevated summer O3 exposure were caused by reduced plant-derived carbon availability

below-ground, because we found no significant effect of high summer O3 exposure on root

biomass, pore water dissolved organic carbon concentrations or the contribution of recent

photosynthate to CH4 emissions. Our CH4 production potential and CH4 oxidation potential

measurements in the different O3 treatments could also not explain the observed CH4

emission responses to O3. However, pore water ammonium concentrations at 20 cm depth

were consistently reduced during the experiment by elevated summer O3 exposure, and

strong positive correlations were observed between CH4 emission and pore water ammonium

concentration at three peat depths over the 2.5-year study. Our results therefore imply that

elevated regional O3 exposures in summer, but not the small increases in northern hemisphere

annual mean background O3 concentrations predicted over this century, may lead to reduced

CH4 emissions from temperate peatlands as a consequence of reductions in soil inorganic

nitrogen affecting methanogenic and/or methanotrophic activity.
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1. Introduction

Tropospheric ozone (O3) and methane (CH4) are the second and third most important

contributors to the human-induced greenhouse effect after carbon dioxide (IPCC, 2013). The

concentrations of both gases in the background troposphere increased over the last century

and, without strong emission control, are predicted to increase further during the 21st century

(Dentener et al., 2006; Royal Society 2008; Wild et al., 2012). Recently, increased attention

has been paid to the importance of measures to control atmospheric O3 and CH4

concentrations, because of their relatively short atmospheric lifetimes compared to CO2

(Shindell et al., 2012). There are also important feedbacks between these two gases, since

CH4 emissions have contributed significantly to increases in global background O3

concentrations (West & Fiore, 2005).

Ozone is also the most important gaseous air pollutant globally in terms of effects on

ecosystem production and function (Ashmore, 2005) and northern hemisphere background

levels of O3 already exceed those at which significant effects on wild plant communities, crop

yields and forest productivity can occur (Davison & Barnes, 1998; Averny et al., 2011;

Ainsworth et al., 2012). Global modelling of O3 effects on CO2 uptake and sequestration

suggest that these indirect effects may be as important as the direct effects of O3 on radiative

forcing (Sitch et al., 2007). However, these simulations do not consider the possibility that O3

may affect CH4 fluxes from managed and unmanaged wetlands. Methane emissions from

natural wetlands may have contributed significantly to recent increases in global CH4 levels

(Kirschke et al., 2013), while predicted future releases of CH4 from Arctic permafrost
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thawing could be large enough to substantially increase tropospheric O3 levels (Isaksen et al.,

2014).

We have previously reported (Toet et al., 2011) that exposure to environmentally-

relevant levels of elevated O3 in the daytime decreased summer CH4 emissions from

temperate peatland mesocosms by ca. 25%. In contrast, Mörsky et al. (2008) reported that

open-field exposure of boreal peatland microcosms to a similar increase in O3 concentration

in Central Finland only caused a decrease in CH4 emission at the end of the first growing

season, which was lost in the three subsequent growing seasons. Recently, Williamson et al.

(2016) reported both increases and decreases in CH4 emissions from temperate upland bog

mesocosms in response to increasing background O3 exposures in a short-term summer

experiment. Studies on rice paddies, all also elevating O3 concentrations for 7-8h in the

daytime in summer, have demonstrated that CH4 emissions were reduced in response to the

pollutant (e.g. Bhatia et al., 2011; Zheng et al., 2011), but not in all cases (Kou et al., 2015).

However, none of these previous peatland or paddy studies have explored the impacts of the

small year-round increases in 24h mean background O3 concentrations that are now affecting

many areas of the northern hemisphere (Royal Society, 2008), which may be significant since

substantial CH4 emissions to the atmosphere have been reported in winter from boreal bogs

and fens (e.g. Alm et al. 1999). Therefore, there is a need to assess year-round, long-term

effects of elevated background annual mean O3 concentrations on CH4 emissions, as well as

simply for summer peak exposures.

Furthermore, the mechanistic basis of any effects of O3 on CH4 emissions remains

uncertain. It is unlikely to be related to direct effects of O3 on microbial populations below-

ground, because 18O labelling studies have shown that O3 penetration into the soil is limited

to the top few mm, especially in wet soils (Toet et al., 2009). Consequently, O3 effects on

microbial activity are more likely to be indirectly controlled by processes mediated through
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vascular plants. Although O3 has been reported to have little effect on above-ground biomass

of peatland vegetation (Mörsky et al., 2011; Toet et al., 2011; Williamson et al., 2016),

allocation of vascular plant biomass into below-ground components may be reduced

(Ashmore, 2005), leading to reductions in substrate availability for methanogens. The

potential for such effects was shown by Jones et al. (2009), who found a rapid decrease in

dissolved organic carbon (DOC) concentrations in fen mesocosms after O3 exposure, with a

change in molecular composition of DOC indicating a switch in the substrate for micro-

organisms from root-derived carbon (C) to soil C; similar effects were not found in

mesocosms dominated by Sphagnum moss. Such indirect effects of elevated O3 in peatlands

might be expected to affect CH4 production, although both Rinnan et al. (2003) and Mörsky

et al. (2008) reported that elevated O3 had no significant effect on CH4 production potential.

Elevated O3 could also reduce CH4 emissions indirectly by impacts on N cycling. This

may be through reduced litter quantity or quality, although effects of O3 on nitrification,

denitrification, microbial biomass and plant uptake of N have also been reported (Wittig et al.,

2009; Li et al. 2010; Bhatia et al., 2011; Pereira et al., 2011; Bassin et al., 2015). In nitrogen

(N) poor systems such as peatlands, reduced below-ground allocation of N could cause

reduced activity of heterotrophic soil microorganisms, such as methanogens (Kanerva et al.,

2007). However, lower availability of ammonium (NH4), the dominant form of inorganic N

in peatlands, could also promote methanotrophic activity (Keller et al., 2006), and O3 has

been reported to reduce soil NH4 concentrations in meadows (Kanerva et al. (2006) and

soybean crops (Pereira et al., 2011). A direct adverse effect of O3 on methanotrophs in the top

layers of the moss cover of peatlands may also play a role, with Raghoebarsing et al. (2005)

showing CH4 consumption by Sphagnum plants through partly-endophytic methanotrophs in

hyaline cells and on stem leaves.

We report here results from a peatland mesocosm study carried out over 2.5 years in open
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top chambers (OTCs), with two major aims. The first was to test the hypothesis that increases

in global background O3 concentrations, as well as elevated O3 exposure during summertime,

may reduce CH4 emissions from peatlands. Our second aim was to identify the mechanistic

basis for any observed effects of elevated O3 concentrations on CH4 emissions, paying

specific attention to the following hypotheses:-

1. Elevated O3 reduces plant C allocation below-ground, whilst not affecting overall

above-ground plant productivity

2. Elevated O3 reduces the contribution of recent photosynthate to CH4 emission

3. Elevated O3 reduces CH4 production potentials

4. Elevated O3 decreases aerobic CH4 oxidation potentials associated with the top peat layer

(including living Sphagnum moss)

5. Elevated O3 increases the aerobic CH4 oxidation potentials deeper down the peat profile

due to reduced pore water NH4 concentrations.

2. Materials and methods

2.1. Experimental design

Mesocosms were collected from the wetter parts of a wet heath in the south western part of

the Isle of Skye, Scotland (NGR: SV409227, latitude 57°13’ N, longitude 6°18’ W, 16 m

a.s.l.) where annual average air temperature was 6.6°C and annual average precipitation 2825

mm over the period 1981-2010. The vegetation was dominated by the peat moss Sphagnum

papillosum and the sedge Schoenus nigricans, with Erica tetralix, Molinea caerulea and

Narthecium ossifragum regularly present at very low abundance. Other species found
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intermittently and at very low abundance included Scirpus cespitosus, Eriophorum vaginatum,

Drosera rotundifolia and other Sphagnum species such as S. recurvum and S. palustre.

Intact mesocosms (diameter 19 cm, length 35 cm) were cored in PVC tubes in early

April 2008, sealed at the bottom and placed in deionised water in 22-l containers (diameter

30.5 cm). The water level was kept similar to the mean water table depth at the site by free

drainage of the water through four 12-mm diameter holes 5 cm below the Sphagnum surface.

The mesocosms were transported to the open-top chamber (OTC) facility, and left outside for

a month to settle after coring; there was no evidence of significant damage to the vegetation

as a result of cutting roots.

Ozone exposure was conducted in twelve rigid OTCs, situated at Heddon-on-the-Wall,

Northumberland (NGR: NZ128659, latitude 54°59’ N, longitude 1°48’ W, 25 m a.s.l.). The

octagonal OTCs (3.5 m (max) diameter x 3.3 m tall) and their O3 delivery and control

systems are described in detail in Gonzalez-Fernandez et al. (2008). All OTCs were

ventilated with non-filtered air (NFA) at a rate sufficient to achieve 2 air changes min-1.

Twelve, of sixteen, OTCs were randomly assigned to one of four different O3 treatments

(three OTCs per treatment). In addition to the ‘ambient air’ treatment, which received only

NFA, we included one treatment which, as in our previous study (Toet et al., 2011) and in the

studies of rice paddies, raised O3 levels for 8h during summer daytime to NFA plus 35 ppb

(April - early October) and for 8h during winter daytime to NFA plus 10 ppb (‘NFA+35/10’).

The other two O3 treatments raised background O3 levels in the same range as the high O3

treatment, but 24h throughout the year, to either NFA plus 10 ppb (‘NFA+10’),

corresponding to the upper end of IPCC predictions for 2050 under SRES scenarios (Wild et

al., 2012), or to a more pessimistic NFA plus 25 ppb (‘NFA+25’). The use of 24h exposures

reflects the fact that, in rural areas throughout the UK, O3 concentrations stay well above zero

during the night and early morning (Royal Society 2008).
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Three mesocosms were randomly placed in each OTC on 6 May 2008, resulting in

nine mesocosms per O3 treatment for the main experiment Additional mesocosms were

placed in the OTCs for a 13CO2 pulse-labelling experiment (see below). Methane emission,

sedge green leaf density, soil temperature and pore water chemistry in all 36 mesocosms

constituting the main experiment were determined prior to the start of O3 exposure. Methane

emission rates (which were very low) and the other measured variables were not significantly

different between the four groups of mesocosms assigned to each O3 treatment at the

beginning of the experiment. The mesocosms were regularly rotated within the central part of

each OTC to minimise any positional effects.

The effects of the OTCs on microclimatic conditions, determined from measurements

made during the course of the experiment, were similar to those observed in other OTC

studies (discussed in Toet et al. 2011). Precipitation was on average 14% lower than outside

and the mean air temperature within the OTCs was on average 1.3°C higher than outside. The

much lower annual precipitation at the OTC facility than at the source field site was

compensated by maintaining a prescribed water table depth in the mesocosms at a level

comparable to the field site, by regular additions of deionised water. The air temperature

outside the OTCs was on average 2.5oC higher than at the source field site. The higher

temperature may have had some stimulating effect on plant and microbial activity of the

mesocosms compared to the field situation, but the temperature increase was similar across

all O3 treatments, whilst the water in the containers also reduced impacts of lateral heat fluxes

on soil temperature.

2.2. Main experiment



9

2.2.1. Methane emission

Daytime methane emissions from all 36 mesocosms were measured 3-5 times each summer

and three times each winter over the 2.5-year experiment, using the methods described by

Toet et al. (2011). Briefly, static, opaque chambers (25 cm high) covered with reflective

insulation material to reduce temperature increases in the chamber during measurements were

placed on the mesocosms, and gas samples (20 ml) were collected from the headspace at

regular intervals for periods of 80-120 min. and stored in evacuated 12-ml Exetainers (Labco

Limited, High Wycombe, UK). The gas in the Exetainers was analysed for CH4 concentration

on a PerkinElmer-Arnel gas chromatograph (GC, AutoSystem XL, PerkinElmer Instruments,

Shelton, CT, USA) equipped with a flame ionization detector (FID) and a 3.7 m Porapak Q

60/80 mesh column within 7 days. Methane emission rates were calculated from the slope of

regressions of CH4 concentrations with time in each chamber; regressions with r2< 0.90

(0.8% of the total) being rejected.

2.2.2. Plant and soil variables

Sedge green leaf density was determined for each mesocosm at each sampling date. Soil

temperature was measured in each mesocosm at 2.5, 10 and 20 cm below the Sphagnum

surface immediately after CH4 emission measurements using alcohol thermometers. Root

biomass was determined at the end of the experiment in mesocosms exposed for 2.5 years to

ambient O3 or NFA+35/10 only. A peat sample was collected over the entire length of the

peat profile of each mesocosm. The volume of each peat sample was determined by water

displacement to enable determination of the root biomass in the entire mesocosm. Roots were

collected from each sample, dried at 70˚C for two days, and weighed.

Peat water samples at 2.5, 10 and 20 cm below the Sphagnum surface were collected

in each mesocosm on all sampling dates with Rhizon samplers (Eijkelkamp Agrisearch
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Equipment, Giesbeek, The Netherlands). The pH of each sample was measured (Thermo

Orion 420Aplus, Thermo Orion Europe, Witchford, UK ), and each sample was analysed

colorimetrically for NH4 and nitrate + nitrite (NO3+NO2) using a Bran and Luebbe

Autoanalyser 3 (Bran and Luebbe, Norderstedt, Germany), and for DOC using a TOC

analyser (liquiTOC, Elementar Analysensysteme, Hanau, Germany).

Additional peat water samples were sampled via Rhizon samplers in 20-ml Exetainers

from three mesocosms at each of the four O3 treatments at 2.5, 10, 20 and 30 cm depth on 29

July 2010 to determine the apparent fractionation factor (αC) indicative of the predominant

methanogenic pathway, i.e. acetoclastic or hydrogenotrophic methanogenesis (Conrad, 2005).

Peat water samples were immediately acidified with 20% sulphuric acid and N2 was added to

the headspace up to ambient pressure. The samples were left to equilibrate at 20˚C for at least

a week. Gas from the headspace was analysed for δ13C-CH4 using a pre-concentrated

cryofocussing isotope ratio mass spectrometer (GC-IRMS) setup described below (see 13CO2

pulse-labelling experiment). The δ13C of the CO2 in gas samples was measured using the GC-

IRMS system described in Subke et al. (2009) consisting of an IRMS (SIRAS Series 2,

Micromass, UK) with non-ionising electromagnetic radiation (NIER) type ion impact source

and triple Faraday collector system employing a rotary/turbo-molecular pumping vacuum

system, interfaced to a Microsoft WindowsTM data system (model name ‘PVS12’, built by

Pro-Vac Services, Crewe, UK). The apparent fractionation factor (αC) was calculated using

the equation αC= (δ13CO2+103)/( δ13CH4 + 103) (Conrad, 2005).

2.2.3. Potential methane production and oxidation

At the end of the experiment, potential CH4 production and oxidation were determined during

a lab incubation in darkness at 19˚C using a method adapted from Saarnio et al. (1998). Pilot

experiments at different peat depths (0-5, 10-15 and 20-25 cm depth), showed that whilst
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potential aerobic CH4 oxidation occurred throughout the peat profile, potential CH4

production increased with depth (data not shown). Due to time constraints, the potential CH4

production and oxidation measurements in the four O3 treatments focussed on the top layer

including green Sphagnum (0-5 cm) and the layer at 20-25 cm depth. The pilot tests were also

used to identify over what incubation period the decrease or increase in CH4 concentration

remained linear. Potential CH4 oxidation rates were also determined over a range of initial

CH4 concentrations (20-10,000 ppm), with potential aerobic CH4 oxidation rates increasing

with initial CH4 concentration, but not any further once the initial CH4 concentration

exceeded 5,000 ppm. Therefore a starting CH4 concentration of 10,000 ppm was used at

which CH4 oxidation was not limiting and which was similar to what was used for potential

CH4 oxidation measurements of Sphagnum from peat bogs by Raghoebarsing et al. (2005)

and Larmola et al. (2010).

For potential CH4 production measurements, a pooled subsample of the 20-25 cm

layer from each mesocosm was immediately wrapped in aluminium foil and transferred to an

anaerobic box flushed with N2 to keep soil conditions as anaerobic as possible. To 125-ml

Wheaton glass serum bottles (Wheaton UK, Rochdale, UK), 20 g of peat (after removal of

large roots) and 10 ml of oxygen-poor deionised water (flushed with N2 for 20 min) were

added. The headspace was flushed with N2 for 2 min before closing the bottle with a butyl

rubber stopper and crimp cap. Three empty control bottles were also flushed with N2. Two

minutes after adding another 10 ml of N2 to each Wheaton bottle, 2 ml of headspace was

sampled from each bottle (t0) and stored in 3-ml evacuated Exetainers to which 5 ml of N2

was added. The headspace was sampled daily over a 4-day incubation in the dark at 19°C.

For potential aerobic CH4 oxidation measurements, pooled sub-samples of 20 g peat

(and living moss, after removal of sedge shoots and large roots) from 0-5 cm or 20-25 cm

depth were added to Wheaton bottles. The peat/moss was left to aerate in the bottles without
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septa overnight in the dark at 19˚C. The next morning, bottles were left outside for 15 min to

establish ambient air headspace conditions and they were then sealed with crimped rubber

stoppers. Another 10 ml of air with concentrated CH4 was added, to create a start

concentration of 10,000 ppm CH4 in the headspace. The headspace was sampled 2 min after

adding the CH4 (t0) and again after 4, 8, 24 and 48 hours. Each time, 1 ml of headspace was

collected in 3-ml evacuated Exetainers and 6 ml N2 was added.

The gas samples were analysed for CH4 concentration on the gas chromatograph, as

described earlier. The samples were also analysed for CO2 concentration to determine soil

respiration under aerobic and anaerobic conditions. On the GC, CO2 was first converted to

CH4 before detection using FID by use of a Ni reduction catalyst. The rates of potential CH4

production and oxidation, and the rates of potential CO2 emission under anaerobic and

aerobic conditions were determined from regressions, as described earlier in the text. The r2

of all the regressions exceeded 0.90 and therefore none were rejected. The amounts of CH4

and inorganic C dissolved in the water were also included in the flux calculations using

Henry’s law and the first dissociation constant of carbonic acid for dissolved inorganic C; for

the latter the pH of the water was measured at the start and end of incubation and interpolated

for the intermediate sampling times. No changes in CH4 and CO2 concentrations were

observed in the control bottles during incubation.

2.3.
13

CO2 pulse-labelling experiment

Additional mesocosms that had been exposed to ambient O3 or NFA+35/10 for 2.5 years

were exposed to 13C labelled CO2 during the daytime on 10 August 2010 to assess the effect

of the two O3 treatments on the contribution of recent photosynthate to CH4 emission during

a pulse-chase experiment. For each O3 treatment, nine mesocosms received a 13CO2 pulse of

6.3 hours by enclosing the vegetation in each mesocosm using a transparent Perspex chamber
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(height= 25 cm, internal diameter= 19.4 cm) which received 380 ppm 13CO2 in synthetic air

(99 atom%; Spectra Gases, Littleport, UK) at one air change every 2 min. A dark control

mesocosm covered by dark and reflective material was also similarly exposed to 13CO2 to

take into account for any 13CO2 diffusing into aerenchyma of the sedges or directly into the

peat soil during the pulse, whilst a control mesocosm exposed to ambient air CO2 (natural

abundance) was also included for each O3 treatment. A photoacoustic gas monitor (INNOVA

1412i, LumaSense Technologies, Ballerup, Denmark) was regularly connected to the outlet

of chambers to check that the CO2 concentration within the chambers remained at ambient

levels.

After the 13CO2 pulse, O3 exposure of the mesocosms in the OTCs was continued for

another 51 days. Methane emissions were determined the day before and 1, 3, 5, 7, 10, 14, 21,

30 and 51 days after the pulse as described earlier by sampling the headspace regularly over a

100 min period. At the end of the 100-min period, an additional 20 ml gas sample was

collected from the headspace and stored in a 12-ml Exetainer for subsequent 13C-CH4

analysis. Ambient air from each OTC was sampled in five Exetainers on each sampling date,

which was transferred to a 100-ml Young’s gas flask in the laboratory. Water was removed

from these gas samples via a perchlorate chemical trap, and the CH4 was oxidised to CO2,

which was cryogenically pre-concentrated using a trace gas pre-concentrator (Isoprime,

Stockport, UK), prior to GC column (Poraplot Q) separation and introduction to an IRMS via

open split (Isoprime, Stockport, UK) to determine the δ13C of the CH4 in the gas samples

relative to V-PDB at the NERC Life Sciences Mass Spectrometry Facility, Lancaster

(precision better than 0.5‰; instrument calibrated with NIST 8562 certified reference gas).

Methane emissions were determined through regressions over time as described

previously (all regressions: r2> 0.90). Cumulative CH4 emission over the entire 51-day chase

period and the first 7 days was calculated using linear interpolation between sampling dates.
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The contribution of recently fixed C to the CH4 emitted from the mesocosms was determined

by summation of the daily 13CH4 emitted by the pulse using linear interpolation for days

between sampling dates, and multiplying by the ratio of average day length (measured as

when PAR in the OTCs was above 50 μmol m-2 s-1) and the length of the pulse (6.3 hours) on

a weekly basis.

2.4. Statistical analyses

All data were analysed using IBM SPSS Statistics 20.0 (IBM Corp., Armonk, NY, USA).

Data were tested for normality and log-transformed when variances were proportional to the

means. Studentised residuals of statistical tests of the measured variables were screened for

any OTC pattern within each O3 treatment or pattern in their position at the field station. No

consistent OTC or position patterns were observed; consequently, statistical test results with

the nine replicates per O3 treatment were used to interpret the data.

The effects of O3 and time on CH4 emission and ancillary variables were tested using

linear mixed models. Data were analysed over the whole 2.5-year period and additionally for

the summer (April - early October) and winter (early October - March) periods separately.

Sedge green leaf density was included as a covariate in the model if p< 0.100. Multiple

comparisons with Bonferroni correction were carried out amongst the means of the O3

treatments. An independent samples t-test was carried out to compare the difference in sedge

root biomass between the NFA+35/10 and ambient O3 treatments. Linear relationships

between CH4 emission, sedge green leaf density and pore water variables were identified

using Pearson’s correlation tests during the summer and winter periods of the 2.5 year study,

for all O3 treatments together and for individual O3 treatments.

A two-way ANOVA without replication with mesocosm as the second source was

performed to determine the effect of peat depth on the apparent fractionation factor (αC).
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Responses of aerobic CH4 oxidation potential to the four O3 treatments at two peat depths

was tested using a two-way ANOVA, with OTC as a random factor nested within O3. For

multiple comparisons among the means the Tukey test was used, and a modification of the

standard error was calculated in the nested model (Zar, 1984). The same approach was used

for CH4 production potential, but just for one peat depth.

The effects of O3 and time on the δ13C of the emitted CH4 during the chase was tested

as described above, and independent samples t-tests were carried out to compare differences

in sedge green leaf density and pore water variables between the NFA+35/10 and ambient O3

treatments.

3. Results

3.1. O3 exposure

The 24h mean O3 concentration in the ambient O3 treatment over the entire 2.5 year

experiment (April 2008-August 2010) was 24 ppb, with little variation (23-26 ppb) between

years and seasons (Table 1). The mean O3 concentration over the course of the experiment

showed only a weak diurnal pattern, varying between 26.1 ppb mid afternoon and 22.1 ppb

early morning (See Supplementary Information Figure S1). In NFA+10, the overall increase

in 24h mean concentration was 8 ppb, with a seasonal range of 7-10 ppb, except in the winter

of 2008/9 when it was 2 ppb.

Table 1 Summary of O3 concentration treatments (ppb) in the OTCs with non-filter air (NFA:

‘Ambient O3’) , NFA plus 10 ppb O3 (‘NFA+10’), NFA plus 25 ppb O3 (‘NFA+25’) and

NFA plus 35/10 ppb O3 ‘(NFA+35/10’) by season. All O3 treatments were supplied 24h day-1,

except for NFA+35/10, which was supplied for 8h in the daytime (9:00-17:00) at NFA plus
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35 ppb during summer (April - early October) and at NFA plus 10 ppb during winter (early

October - March). (mean ± SE, n= 3).

season 24h mean O3 concentration 8h daytime

mean O3 conc.

Ambient O3 NFA+10 NFA+25 NFA+35/10 NFA+35/10

summer 2008 26 ± 1 33 ± 1 47 ± 1 39 ± 0 62 ± 1

winter 2008/9 24 ± 0 26 ± 1 48 ± 0 31 ± 0 36 ± 0

summer 2009 24 ± 0 34 ± 1 59 ± 0 42 ± 0 64 ± 0

winter 2009/10 23 ± 0 32 ± 0 48 ± 0 27 ± 0 33 ± 0

summer 2010 24 ± 0 34 ± 0 53 ± 0 38 ± 0 61 ± 0

In NFA+25, the overall increase of 27 ppb was also close to the target, with a seasonal range

of 22-29 ppb, except in the summer of 2009 when it was 35 ppb. The daytime 8h mean O3

concentrations and the 24h mean O3 concentrations were very similar for each of these

treatments. The mean 8h-concentrations of the NFA+35/10 treatment ranged between 34 and

39 ppb in summer and between 10 and 12 ppb in winter. The overall increase in 24h mean

concentration in NFA+35/10 was 12 ppb overall (14-20 ppb in summers; 4-7 ppb in winters);

hence in terms of 24h mean concentrations this treatment lay between the NFA+10 and the

NFA+25 treatments (Supplementary Information Table S2 for AOT40 values).

3.2. Methane emission

Reductions in CH4 emissions at elevated O3 were apparent from the end of July in the first

growing season (Fig. 1). Methane emissions were significantly affected by O3 in summer



17

over the entire 2.5 years of the experiment (Table 2). Summer CH4 emissions were reduced

(P= 0.06) by 27% in the NFA+35/10 treatment (Table 3), but the effects of NFA+10 and

NFA+25 treatments were not statistically significant. Methane emissions were low in winter

and there was no evidence of a significant O3 effect at this time (Table 2). In the third

summer there appeared to be a consistent increase in CH4 emission in the NFA+10 treatment,

but this effect was not significant.

Fig. 1 Methane emission of wet heath mesocosms at ambient O3 (non-filtered air (NFA),

white bars), NFA plus 10 ppb O3 (NFA+10, light grey bars), NFA plus 25 ppb O3 (NFA+25,

medium grey bars) and NFA plus 35/10 ppb O3 (NFA+35/10, dark grey bars ppb) from April

2008 - July 2010. All O3 treatments were supplied 24h day-1, except for NFA+35/10, which

was supplied for 8h in the daytime (9:00-17:00) at NFA plus 35 ppb during summer (April -

early October) and at NFA plus 10 ppb during winter (early October - March). Values are

expressed as mMean ± SE (n= 9). See Table 2 for overview statistical analysis results.
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Table 2 Summary of statistical analysis of O3 effects on CH4 emission for the whole period,

and for the three summer periods only or the two winter periods only (ozone: n= 9; time: n=

17, 11, 6 for the whole period, summers and winters only, respectively). Green sedge leaf

density was only included as a covariate when P< 0.100.

period ozone time ozone*time leaf density

(covariate)

F P F P F P F P

whole period 2.30 0.096 51.10 <0.001 3.32 <0.001 3.25 0.075

summer 3.22 0.036 72.78 <0.001 1.58 0.104

winter 1.69 0.191 21.83 <0.001 1.56 0.143 6.74 0.011

3.3. Plant and soil variables

Sedge green leaf density increased on average by 142% (SE: ±25%) from the first to the third

summer, but was not significantly influenced by O3 (summers: F= 0.04 P= 0.33; winters: F=

0.35, P= 0.55; Table 3). Sedge green leaf density was a significant covariate for CH4

emissions over the whole period and for the winter periods (Table 2). Methane emission was

negatively correlated with sedge green leaf density during winter for all O3 treatments (r=

0.53; P= 0.001), and NFA+10 (r= -0.68, P= 0.04). At the end of the experiment, exposure to

NFA+35/10 had not significantly affected root biomass (mean ± SE: 2593 ± 307 g m-2 and

2378 ± 172 g m-2 for ambient O3 and NFA+35/10, respectively; t= 0.62; P= 0.55).
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Table 3 Methane emission, sedge green leaf density, dissolved organic carbon (DOC)

concentration, pH and NH4-N concentration of pore water at 20 cm depth at the four O3

treatments (see legend Table 1 for details of O3 treatments) by season averaged over the 2.5-

year study. Values are expressed as mean ± SE (n= 9). Over the entire 2.5-year period, CH4

emission (P< 0.10) and pore water NH4 concentration at 20 cm depth (P< 0.05) in summer

were significantly lower at NFA+35/10 compared to ambient O3. Pore water pH at 20 cm

depth was significantly lower at some of the sampling dates at elevated O3 (P< 0.05), whilst

green leaf sedge density and pore water DOC concentration at 20 cm depth were not

significantly affected by elevated O3 during the experiment.

period Ambient O3 NFA + 10 NFA + 25 NFA + 35/10

CH4 emission (mg C m-2 h-1)

summer 4.47 ± 0.30 4.98 ± 0.41 3.87 ± 0.75 3.27 ± 0.58

winter 0.65 ± 0.14 0.84 ± 0.16 0.49 ± 0.15 0.38 ± 0.09

Sedge green leaf density (no. leaves m-2)

winter 4507 ± 527 3353 ± 588 4450 ± 547 3897 ± 365

winter 2804 ± 348 1994 ± 423 2596 ± 320 2927 ± 307

DOC concentration at 20 cm depth (mg l-1)

summer 39.8 ± 4.3 52.1 ± 7.0 46.0 ± 4.3 48.7 ± 6.7

winter 20.4 ± 1.8 32.4 ± 6.8 24.5 ± 2.0 19.1 ± 2.0
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NH4-N concentration at 20 cm depth (mg l-1)

summer 3.67 ± 0.60 4.19 ± 1.37 2.23 ± 0.70 1.67 ± 0.38

winter 3.22 ± 0.52 3.33 ± 1.15 2.24 ± 0.86 1.53 ± 0.40

pH at 20 cm depth

summer 5.81 ± 0.04 5.58 ± 0.10 5.44 ± 0.10 5.55 ± 0.09

winter 5.85 ± 0.07 5.75 ± 0.10 5.56 ± 0.04 5.65 ± 0.09

The DOC concentration of the peat pore water at 20 cm below the Sphagnum surface

did not respond significantly to the O3 treatments (summer: F= 0.47, P= 0.70; winter: F= 1.43,

P= 0.25; Table 3), although the concentrations tended to be higher in the three elevated O3

treatments than for ambient O3. There were also no significant effects of O3 on DOC

concentrations at 2.5 cm and 10 cm depth (data not shown).

In contrast, the effect of elevated O3 on NH4 concentrations in the pore water at 20 cm

depth was significant in summer during the whole experiment (P= 0.04; Table 4), but there

was also a significant O3*time interaction (P= 0.007). The O3 effect, like that on CH4

emissions shown in Figure 1, became apparent from the first summer (Fig.2). During every

summer, the NH4 concentrations were reduced significantly in NFA+35/10 compared to

ambient O3 (by 50% in 2008 (P< 0.05), by 56% in 2009 (P< 0.05), and by 61% in 2010 (P<

0.10), with an overall reduction of 54% (Table 3; mean values ± SE of NH4-N concentrations

at 20 cm depth for each summer period are shown in the Supplementary Information: Table

S3). The NH4-N concentrations were also reduced in the two other elevated O3 treatments

during the first summer (P< 0.10), and for NFA+25 also in summer 2009 (P< 0.10). Overall in

winter, the NH4 concentrations at 20 cm were reduced by 52% in NFA+35/10 (P< 0.10; Table

3). Like CH4 emissions, NH4 concentrations tended to become higher in NFA+10 than
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ambient O3 treatments in the final year of the experiment (Fig. 2), but this effect was not

significant. Elevated O3 did not significantly affect pore water NH4 concentrations at 2.5 cm

and 10 cm depth, although similar trends in response to O3 were observed (data not shown).

The NO3+NO2 concentrations in pore water were in general consistently very low throughout

the peat profile.

Fig. 2 Ammonium concentration of pore water at 20 cm below the moss surface of wet heath

mesocosms at four O3 treatments (see legend Fig. 1 for details of O3 treatments) from April

2008 - July 2010. Values are expressed as mean ± SE (n= 9). See Table 4 for overview

statistical analysis results.

Table 4 Summary of statistical analysis of O3 effects on NH4 concentration of pore water at

20 cm below the moss surface for the whole period, and for the three summer periods only or

the two winter periods only (ozone: n= 9; time: n= 17, 11, 6 for the whole period, summer

and winter only, respectively). Green sedge leaf density was only included as a covariate

when P< 0.100.
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period ozone time ozone*time leaf density

(covariate)

F P F P F P F P

whole

period

2.44 0.063 48.54 <0.001 2.17 0.012 12.38 0.001

summer 3.04 0.043 29.43 <0.001 2.42 0.007 23.67 <0.001

winter 1.96 0.142 3.05 0.022 1.00 0.480 14.25 <0.001

The pH of pore water at 20 cm was significantly affected by O3 during the summer

periods (F= 3.58, P= 0.02; Table 3) throughout the experiment, but only during the second of

the winter periods (F= 3.05, P= 0.043). There was also a highly significant interaction of O3

with time in summer (F= 3.63, P< 0.001) which was also present for the first two individual

summer periods; pH was significantly lower in NFA+10 than ambient O3 on three summer

measurement dates, and significantly lower in NFA+35/10 than ambient O3 on five. During

the second winter, pH was also significantly lower at NFA+25 (P< 0.05). Similar O3 effects

were observed for pH at 10 cm and 2.5 cm, though the effects were significant at fewer

sampling dates (data not shown).

Pore water NH4 concentrations at all three depths were positively correlated with CH4

emissions in both summer and winter when data for all O3 treatments were included (Table 5).

At the two deeper depths, this was also the case for the NFA+35/10 treatment in summer and

winter, and for most other O3 treatments in winter (data not shown). Pore water pH also

correlated positively with CH4 emission when all O3 treatments were included; this effect was

significant in the winters throughout the peat profile, and in the summers at 10 cm and 20 cm

depth (Table 5). At the two deeper depths, significant positive correlations were also
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frequently found for individual O3 treatments, particularly in winter (data not shown). The pH

always showed strong significant positive correlations with NH4 concentrations at each depth

(0.001 <P< 0.002).

Table 5 Pearson correlation coefficients (r) and associated P-values of methane emission (mg

C m-2 h-1) with pore water NH4-N concentration (mg l-1) and pH at 2.5, 10 and 20 cm below

the Sphagnum surface (n= 36), across all O3 treatments split by summer and winter impacts

during the 2.5-year study (n= 36). Significant correlations (P< 0.05) are indicated in bold.

Untransformed data were used, except for NH4-N concentrations at all three depths in

summer, and at 2 cm and 10 cm depth in winter.

period 2.5 cm depth 10 cm depth 20 cm depth

r P r P r P

NH4-N

summer 0.496 0.002 0.649 <0.001 0.673 <0.001

winter 0.609 <0.001 0.653 <0.001 0.626 <0.001

pH

summer 0.188 0.271 0.390 0.019 0.469 0.004

winter 0.352 0.035 0.648 <0.001 0.455 0.005

Soil temperature at 2.5 cm in summer, and at 10 cm in both summer and winter,

showed significant overall O3 treatment differences. However, the soil temperature

differences between elevated O3 treatments and ambient O3 were not consistent over time at
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2.5 and 20 cm, ranging between -0.4 and 0.7˚C at 2.5 cm depth, and between -0.1 and 0.3˚C

at 20 cm depth. There were more consistent soil temperature differences (P< 0.10) at 10 cm

depth, with soil temperature in NFA+10 in summer and NFA+35/10 in winter being 0.5˚C

higher than at ambient O3. Overall, soil temperature differences between elevated O3

treatments and ambient O3 at 10 cm depth ranged between -0.1 and 0.5˚C in summer and

between 0.1oC and 0.5oC in winter.

3.4.
13

CO2 pulse labelling experiment

The δ13C of the emitted CH4 was enhanced one day after the application of the 13CO2 pulse,

peaked after 10-14 days, and then gradually decreased again (time effect: F= 63.67, P< 0.001;

Fig. 3). However, the δ13C-CH4 value was not significantly affected by O3 over the 51 days of

the experiment (F= 0.29, P= 0.59), and there was no significant O3*time interaction (F= 0.15,

P= 1.00). Sedge green leaf density was included in the model (F= 103.0, P< 0.001).
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Fig. 3 The δ13C of the emitted CH4 after the 13CO2 pulse labelling of 6.3h hours on 10 August

2010 at ambient O3 and NFA+35/10 (see legend Fig. 1 for details of O3 treatments), using

transparent chambers during the 13CO2 pulse in ambient light (L), identical transparent

chambers with CO2 at natural abundance in ambient light (‘light controls’, C), and identical

but opaque chambers during the 13CO2 pulse in dark conditions (‘dark controls’, D). For L:

values are expressed as mean ± SE (n= 9), For C and D controls: n=1. No significant

difference between ambient O3 and the NFA+35/10 treatments was observed at P< 0.05.

The contribution of recent photosynthate to CH4 emission over the 51-day period was not

significantly affected by O3 (t= -0.24, P= 0.81) and was relatively small (on average 12% for

both O3 treatments; Table 6). Little 13CH4 was emitted from the dark control mesocosms after

the 13CO2 pulse (contribution of recent photosynthates to CH4 emission: 0.1-0.4%),

confirming that the 13CH4 emitted in light conditions was predominantly derived from newly

fixed C.

Table 6 Cumulative CH4 emission, and plant and soil chemistry variables of the wet heath

mesocosms of the 13CO2 pulse labelling experiment at ambient O3 and NFA+35/10

treatments (see legend Table 1 for details of O3 treatments). ‘-5 cm’ and ‘-20 cm’ are

measurements at 5 and 20 cm below the Sphagnum surface, respectively. Values are

expressed as mean ± SE (n= 9). Significant correlations (P< 0.10) are indicated in bold.

variable Ambient O3 NFA + 35/10

CH4 emission (mg CH4-C m-2 h-1)

0-7 days 4.27 ± 0.48 3.09 ± 0.46



26

0-51 days 4.00 ± 0.48 2.97 ± 0.45

Contribution of recent photosynthates to CH4 emission (%)

0-51 days 11.7 ± 1.8 12.4 ± 2.3

Sedge green leaf density (no. leaves m-2)

day 0 4852 ± 1365 4562 ± 1016

Pore water chemistry at day 0 (concentrations in mg l-1)

NH4-N conc.: 2.5 cm depth 0.10 ± 0.04 0.16 ± 0.05

NH4-N conc.: 20 cm depth 2.76 ± 0.99 2.08 ± 0.84

DOC conc.: 2.5 cm depth 8.4 ± 0.5 12.1 ± 2.0

DOC conc.: 20 cm depth 19.5 ± 3.4 25.9 ± 7.4

pH: 2.5 cm depth 5.37 ± 0.04 5.41 ± 0.06

pH: 20 cm depth 5.66 ± 0.04 5.60 ± 0.09

Cumulative CH4 emission over 0-7 days was 28% lower in the NFA+35/10 treatment

(t= 1.83, P= 0.09), but this effect was not significant over days 0-51 (F= 1.34, P= 0.20). The

effects of the NFA+35/10 treatment on sedge green leaf density and pore water chemistry are

also summarised in Table 6; there were no significant O3 effects except for DOC at 2.5 cm

depth which tended to be higher at NFA+35/10 (t= 1.81, P= 0.09).

3.5. Predominant methanogenic pathway

The apparent fractionation factor (αC) was significantly lower at 2.5 cm and 10 cm (mean ±

SE: 1.048 ± 0.001 and 1.049 ± 0.001) than at 20 cm and 30 cm depth (1.055 ± 0.001 and
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1.057 ± 0.001; depth effect: F= 17.61, P< 0.001). There was no significant effect of O3.

3.6. Potential methane production and oxidation

The overall effect of O3 on CH4 production potential was highly significant (F= 8.29, P= 0.01;

Fig. 4a). The CH4 production potential in NFA+10 was reduced by 44% compared to ambient

O3, while that in NFA+25 was reduced by 61%; post-hoc tests showed that both these effects

were significant (P< 0.05). However, the CH4 production potential in NFA+35/10 was only

reduced by 22%, a value that was not significantly lower than ambient O3.
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Fig. 4 Methane production potential at 20-25 cm below the Sphagnum surface (a) and aerobic

CH4 oxidation potential at 0-5 cm (white bars) and 20-25 cm (grey bars) depth below the

Sphagnum surface (b) at the four O3 treatments in August 2010 (see legend Fig. 1 for details

of O3 treatments). Values are expressed as mean ± SE (n= 9). Letters indicate significant

differences among O3 treatments within the same soil depth at P< 0.05.

The aerobic CH4 oxidation potential was significantly reduced by elevated O3 in the

top 5 cm of the mesocosms (F= 14.94, P= 0.001; Fig. 4b); the values were reduced by 70%

(P< 0.05) and 56% (P< 0.10) in NFA+25 and NFA+35/10 respectively, compared to ambient

O3. However, there was no significant O3 effect at 20-25 cm (F= 0.64, P= 0.61).

Table 7 summarises O3 effects on other variables in these mesocosms. Anaerobic

respiration at 20-25 cm was not affected by O3 (F= 0.78, P= 0.53), nor was aerobic

respiration measured at 0-5 cm and 20-25 cm (overall: F= 1.11, P= 0.40). Sedge green leaf

density was affected by O3 (F= 3.60, P= 0.07), with values in the three elevated O3 treatments

tending to be lower than at ambient O3 (only for NFA+10: P< 0.10). Extractable NH4

concentrations at 20 cm had a tendency to decline with increasing O3, and pore water DOC
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concentration at both depths tended to be higher at elevated O3, but neither of these effects

was significant. Soil pH was not significantly affected by O3 at 20 cm, but there was a

significant effect at 2.5 cm depth (O3: F= 3.04, P< 0.05), with significantly lower values in

NFA+25 than at NFA+35/10.

Table 7 Soil respiration rates, and plant and soil chemistry variables of peat incubations used

for CH4 production and aerobic CH4 oxidation potentials at the four different O3 treatments

(see legend Table 1 for details of O3 treatments) in August 2010. Values are expressed as

mean ± SE (n= 9). Anaerobic and aerobic respiration, extractable NH4 concentration at 20-25

cm depth and most pore water variables were not significantly affected by elevated O3,

except for sedge green leaf density which was lower at the three elevated O3 treatments (P<

0.10), and for pore water pH at 2.5 cm depth which was significantly lower at NFA+25 than

at NFA+35/10 (P< 0.05).

variable Ambient O3 NFA + 10 NFA + 25 NFA + 35/10

Anaerobic respiration (µg CO2-C g DW-1 h-1)

20-25 cm depth 6.4 ± 0.4 6.5 ± 0.8 7.3 ± 0.8 6.3 ± 0.9

Aerobic respiration (µg CO2-C g DW-1 h-1)

0-5 cm depth 31.8 ± 2.3 36.7 ± 2.0 35.4 ± 4.0 31.6 ± 1.1

20-25 cm depth 12.0 ± 0.6 14.9 ± 0.9 13.8 ± 1.3 14.0 ± 1.2

Sedge green leaf density (no. leaves m-2)
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7058 ± 959 4204 ± 1352 5829 ± 846 4999 ± 542

Pore water chemistry (concentrations in mg l-1)

NH4-N conc.: 2.5 cm depth 0.02 ± 0.01 0.24 ± 0.18 0.05 ± 0.04 0.02 ± 0.01

NH4-N conc.: 20 cm depth 1.18 ± 0.37 2.85 ± 1.47 1.52 ± 0.78 0.56 ± 0.20

DOC conc.: 2.5 cm depth 9.5 ± 1.4 14.6 ± 2.4 15.2 ± 2.9 14.8 ± 3.4

DOC conc.: 20 cm depth 21.0 ± 3.4 34.9 ± 6.7 31.6 ± 3.7 35.2 ± 9.4

pH: 2.5 cm depth 5.35 ± 0.09 5.36 ± 0.10 5.08 ± 0.09 5.47 ± 0.10

pH: 20 cm depth 5.69 ± 0.04 5.53 ± 0.08 5.48 ± 0.11 5.49 ± 0.05

Extractable NH4-N concentration (0.5 M NaCl; in mg kg-1 DW)

20-25 cm depth 101 ± 10 86.0 ± 22.4 74.1 ± 21.7 64.5 ± 11.5

4. Discussion

4.1. Ozone impacts on CH4 emission

Exposure to the NFA+35/10 O3 treatment resulted in a 27% reduction in CH4 emission

during summer. This finding is consistent with results from our earlier study (Toet et al.,

2011) using a different temperate peatland community in response to comparable elevated O3

exposures, suggesting that the effect may be more widespread. However, the two treatments

involving 24h year-round elevation of O3 concentrations (NFA+10 and NFA+25), resulted in

no significant decrease in seasonal CH4 emissions, despite the 24h mean O3 concentration
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and AOT40 values (see Supplementary Information Table S2), being higher in NFA+25 than

in NFA+35/10; indeed, in the final summer, CH4 emissions tended to increase in NFA+10.

This difference was not an artefact of CH4 emissions being measured during the day, when

NFA+35/10 exposures were higher, as in both ambient O3 and NFA+35/10, CH4 emissions

showed relatively weak diurnal variation (data not shown). Part of the reason for the lack of

response to 24h exposure may be stomatal closure at night-time, and hence reduced stomatal

flux into sedge leaves; however, stomata may also have been (partly) open at night as found

in several plant species including sedges (Caird et al., 2007, Gebauer et al., 1998). Ozone

exposure has also been observed to make stomata sluggish, increasing nocturnal transpiration

and O3 uptake (Davison & Barnes, 2002; Hoshika et al., 2013). Although the air temperature

was on average 3.8˚C higher in the OTCs than at the Scottish field site, the mean summer

CH4 emission rates of 2-12 mg C m-2 h-1 were within the range of field flux rates in other

sedge-dominated peatlands within the UK (Greenup et al., 2000; Gauci et al., 2002;

McNamara et al., 2008; Toet et al., 2011; Levy et al., 2012: 0.1-14 mg m-2 h-1) and Northern

Europe (Granberg et al. 2001, Rinnan et al. 2003, Mörsky et al. 2008: 0.7-16 mg m-2 h-1).

However, the results from both this and our previous study in open-top chambers

(OTCs) (Toet et al. 2011) were not consistent with the findings of the four-year mire open-air

fumigation study of Mörsky et al. (2008), who reported no overall long-term responses of

CH4 emissions to elevated O3, which were comparable to our NFA+35/10 treatment. The use

of OTCs, rather than a field release system, may modify the size of the effect of a given

ozone concentration, but these different findings may also be due to a range of other factors,

including local climate, soil microbiota, and peat chemistry. Our results are also inconsistent

with the summer-long closed-chamber experiment of Williamson et al. (2016), although the

non-significant tendency for increased CH4 emissions in the lower background O3 treatment

by the end of the experiment, was consistent with their report that relative small increases in
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background O3 exposure may increase CH4 emissions, which suggests a hormetic dose

response relationship (Calabrese 2005). Rinnan et al. (2013) suggested that CH4 responses to

elevated O3 are rather small in these boreal peatlands, compared to other environmental

factors (e.g. temperature, water table and light). However, consistent with our findings at

NFA+35/10, decreased CH4 emissions have been reported for three OTC studies on rice

paddies in which O3 concentrations were elevated for 7-8h during the day (Bhatia et al., 2011;

Zheng et al., 2011; Tang et al., 2015). Tang et al. (2015) derived a dose-response relationship

from these three experiments; CH4 emissions declined by 2.3% for every 1 ppm.h increase in

annual AOT40. This is a stronger effect than the 0.7% for every 1 ppm.h we calculated for

impacts in the NFA+35/10 treatment in the experiment reported here.

4.2. Plant-mediated ozone responses

Elevated O3 effects on CH4 emissions are probably not caused by direct impacts on soil

microbial populations since O3 is very reactive, and O3 and its reaction products have been

shown not to penetrate deeper than the top few mm of soils (Toet et al., 2009). Ozone is also

unlikely to penetrate through the aerenchyma, as it is expected to react rapidly on contact

with moist plant surfaces. We cannot exclude the possibility of reduced transport of CH4

through the aerenchyma of sedge plants due to elevated O3, although Mörsky et al. (2008)

reported no significant effect of O3 on the proportion of aerenchymatous tissue in

Eriophorum vaginatum leaves, and there was no significant effect of O3 on sedge green leaf

density of the sedges in our study; furthermore, sedge leaf density did not correlate positively

with CH4 emissions.

We concluded from this that the effects of elevated O3 are likely to be linked to

processes occurring below-ground that are mediated indirectly by plants, e.g. through reduced

root biomass and turnover, altered root exudation, litter biomass or litter quality. There is
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evidence from rice paddies that O3-induced reductions in CH4 emissions are due to reduced C

allocation below-ground leading to reduced availability of soil organic C and hence decreased

microbial activity. For example, Bhatia et al. (2011) reported reduced CH4 emissions

associated with lower root activity (as measured by reduced dehydrogenase activity), and

lower DOC concentrations. Similarly, Tang et al. (2015) attributed reduced CH4 emissions to

reduced biomass allocation below-ground (root biomass declined by 35%) which they linked

to an associated inhibition of CH4 production potential. Feng et al. (2013) also reported that

DOC concentrations were reduced by 20% in this study.

Sedge root biomass was not significantly affected by elevated O3 during our study (S.

Toet, unpublished data), contrary to expectation, and pore water DOC concentrations were

also not significantly affected by O3; indeed the trend was for increased, rather than

decreased, DOC concentrations. Effects on root biomass were not reported by Mörsky et al.

(2008), although they found increased pore water concentrations of organic acids (including

acetate) under elevated O3. Jones et al. (2009) reported that O3 had no significant effect on

DOC concentrations in bog microcosms dominated by Sphagnum species, but caused a large

reduction in DOC concentrations in microcosms dominated by Festuca and Juncus species;

this was attributed to a reduction in root exudates, causing a shift in microbial consumption

from root exudates to soil C pools.

Results from our 13C pulse labelling study clearly demonstrate that elevated O3 did

not alter the contribution of recent photosynthate to CH4 emissions, even though CH4

emissions from these labelled cores were reduced by 28%. Recent photosynthate was

estimated to contribute only 12% of CH4 emissions in August-September, a relatively low

percentage compared to other peatlands with sedges (>75%: King et al., 2002; 32%:

unpublished data, S. Toet) and anaerobic rice paddies (22-45% for the entire growth period,

Minoda et al., 1996; Tokida et al., 2011). Impacts on recent photosynthate are therefore not
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the main source for CH4 production in this wet heath, at least not in early August, suggesting

that the hydrogenotrophic pathway using less recent C sources rather than the acetoclastic

pathway using more labile organic C may have been more prevalent in CH4 production in the

mesocosms (e.g. Hornibrook et al., 2000). This was not clearly supported by the apparent

fractionation factors of 1.055 and 1.057 for pore water observed at 20 cm and 30 cm depth, as

they are borderline in indicating the dominance of either pathway (Whiticar et al., 1986;

Whiticar, 1999; Conrad, 2005; Holmes et al., 2015). These values were, however, probably

lowered, indicating more prevalence towards acetoclastic methanogenesis, due to C isotopic

fractionation of CH4 during aerobic, anaerobic or facultative CH4 oxidation when the CH4

passed the peat profile to the moss surface (Semrau et al., 2011; Smemo & Yavitt, 2011;

Whiticar, 1999). Dominance of the hydrogenotrophic pathway has been observed in several

sedge-dominated peatlands (Whiticar et al., 1986; Mörsky et al., 2008; Holmes et al., 2015)

and may also explain the lack of increase in CH4 emission despite the increase in organic acid

concentrations (including acetate) in the peat pore water at elevated O3 in the peatland

microcosm study of Mörsky et al. (2008). Transient shifts in pathway dominance are less

likely as similar contributions of recent photosynthates to CH4 emission and also no effect of

elevated O3 were observed in the previous summer (data not shown), but seasonal shifts

cannot be excluded. Overall, and in contrast to our original hypotheses, and findings from

rice paddies, there is no evidence that the observed decrease in CH4 emission caused by

elevated O3 was due to reduced organic C substrate availability.

4.3. CH4 production and oxidation potential

Methane production potential in the final summer of our study was significantly reduced in

the two treatments providing 24h fumigation (NFA+10 and NFA+25), but not in NFA+35/10.

The greatest reduction in production potential, of 61%, was found in the highest 24h mean O3
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exposure (NFA+25). Methane production potential was only measured at 20-25 cm, the depth

with highest production potential in a pilot study. However, there was still considerable

production potential at 10-15 cm, and we cannot rule out the possibility that O3 had different

effects at shallower depths.

Aerobic CH4 oxidation potential was reduced, by an average of 63% in the top, partly

green, Sphagnum layer in the NFA+25 and NFA+35/10 treatments. The high aerobic CH4

oxidation potential in the Sphagnum layer is consistent with the findings of Raghoebarsing et

al. (2005) and Larmola et al. (2010), who showed CH4 consumption by Sphagnum plants

through partly endophytic methanotrophs in hyaline cells and on stem leaves. However,

reduced CH4 oxidation rates should result in higher CH4 emission rates, rather than the lower

CH4 emission rates that we found in NFA+35/10. There was no significant elevated O3 effect

on oxidation potential at 20-25 cm although, as for the CH4 production potential, elevated O3

may have had different effects at other depths. It is also possible that the higher O2

availability in the potential measurements mean that actual aerobic CH4 oxidation rates,

especially below the water table, may have been lower in situ, or that anaerobic CH4

oxidation may have been important (Smemo & Yavitt, 2011).

Mörsky et al. (2008) measured CH4 production and aerobic consumption potential at a

depth of 8-12 cm at the end of the third summer. There was no significant effect of elevated

O3 on either production or oxidation potential, a result that is consistent with the lack of O3

effects on CH4 emissions in their experiment. However, Feng et al. (2013) reported a strong

reduction in methanogenic activity by elevated O3 in paddy soils in an experiment in which

elevated O3 reduced both soil DOC and acetate concentrations, and Tang et al. (2015)

reported a significant decrease in CH4 emissions in elevated O3. Importantly, Feng et al.

(2013) were able to link this finding to changes in the diversity and richness of methanogenic

archaea, and reductions in the proportion in certain dominant groups such as the acetoclastic
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Methanosaeta. Earlier studies have also suggested that O3 can affect the soil microbial

community of rice paddies. Chen et al. (2010) used PFLA and C source utilisation to show

that elevated O3 significantly decreased total microbial biomass and changed soil microbial

composition at the end of the growing season, while Feng et al. (2011) reported that elevated

O3 reduced the abundance and genetic diversity of anoxygenic purple phototrophic bacteria.

Furthermore, Mörsky et al. (2008) also reported, using PFLA biomarkers, that elevated O3

reduced total microbial biomass and altered microbial composition in their peatland

microcosms. Hence, although we did not find effects of elevated O3 on CH4 production or

oxidation potentials that were consistent with the observed long-term effects on CH4

emissions, it remains likely that changes in the methanogenic and/or methanotrophic

communities were the key underlying explanation.

4.4. Ozone impacts on N cycling

An alternative explanation for changes in the activity or composition of microbial

communities involved in CH4 emissions may relate to indirect effects of elevated O3 on soil

N cycling. In particular, elevated O3 significantly reduced pore water NH4 concentrations at

20 cm throughout the experiment. Similar trends were observed at shallower depths but they

were not significant. The soil NH4 response to elevated O3 was apparent from the first

summer of the experiment, when O3 effects on CH4 emission were also first observed. By the

final year, NH4 concentrations appeared to increase in the NFA+10 treatment, as did CH4

emission. Overall, a strong positive correlation was found, both between and within O3

treatments, between pore water NH4 concentrations at all depths and CH4 emission. Similar

positive correlations were found with pH, which was therefore also closely correlated with

NH4 concentrations.
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Previous long-term studies of elevated O3 effects on peatland ecosystems (e.g.

Mörsky et al., 2008) have not reported effects on NH4 concentrations or on N cycling, but

negative responses of soil NH4 concentrations to elevated O3 have been observed in rice

paddies (Bhatia et al., 2011), meadows (Kanerva et al., 2006) and soybean crops (Pereira et

al., 2011). A positive link between soil inorganic N availability and methanogenic activity is

plausible, and CH4 emission in paddy soils has been positively correlated to levels of soil

mineralisable N (e.g. Zheng et al., 2006). However, there may be important differences

between these heavily fertilised systems and natural wetlands. The lower NH4 availability

also might have promoted methanotrophic activity in the mesocosms (Wang & Ineson 2003,

Keller et al., 2006) and hence reduced CH4 emissions, although there was no evidence of

enhanced soil aerobic CH4 oxidation potential at NFA+35/10 in our study; in fact the

opposite effect was observed in the top layer of the mesocosms.

Most studies attributed reduced soil NH4 concentrations or changes in soil N

concentration or microbial biomass N in response to elevated O3 to reduced below-ground C

inputs, reduced litter quality (Kanerva et al., 2006; Bhatia et al., 2011; Pereira et al., 2011) or

higher nitrification and denitrification rates (Li et al., 2010; Pereira et al., 2011). We have no

evidence of such changes in C inputs in elevated O3 in our study. Aerobic and anaerobic soil

respiration potentials were not affected by elevated O3 in the final summer of our experiment.

Low peat pore water NO2+NO3 concentrations and negligible N2O emissions (S. Toet,

unpublished data) suggest that enhanced nitrification and/or denitrification responses to

elevated O3 were also less likely. The mechanism leading to reduced soil NH4
+

concentrations in our study is therefore uncertain.

Other possible explanations for decreased NH4 concentrations may include increased

plant uptake of N, increased microbial biomass (Kanerva et al., 2006; Bassin et al., 2015) or

decreased N2 fixation rate (Pausch et al., 1996; Li et al., 2013). Increased N concentrations of
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leaves in response to elevated O3 have been observed in trees and grasslands (Wittig et al.,

2009; Bassin et al., 2015), but this has rather been attributed to increased retranslocation of N

after early senescence of part of the leaves, reduced plant size (Wittig et al., 2009) and

reduced N resorption from senescing leaves (Uddling et al., 2006). Moreover, leaf N

concentrations of the green sedge leaves in the final summer of our experiment were, lower at

NFA+35/10 than at ambient O3 (S. Toet, unpublished data), and, together, with no significant

O3 effects on sedge green leaf density and root biomass imply that increased plant uptake of

N at elevated O3 is not very likely. Recent findings suggest that methanotrophy and N2

fixation in peatlands may be linked (Ho & Bodelier, 2015); Larmola et al. (2014) observed

that aerobic methanotrophs contributed to up to 40% of N2 fixation. Lower rates of energy-

demanding N2 fixation at elevated O3 may therefore have resulted in higher CH4 oxidation

rates and consequently lower CH4 emissions, although this was not confirmed by our aerobic

CH4 oxidation potential measurements.

Finally, more than one mechanism may explain the observed effects of elevated O3 on

CH4 fluxes: mechanisms may be transient or occur simultaneously. It may be significant that

reductions in both CH4 emissions and soil NH4 concentrations were observed within a few

weeks of initiation of the O3 treatments. Similar large changes in pore water chemistry (in this

case DOC) over a few weeks were reported by Jones et al. (2009), and rapid changes in root

respiration in response to O3 have been reported (Andersen, 2003). In contrast, the long-term

responses to elevated O3 that led to the changes in CH4 production and oxidation potential

that were found in the final summer of the experiment may be linked to different

(contributions of) mechanisms.

In conclusion, our data provide evidence of reduced CH4 emissions in temperate

peatlands exposed to seasonal 8h mean O3 concentrations during summer of about 60 ppb. A

recent analysis of global ecosystem exposure to O3 (Fuhrer et al., under review), using the
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Community Earth System Model which has been applied globally, for example by Tai et al.

(2014), identified large areas of northern hemisphere temperate ecosystems which experience

spring and summer 12h mean O3 exposures above 55 ppb. Hence, our results imply that

temperate CH4 emissions across the northern hemisphere are already significantly reduced by

O3, and this effect may become greater in future in regions (such as Asia) where precursor

emissions are predicted to increase. However, our data also suggest that increases in global

background annual mean O3 concentrations within the range predicted for 2050 will have

little, if any, effect on CH4 emissions from peatland communities. We reject most of our

original five hypotheses about the mechanisms underlying O3 effects on CH4 emissions from

peatlands, but we have identified a close association between effects on NH4 concentrations

and on CH4 emissions across O3 treatments and time, which suggests that they are

mechanistically linked, through effects on the methanogenic and/or methanotrophic

communities. This also implies that the global increases in N deposition which may affect

plant species composition, and hence ecosystem processes of temperate ecosystems,

including peatlands (Bobbink et al., 2010), may also directly increase CH4 emissions.
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