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 15 

ABSTRACT: 16 

Dated phylogenies of fossil taxa allow palaeobiologists to estimate the timing of major divergences and 17 

placement of extinct lineages, and to test macroevolutionary hypotheses. Recently developed Bayesian 18 

‘tip-dating’ methods simultaneously infer and date the branching relationships among fossil taxa, and 19 

infer putative ancestral relationships. Using a previously published dataset for extinct theropod 20 

dinosaurs, we contrast the dated relationships inferred by several tip-dating approaches and evaluate 21 

potential downstream effects on phylogenetic comparative methods. We also compare tip-dating 22 

analyses to maximum-parsimony trees time-scaled via alternative a posteriori approaches including via 23 

the probabilistic cal3 method. Among tip-dating analyses, we find opposing but strongly-supported 24 

relationships, despite similarity in inferred ancestors. Overall, tip-dating methods infer divergence dates 25 

often millions (or tens of millions) of years older than the earliest stratigraphic appearance of that clade. 26 

Model-comparison analyses of the pattern of body-size evolution found that the support for 27 

evolutionary mode can vary across and between tree-samples from cal3 and tip-dating approaches. 28 

These differences suggest that model and software choice in dating analyses can have a substantial 29 

impact on the dated phylogenies obtained and broader evolutionary inferences. 30 

  31 

Keywords:  32 

tip-dating, divergence dates, phylogenetic comparative methods, theropods 33 

 34 

1. INTRODUCTION 35 

How fossil organisms are related to each other and to living lineages is a matter of interest both to the 36 

general public and the scientific community. This matter surpasses systematic placement, because our 37 

estimates of branching relationships and their timing have direct implications on macroevolutionary 38 

inferences. Few examples are better than Archaeopteryx, which has long caught public attention as a 39 

potential early bird, a position questioned by a recent maximum-parsimony phylogenetic analysis [1] but 40 

seemingly reaffirmed by a later maximum-likelihood analysis [2].  41 

 42 

Parsimony versus model-based phylogenetics is only one great debate in paleontological systematics: 43 

for decades, there has been disagreement about whether to consider stratigraphic occurrences when 44 

inferring relationships [3]. Recently, the oft-criticized parsimony-based ‘stratocladistics’ [4] has been 45 
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reborn as Bayesian ‘tip-dating’ phylogenetics [5], where non-ultrametric time-scaled phylogenies of 46 

extinct fossil tip taxa are inferred as a function of both clock-like models of character change and a tree 47 

prior, describing the distributions of divergence dates [6-7]. Most recently, these tree priors belong to 48 

the birth-death-serial-sampling (BDSS) family of models, which involve both diversification and sampling 49 

processes in the fossil record [8]. Tip-dating with BDSS is implemented in Bayesian phylogenetics 50 

applications, such as BEAST2 and MrBayes, including allowing for fossil taxa to be considered as 51 

potential sampled ancestors [9-10]. Sampled-ancestor BDSS (‘SA-BDSS’, also known as sampled-52 

ancestor-birth-death or fossilized-birth-death) models differ from non-sampled-ancestor BDSS (‘noSA-53 

BDSS’ or transmission birth-death process), where sampling is synchronous with extinction [11]. 54 

Fossilization is unlikely to coincide with extinction, and thus noSA-BDSS may be more fitting to pathogen 55 

phylogenetics in epidemiology. Additionally, paleobiologists often use a posteriori time-scaling (APT) to 56 

secondarily date existing cladograms of extinct taxa. While some APT methods are arbitrary rescaling 57 

algorithms, the cal3 approach probabilistically dates divergences relative to a SA-BDSS variant [12]. 58 

 59 

The diversity of approaches, models and software that can be used to obtain a fossil-only time-scaled 60 

phylogeny calls for an empirical comparison of tip-dating and probabilistic APT methods. We choose to 61 

perform such an examination using the matrix from Xu et al. [1], paired with stratigraphic occurrences. 62 

Although this matrix was outdated by later revisions [13], its usage in studies employing different 63 

phylogenetic methods makes it an attractive basis for a case study comparing the results of dating 64 

approaches, which differ in the model assumed and their implementation. Analyzing the original Xu et 65 

al. matrix also allows us to test whether Bayesian tip-dating avoids atypical relationships [14-15] inferred 66 

by [2]. Additionally, the emergence of avian dinosaurs has been a focus for macroevolutionary studies 67 

[16], and thus we can use this dataset to examine how different dating methods impact downstream 68 

phylogenetic comparative methods. 69 

  70 

2. MATERIALS AND METHODS 71 

 72 

We used the 374 character matrix for 89 taxa from [1] and age data from the Paleobiology Database for 73 

a series of Bayesian tip-dating analyses using BEAST2 and MrBayes. We performed analyses with noSA-74 

BDSS as the tree prior using BEAST2 [11] and SA-BDSS with both programs [9-10]. All tip-dating analyses 75 

used the Mkv model of character change [17] and accommodated stratigraphic uncertainties in first 76 

appearances of tip taxa as uniform priors. We applied minimum-age and minimum-branch-length APT 77 

approaches to 100 randomly selected most-parsimonious trees (MPTs) with first appearance times used 78 

as tip dates, including cal3 [12] with input rates taken from the BEAST2 SA posterior estimates to 79 

maximize the comparability of our analyses. We compared divergence dates and ancestral placements 80 

between samples of 100 APT-dated MPTs to a random selection of 100 post-burn-in trees from the 81 

Bayesian analyses. We also used these samples to compare outcomes of a comparative analysis, 82 

mimicking the analyses of [16], fitting models for Ornstein-Uhlenbeck (OU), Early Burst (EB), and 83 

Brownian Motion (BM) (via geiger [18]). Further details of our methods and convergence assessments 84 

for the tip-dating analyses are in the supplementary methods. 85 

 86 

3. RESULTS 87 

The relationships inferred under the Bayesian methods are similar to previous analyses [1-2]. In the 88 

BEAST2 analyses, Archaeopteryx has a posterior probability of 1 of being a member of the branch-89 
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defined Avialae (Figs S6-S7), in agreement with [2] (and contrary to [1]). However, MrBayes SA gives a 90 

posterior probability of 0.68 for the same placement (Fig S8). The unexpected relationships found by the 91 

maximum-likelihood study [14-15] are avoided, although the placements of the Alvarezsauridae and 92 

Scansoriopterygidae can vary considerably with strong support (see supplementary results). For 93 

example, all tip-dating analyses find a monophyletic Tyrannosauroidea with high support (no posterior 94 

probability < 0.97). 95 

 96 

Although sampling theropod ancestral taxa may seem unlikely, both SA tip-dating analyses generally 97 

inferred a median of 1-2 ancestors per tree (this frequency was skewed in MrBayes, with some trees 98 

containing up to 33 sampled ancestors). Both BEAST2 and MrBayes SA analyses place similar sets of taxa 99 

as ancestors (Fig S3), with a strong rank-order correlation of the per-taxon frequencies of ancestor 100 

placement (Spearman rho = 0.69, p-value = 5.31e-14). The cal3 analyses using first appearances never 101 

infer any ancestors, but similar correlations were found with ancestor frequencies from cal3 using last 102 

appearance times (see supplementary results). While Archaeopteryx is popularly referred to as an 103 

‘ancestral bird’, it is a sampled ancestor in only 5% of the MrBayes posterior (0% for BEAST2 SA), and 104 

then only to its close relative Wellnhoferia, not the more nested Avialae. 105 

 106 

Comparisons of divergence dates for four nested avian clades (using a branch-based definition) show 107 

differences in clade age estimates across approaches (Fig. 1). All APT methods propose similar median 108 

ages for all four clades, much younger than tip-dating estimates.  This is due to maximum-parsimony 109 

analyses placing the early-appearing Epidexipteryx and Epidendrosaurus (i.e., the Scansoriopterygidae) 110 

as members of a branch-based Avialae (also observed in [1-2]), which constrains the age of the Avialae 111 

to the Middle Jurassic or older. Tip-dating analyses vary in their placement of the Scansoriopterygidae 112 

but do not place them with the Avialae (see supplementary results). Divergence date estimates from 113 

cal3 for alternative non-Avian clades (Tyrannosauroidea, Therizinosauria) resemble distributions 114 

obtained from tip-dating (Fig. S1), illustrating how APT approaches are ultimately constrained by input 115 

topologies. Even among tip-dating methods, there are differences, with BEAST2 noSA estimating earlier 116 

root ages than SA analyses, and BEAST2 SA having wider age distributions than MrBayes SA. Comparing 117 

age estimates for clades containing identical taxa reveals that tip-dating approaches estimate median 118 

divergence dates about 4-6 million years (Ma) older than the earliest stratigraphic occurrence, although 119 

root-ward nodes have median ages as much as 30-40 Ma older (see supplementary results). 120 

 121 

The original body-size analysis [16] used several APT approaches, including the 1 Ma minimum branch 122 

length (MBL) approach. Under all time-scaling variants, they found strong support for single-optima OU 123 

for Theropoda and Maniraptora. Our reanalysis with alternative dated phylogenies agrees, with high 124 

support for OU across all approaches, particularly MBL (Fig. 2). However, our analysis reveals that model 125 

support varies considerably across trees from the same dating approach, with some phylogenies 126 

providing greater support for BM, a pattern that is most evident in cal3 and BEAST2 tree samples. 127 

 128 

4. DISCUSSION 129 

While the Bayesian tip-dating analyses return broadly similar phylogenies, the contrast in topology, 130 

divergence dates and model support patterns between approaches suggests that workers need to 131 

carefully evaluate the models and priors applied, and the plausibility of complex models when datasets 132 

are limited [19]. Tip-dating methods appear to favor divergence dates that are several Ma older than the 133 
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minimum age, sometimes tens of millions of years (Figs. 1, S1-2). One explanation may be that by 134 

treating taxa in tip-dating analyses as single tips (i.e., a single point occurrence), even though more than 135 

20% are known from multiple occurrences across millions of years, the inferred level of sampling may be 136 

so low that the average morphological clock rate dominates, swamping increases in the rate of character 137 

change and erroneously leading to older dates. The differences between MrBayes and BEAST2 SA-BDSS 138 

analyses are difficult to explain given their congruence in a previous comparison (Table S3 in [10]). As 139 

that study had both extant and extinct taxa, our discrepancy might be due to MrBayes having poor 140 

MCMC mixing when all tips are extinct. 141 

 142 

Our comparative analyses support previous findings of constrained body size evolution [17], but there is 143 

variation among dating methods in the relative support for OU across trees. Variation in model support 144 

among sampled posterior trees reinforces the importance of not taking a single point estimate of 145 

phylogeny for downstream analyses [20], and highlights the need to evaluate dated phylogenies from 146 

multiple approaches. Future studies should investigate body size evolution through additional analyses 147 

than model choice [21], particularly given the known bias of some dating methods toward supporting 148 

OU [22]. The similarity of cal3 and the BEAST2 comparative analyses suggests that cal3 may be a suitable 149 

alternative when tip-dating is inapplicable. 150 

 151 

Paleobiologists will likely become major users of tip-dating and probabilistic APT approaches to generate 152 

dated phylogenies, replacing the arbitrary APT approaches. However, these techniques are still 153 

maturing. Careful consideration and applying multiple dating approaches may be necessary to isolate 154 

artifacts and identify what consensus does exist across models and implementations. 155 

 156 
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  159 

FIGURE CAPTIONS 160 

  161 

Figure 1. Age estimates for four nested theropod clades, across five different approaches for obtaining 162 

a dated phylogeny using the Xu et al. [1] dataset. Plotted boxes represent the first quantile, the median 163 

and the third quantile, respectively. From left to right, the approaches used are minimum node age 164 

dating and cal3, both applied to a sample of 100 randomly selected maximum-parsimony topologies, 165 

and three tip-dating approaches, the noSA and SA with BEAST2, and SA with MrBayes. The four clades 166 

examined (ordered left-to-right for each approach) are the root node (essentially, the Avetheropoda) 167 

and three clades with ‘branch-based’ definitions: the Coelurosauria (all taxa more closely related to 168 

modern birds than Sinraptor and Allosaurus), the Maniraptora (…than Ornithomimus) and the Avialae 169 

(…than Troodon or Deinonychus).  170 

 171 

Figure 2. The fit of models of body-size evolution across different sets of trees, each from a different 172 

approach for obtaining dated phylogenies. The right-most set is trees with edge lengths constrained to 173 

a minimum length of 1 Ma; for all others, see caption for Figure 1. Models are fit to a single dated tree, 174 

with Akaike weights for each model, for that tree (which sum to 1), figured as a bar along with other 175 

trees from that sample, as a block of 100 stacked barplots with borders removed. The barplots for each 176 
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sample are reordered relative to their support for Brownian Motion (BM), versus Ornstein-Uhlenbeck 177 

(OU) and Early Burst (EB). 178 

  179 
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