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Abstract Archaeologists are currently producing huge
numbers of digitized photographs to record and preserve arte-
fact finds. These images are used to identify and categorize
artefacts and reason about connections between artefacts and
perform outreach to the public. However, finding specific
types of images within collections remains a major chal-
lenge. Often, the metadata associated with images is sparse
or is inconsistent. This makes keyword-based exploratory
search difficult, leaving researchers to rely on serendip-
ity and slowing down the research process. We present an
image-based retrieval system that addresses this problem for
biface artefacts. In order to identify artefact characteristics
that need to be captured by image features, we conducted a
contextual inquiry study with experts in bifaces. We then
devised several descriptors for matching images of bifaces
with similar artefacts. We evaluated the performance of these
descriptors using measures that specifically look at the dif-
ferences between the sets of images returned by the search
system using different descriptors. Through this nuanced
approach, we have provided a comprehensive analysis of
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the strengths and weaknesses of the different descriptors and
identified implications for design in the search systems for
archaeology.
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1 Introduction

It has long been recognized that the process of archaeology
is by necessity a destructive one. In 1908, Sayce [31] echoed
the sentiment of Flinders Petrie when he commented that
“Scientific excavation means, before all things else, careful
observation and record of every piece of pottery, however
apparently worthless, which the excavator disinters”.

The very process which enables an archaeologist to under-
stand each layer of an excavation requires the previous layer
to be removed. The process of excavation is an unrepeat-
able operation [6]. For this reason, modern archaeology relies
heavily on the use of recording technology to retain as much
information as possible. One of the most common recording
methods for in situ and excavated artefacts is that of digital
photography.

Modern archaeological studies generate thousands of dig-
ital photographs of archaeological artefacts which are often
assembled into large public archives such as those provided
by the British Archaeology Data Service [1]. Archaeologists
utilize such databases in identification and classification of
newly discovered artefacts, training new archaeologists, and
in public engagement with archaeological history. Currently,
these archives are limited in their ability to allow archaeol-
ogists to search for relevant images related to a particular
task. Search is often limited to keyword searches, or, at
best, faceted browsing, which is problematic when image
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metadata is incomplete or in situations where the user is unfa-
miliar with the metadata schemes that are used in a particular
archive.

The Digging into Archaeological Data: Image Search and

Markup (DADAISM) project [12] is aimed at developing
advanced computing technology, including image process-
ing, to provide more useful and usable interactive systems
for archaeologists to work with image archives. This paper
reports on a major component of this project: a content-
based image retrieval system for images of biface artefacts.
This system uses image features to match a query image to
images in the database with similar properties. The image fea-
tures were developed with input from research archaeologists
so that the image features capture properties of bifaces that
would be used during classification tasks. This paper reports
on the collection of data from archaeologists, the develop-
ment of the image-based search algorithm, and an evaluation
study to validate the results against existing classifications
already present in the image metadata.

1.1 Related work

The image analysis and pattern recognition literature contain
several works related to feature extraction, similarity group-
ing, and classification of archaeological artefacts.

As part of Graphically Oriented Archaeological Database
project, the authors in [21] presented an automatic method
for shape extraction from raster images of line drawings to
facilitate matching and retrieval. Smith et al. [32] developed
a scheme to classify thin-shell ceramics based on colour and
texture descriptors in order to aid in vessel reconstructions,
using a new feature based on total variation geometry along
with SIFT (scale-invariant feature transform). Abadi et al.
[2] present a system for automatic texture characterization
and classification of ceramic pastes, fabrics, and surfaces.
They use Gabor filter along with linear discriminant analy-
sis and k-nearest neighbour techniques in order to achieve
the desired objectives. In [5], the authors analyse surface
properties in pottery and lithic artefacts. They define texture
with attributes such as coarseness, contrast, directionality,
line-likeness, regularity, and roughness. Durham et al. [13]
use generalized Hough transform as a practicable and robust
tool for matching whole and partial artefact shapes.

Few examples of image-based identification systems for
archaeological artefacts also exist in the literature. The work
in [34] illustrates the use of computer vision techniques for
the development of content-based image retrieval system
for historic glass and an automatic system for mediaeval
coin classification. In another work by [36] a prototype is
presented which allows the end-user to search for similar
digital library objects based on the image content. An inte-
grated content and metadata-based retrieval system for art
images in the domain of museum and gallery image col-

lections is presented in [22]. Image retrieval methods are
proposed to perform query on the basis of subimages. It also
presents methods of querying by very low-quality images.
IBISA [26] is a software tool that allows the user to per-
form image-based searches on the database of digital images
of archaeological objects such as ancient coins. This sys-
tem performs image segmentation with a method based on
active contours and image registration with Fourier–Mellin
Transform and computes similarity with classic intercorre-
lation factor. An extension of this system which is robust
to lighting conditions [25] has also been proposed recently.
CLAROS [10] allows image-based searches for sculpture
and pottery images based on scale-, illumination-, and
viewpoint-invariant image patches encoded using a bag-of-
words scheme.

While the use of images, either hand drawings or pho-
tographs, remains the most common visual record of found
lithics artefacts, there are opportunities to use 3D scanning
technology to improve various aspects of archaeological
work. For example, Grosman et al. [15] proposed the use
of 3D scanning for purposes of documenting the essential
characteristics of lithics in a standardized way that is less
open to interpretation and error. Lin et al. [23] proposed
the use of 3D scanning for analysis of lithic artefacts by
using precise measurements of the cortex recorded in scans
to make approximations of the size of artefacts. Finally, there
are examples of people using 3D scanning for more spe-
cific types of analysis, such as Evans and Donahue [14] who
looked at microwear on lithic artefacts.

Even with these advances in 3D scanning, there are
currently still many thousands more photographs taken of
artefacts than there are of 3D scans. Financial and time
resource costs are one reason for this, as is the need to capture
artefacts at different stages, including on site where scanners
are unlikely to be available. In other cases, it is that the 3D
scans provide some information, while images can provide
different perspectives on the objects, such as the original pati-
nation on the surfaces of flint bifaces, and thus both are likely
to be in ongoing use [8]. Combining this with the thousands
of images that are already in archives worldwide, it is the case
that archaeologists are going to need to find and work with
images for the foreseeable future. The purposes for working
with these images are varied; however, often it is to compare
and identify objects to understand their function in society.
These, and other purposes for using images in archaeology,
are discussed in the contextual inquiry study described in
Sect. 3.

With our work, we have expanded the corpus of image-
based search of archaeological images to biface artefacts
using image features based on established archaeological
methodology for identifying similarities between the arte-
facts. Expert-verified metadata is used to validate the retrieval
performance.

123



Image-based search and retrieval for biface artefacts using features capturing...

Fig. 1 Example front, rear, and side views of four bifaces. Each row contains different views of the same artefact

2 Materials and methods

2.1 Data set

Our data set is a public database from the British Archaeology
Data Service consisting of 3501 images, each 500 × 375
pixels in size, of 1167 biface artefacts in three views: front,
rear, and side [27]. Figure 1 contains several examples of
bifaces of varying size, shape, and texture, with different
views of the same artefact shown in the same row. The images
were captured at varying resolutions indicated by the scale
bar on the top-right corner of each image.

The data set also consists of 52 metadata fields for each
artefact including the site and country from where the biface
was excavated, the artefact’s raw material, type, and its phys-
ical dimensions. The metadata was verified by biface experts
and is of high quality, with little to no missing information.
We utilized this information to define and measure relevance
of results retrieved by our proposed system.

2.2 Image features for biface search

Image-based features suitable for representing the charac-
teristics of bifaces that are important for identification and
classification were selected after conducting a contextual
inquiry (CI) study in which research archaeologists with
relevant experience were interviewed. The CI study and its
outcomes are described in Sect. 3. The specific features that

were selected based on the result of CI study are described
in Sects. 4.2 and 4.3.

2.3 Image-based search algorithm

An algorithm for identifying biface images similar to that of a
query image based on the selected image features was devel-
oped. The details of this algorithm are presented in Sect. 5.

2.4 Evaluation of image-based search algorithm

The biface search algorithm was validated in several ways
by comparing the metadata of the images returned by the
search algorithm to the metadata of the query image and by
looking at patterns of disagreements in the retrieval results
for different image descriptors. The evaluation methodology
and results of the evaluation are described in Sect. 6.

3 Biface classification contextual inquiry study

We conducted a contextual inquiry (CI) study to gain insight
into how archaeologists judge similarity of bifaces. CI is a
qualitative method developed by Beyer and Holtzblatt [7] to
help design interactive systems that support users in their
tasks. A CI study traditionally will have participants and
researchers working in a collaborative way to explore dif-
ferent tasks in situ. In this case, we examined tasks where
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researchers were using image archives for research pur-
poses.

3.1 Participants

Four participants were recruited through mailing lists and
personal contacts available to the Archaeological Data Ser-
vice (ADS) at the University of York. Each participant had
over 5 years of experience as a research archaeologist, made
extensive use of picture archives in their work, and previ-
ously worked on prehistory sites with artefacts that included
biface artefacts.

3.2 Materials

Interviewees were provided with an information sheet that
discussed how the interview would proceed and were pro-
vided with an informed consent form. Interviews were
recorded on a Panasonic HD video camera, and the inter-
viewer took notes to support analysis of the recording. Of
particular interest to the interviewer was the documentation
of explicit task flows and tacit knowledge the participant was
using to make decisions. After the interview was completed,
participants were provided with a demographic questionnaire
through the online questionnaire tool Qualtrics.

During the interview, participants were shown some pre-
liminary results of the image processing algorithms to give
them some insight into how their data would be used. These
images were printed in full colour at 150 dots per inch (dpi)
to ensure clarity in the presentation.

3.3 Procedure

Participants were met in a comfortable, quiet setting with a
computer connected to the Internet. Participants were asked
to bring with them any physical or digital materials that they
use in typical, day-to-day work when trying to identify or
classify artefacts.

Participants were asked about their own background in
archaeology, their training, and their area of expertise. They
were also asked what they considered to be the most impor-
tant tasks that they undertook with online archaeological
archives.

The CI study consisted of an initial semi-structured inter-
view regarding how and when participants interacted with
image archives and what they felt the most important aspects
of the archives were. Further, the interview explored issues
around favourite and least favourite aspects of working with
image archives. This initial interview provided some initial
context regarding what users do with their data.

Participants were asked about a recent time that they had
used image archives to solve a research question and were
asked to demonstrate how they used the archive to solve that
problem. The participants demonstrated the tasks, describing
how and why they used the archive. The interviewer would
periodically stop the participant to discuss particular inter-
esting aspects of the interaction, to elaborate on particular
challenges or problems highlighted by the participant, or to
clarify the purpose of particular actions. In this way, the inter-
viewer was able to gain a better understanding of tacit aspects
of the interaction that would not necessarily be raised during
a traditional interview.

Finally, users were shown a set of images of bifaces and
asked about different features that were used for classifica-
tion and identification. This part of the interview led to a
list of common features, as well as a set of research publi-
cations and secondary resources that would elaborate these
features.

3.4 Results

All participants were trying to find information about arte-
facts that related to the ones they were already working with.
However, the final uses of the images were varied. A few
researchers were working on presentations and displays for
public engagement, while others worked to find images for
inclusion in publications or lectures. However, the majority
of the participants were trying to collect together sets of sim-
ilar artefacts in order to identify an artefact they had in hand
or, in some cases, to pass off that identification task to another
specialist team member.

In these cases, there were often several types of analysis
that would be conducted by other team members in parallel,
with individuals contributing analyses from a number of per-
spectives. For example, if the artefact is longer than they are
wide, it indicates that the artefact was, perhaps, the end prod-
uct, whereas other lithics in an assemblage were potentially
flakes from the manufacturing process. If the blade is heav-
ily worked, meaning much of the stone has had the cortex
removed, it gives indication of the advancement of the civ-
ilization that created the artefact. Finally, morphology will
often indicate the function of the tool, with the visual char-
acteristics providing a means of classifying the tools by its
function in society [3,28].

The recordings of the contextual inquiries were reviewed
and partially transcribed to identify the tasks undertaken by
participants in image archives, with a particular focus on the
types of information they used to formulate and refine their
queries. For purposes of this paper, we will focus on the
characteristics of bifaces that emerged from this analysis.
Experts reported that the following characteristics of biface
tools are used to classify artefacts, judge the similarity of

123



Image-based search and retrieval for biface artefacts using features capturing...

artefacts, and to formulate new queries for image search
systems:

– Blade versus flake The artefact will be classified as a blade
or a flake. Blades are twice as long as they are wide; flakes
are less than twice as long as they are wide.

– Worked versus unworked A distinction is made between
the cortex and core of the object. The cortex is the sur-
face of the stone which has been worked by geological
processes; the core is the interior part and is desired for
tool working. As civilization is advanced, manufacture
moved to using more of the core, while older artefacts
exhibit more cortex. Artefacts may be distinguished by
their type of removal: primary (removed from nearly
unworked stone with substantial cortex remaining), sec-
ondary (a biface with only a thin seam of cortex created
from stone closer to the core), or tertiary (flakes that have
been created from the deep interior of the stone after pri-
mary and secondary strikes have removed the cortex and
therefore exhibit a smooth, glassy quality).

– Retouched versus non-retouched Once a removal has
been struck from the core, the piece will either be left as
rubbish (because it is small or brittle), picked up and used
as is, or retouched. Retouched pieces are worked into a
specific shape for a specific task, e.g. knapping to give it
a sharp edge. The manner of retouching was reported to
be of significant interest to archaeological research.

– Colour The colour of stone bifaces from the same region
may or may not be of a consistent colour and therefore
may or not be diagnostic. Whether colour is of diagnostic
use may depend on the data set and geographic regions
under consideration.

– Morphology Morphology refers to the shape of the biface,
or the number, shape, and length of individual tines on the
artefact. It is the most common method of matching finds
to a geographic region or culture. Complications arise
when some morphological differences are derived from
other morphologies; for example, a tine could have bro-
ken off and retouched into another type of biface through
knapping.

In the next section we describe how different characteristics
are mapped to image descriptors to match images automati-
cally.

4 Biface image descriptors

The CI study indicated that size, shape (morphology), and
texture are diagnostic for bifaces. Our biface descriptor
is a concatenation of image features capturing these three
aspects. One set of morphological features capturing size
and shape, and thirteen competing texture descriptors are

Fig. 2 Preprocessing of images. Annotations and scale are removed,
and bounding box of artefact determined

described in the following sections. We begin with a descrip-
tion of the image preprocessing applied prior to extracting
features.

4.1 Image preprocessing

Biface images were preprocessed to isolate the object of
interest from the rest of the image. A sample unprocessed
image is shown in Fig. 2. Images were smoothed by using
a 5 × 5 Gaussian filter with σ = 0.5 pixels. Images were
then converted to the HSV colour space, and the biface
object is segmented by selecting all pixels that have neither
minimum nor maximum saturation. This gives accurate seg-
mentation results for almost all bifaces, except for a very
few which have very dark or very bright areas on their
surface. To address this problem, all holes in the detected
foreground regions were filled. The bounding box of the seg-
mented artefacts was determined from their segmentations
as in Fig. 2. Finally the subimages defined by the bound-
ing boxes were converted from RGB colour to greyscale
(luminance as defined by BT.601 standard). All features
comprising the biface descriptor are extracted from these
greyscale images.

4.2 Morphological features

In this section we describe the size (geometric) and shape
features that contribute to the biface descriptor.

4.2.1 Geometric features

Table 1 describes the geometric features extracted for a
biface.

Scale normalization was achieved by determining the
image’s resolution in pixels per millimetre from the scale
bar and converting distances and areas to units of mm
and mm2, respectively. We refer collectively to the features
{g1, g2, . . . , g7} as g.
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Table 1 Geometric features computed for the biface descriptor

Feature Description

g1 Scale-normalized length of the artefact’s bounding box

g2 Scale-normalized width of the artefact’s bounding box

g3 Scale-normalized area (number of pixels in the artefact’s
segmentation)

g4 The scale-normalized breadth of the artefact at 20% of the
distance along the length of the bounding box

g5 The scale-normalized breadth of the artefact at 80% of the
distance along the length of the bounding box

g6 The ratio g2/g1

g7 The ratio g4/g5

4.2.2 Shape features

Biface shape is captured by a vector of Fourier descriptors.
Following the centroid distance method of Zhang and Lu
[38], the distance, r(t), between the centroid of the artefact
and the t-th perimeter boundary point was computed. These
distances are then encoded using the discrete Fourier trans-
form:

FDl =
1

L

L−1
∑

t=0

r(t) exp

(

− j2πlt

L

)

, l = 0, 1, . . . , L − 1.

(1)

where L is the number of boundary points. A Fourier descrip-
tor FDl of a given shape is translation invariant and is
made rotation invariant by retaining only the magnitude and
discarding the phase information. For scale invariance, the
magnitude of FDl is divided by the DC component. The DC-
normalized magnitude of the first 39 Fourier coefficients was
retained for the shape description. Thus, the vector of Fourier
descriptor features encoding a biface’s shape is:

f =

{

|FD1|

|FD0|
,
|FD2|

|FD0|
, . . . ,

|FD39|

|FD0|
.

}

(2)

4.3 Texture descriptors

The CI study indicated that texture of a biface’s surface
appearance was an important indicator of the biface’s raw
material type. In this section we describe 13 candidate tex-
ture descriptors. Some are existing features taken directly
from existing literature, and others are new or are variations
of existing features. The relative effectiveness of these 13
descriptors is evaluated in Sect. 6.

4.3.1 Uniform local binary patterns (ULBP)

Our ULBP descriptor consists of the 8-bit uniform local
binary patterns as described in [33]. It is pertinent to mention
here that we discarded the 59th bin containing non-uniform
patterns as they have been observed to not be discriminating
[33].

4.3.2 Orthogonal combination of linear binary patterns

(OCLBP)

Our OCLBP descriptor consists of the features exactly as
described by Zhu et al. [40].

4.3.3 Segmentation-based fractal texture analysis (SFTA)

Our SFTA descriptor uses segmentation-based fractal texture
analysis [11] which decomposes the image into a set of binary
images using a multithresholding scheme, and the fractal
dimensions of the resulting regions describe the texture pat-
terns. We used nt = 8 thresholds in our implementation.
We did not use size (pixel count) and mean greylevel as sug-
gested in [11] for feature vector construction because they are
not discriminative for our data set. We only used the fractal
dimension computed over different binary images resulting
from the binary decomposition algorithm. Thus, we gener-
ated 2nt features using the box-counting algorithm for nt

thresholds, for a total of 16 features.

4.3.4 Global phase congruency histogram (GPCH)

Phase congruency (PC) is a measure of feature significance
that is particularly robust to changes in illumination and con-
trast [19]. PC is based on the fact that the Fourier components
are all in phase at the locations of significant features, such as
step edges. It is a dimensionless quantity for measuring the
consistency of local phase over different scales. It has been
successfully used as feature in applications such as finger-
knuckle-print recognition [39] and pose estimation for face
recognition [30].

To compute a local PC map, a bank of quadrature-pair log-
Gabor wavelets is applied to the image. Using the author’s
MATLAB implementation [20] of the method in [19], we
used n = 3 scales of log-Gabor wavelet and 6 orientations
θ = {0, π

6 , 2π
6 , 3π

6 , 4π
6 , 5π

6 }. We then computed a global
phase congruency histogram (GPCH) by dividing the range
of possible PC values, [0.0, 1.0], into 10 equal subintervals
and counting the number of PC values in the PC map falling
into each subinterval. The result is a vector of 10 texture
features.
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4.3.5 Angular radial phase congruency histogram

(ARPCH)

We generated PC maps as in the previous section and sub-
divided the maps into radial sectors using the angular radial
partitioning (ARP) described in [9]. The application of this
partitioning scheme to PC maps is novel. ARP overlays on
the PC maps P concentric circles which are divided into Q

angular partitions. This gives P × Q sectors on the PC map.
A histogram of PC values is constructed for each sector

of the PC map. We divided the range of possible PC val-
ues [0.0, 1.0] into B equal-sized subintervals and created a
histogram Hs for each sector s of an image as follows:

Hs(b) =
countb(PC(s))

area(s)
, b = 1, 2, . . . , B, (3)

where B is the number of histogram bins, PC(s) is the
multiset of phase congruency values in the sector s, and
countb(PC(s)) is the number of elements in PC(s) which
fall into bin b.

We then construct vectors Ai by concatenating the val-
ues of the i-th bin of each sector histogram: Ai =

(H1(i), H2(i), . . . , HS(i)). These are concatenated into a
feature vector A = (A1, A2, . . . , AB). We used S = P ×

Q = 3 × 8 = 24 sectors as shown in Fig. 3, and B = 10
histogram bins, resulting in 240 features in A.

To reduce size of this descriptor, A is subdivided into sub-
vectors Â j of length S/2. We then perform singular value
decomposition on each Â j :

Â j (1×S/2) = U j (1×k)Σ j (k×k)V
T
j (k×S/2). (4)

14

23

85

76

912

1011

1613

1514

1720

1819

2421

2322

Fig. 3 The radial and angular divisions of the PC map for P = 3 and
Q = 8. Numbers indicate the sector ordering used when concatenating
sector histograms

Since k = min(1, S/2) = 1, Σ j is a 1 × 1 matrix, regardless
of S, and we represent each subvector Â j by the singular
value Σ j . These are concatenated to form our 20-feature
ARPCH descriptor of (Σ1,Σ2, . . . , Σ2B).

4.3.6 Orientation-based phase congruency histograms

(OPCH)

In this novel variation of PC-histogram-based features,
instead of computing one PC map, as with the GPCH and
ARPCH features, we computed eight separate PC maps for
different filter orientations using [20]. We computed 8 differ-
ent PC maps for the set of orientations θ = {0, π

8 , 2π
8 , 3π

8 ,
4π
8 , 5π

8 , 6π
8 , 7π

8 } using n = 4 scales and took the summation
over all scales n for each orientation in θ .

We then generated the histogram of PC values for each
direction in θ :

Hθ (b) =
countb(PCθ (I ))

rows(I ) · cols(I )
, b = 1, 2, . . . , B (5)

where rows(I ) and cols(I ) are the dimensions of the bound-
ing box found during image preprocessing. Again the range
of PC values was divided into B = 10 equal-size subinter-
vals. The histograms for each PC map were concatenated
to form our orientation-based phase congruency histogram
(OPCH) descriptor consisting of 80 features.

4.3.7 Gabor wavelet features (GWF)

We extracted features from the Gabor wavelet transform of
a artefact’s image as in [24]. A filter bank of Gabor wavelet
functions with different orientations is convolved with the
image to obtain a complex response Rsα(x, y) as follows

Rsα(x, y) =
∑

m

∑

n

I (x − m, y − n)Ψ ∗
sα(m, n) (6)

where I is the image; Ψ ∗
sα is the complex conjugate of Ψsα ,

which is a self-similar function generated from the dilation
and rotation of the mother wavelet Ψ . The definitions of Ψ ,
Ψsα and Ψ ∗

sα can be found in Eqs. 1–3 of [24] where they are
called g, G, and gmn , respectively. Intuitively s determines
the scale of the filter, and α determines its orientation.

We chose six orientations and three scales for our imple-
mentation, obtaining 18 responses Rsα(x, y) corresponding
to all combinations of α = 0, 1, . . . , 5 and s = 0, 1, 2. As
in [24], the means µsα and standard deviations σsα, of the
magnitude of the 18 response images were used as features
resulting in a descriptor of 36 features.

It is pertinent to mention that σx and σy from Equation 1
in [24] were computed as σx = 1/2πσu and σy = 1/2πσv

where σu and σv are as in Equation 4 in [24]. The scale factor
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a ([24], Equation 3) is also computed in accordance with Eq.
4 of [24]. In this equation, the lower and upper frequencies of
interest, Ul and Uh , were chosen as 0.05 and 0.4, respectively.

4.3.8 Log-Gabor wavelet features (LGWF)

A variant of the GWF features defined in the previous sub-
section was derived by substituting log-Gabor wavelet filters
[4] for the Gabor wavelet filters. Log-Gabor wavelets are
represented in polar coordinates as follows:

LG(ρ, θ) = exp

⎛

⎜

⎝

(

− ln
(

ρ
ρ0

))2

(

2 ln
(

σρ

ρ0

))2

⎞

⎟

⎠
· exp

(

−(θ − θ0)
2

2σ 2
θ

)

,

(7)

where ρ is the radial coordinate, θ is the angular coordi-
nate, and ρ0 is the centre frequency of the filter, defined as
1
λ

for wavelength λ, θ0 is the orientation of the filter, and σρ

and σθ are the bandwidths for the radial and angular compo-
nents.

We used three filter scales ρ0 = {1/3, 1/6, 1/12} cor-
responding to wavelengths of 3, 6, and 12 pixels and six
different orientations θ0 = {π

6 ∗ (i − 1) | i = 1, . . . , 6}. For
each ρ0, the radial bandwidth was selected so that σρ/ρo =

0.65, which corresponds approximately to 2 octaves. For all
orientations, the angular bandwidth was set to two-third of
the angular interval π/6 (the interval between selected filter
orientations θ0) or π/9.

The LGWF features were then obtained by computing
the mean µρθ , standard deviation σρθ , and skewness γρθ of
the magnitude of 18 responses of log-Gabor wavelet filters,
defined as follows.

µρθ =
E(ρ, θ)

M N
(8)

σρθ =

√

∑∑

(E(ρ, θ) − µρθ )2

M N
(9)

γρθ =
1

σρθ
3 .

∑ ∑

(E(ρ, θ) − µρθ )
3

M N
(10)

where M and N are the number of rows and columns of
I , and E(ρ, θ) = ‖idft(LG(ρ, θ) ∗ dft(I ))‖ denotes the
magnitude of response image obtained by the pointwise mul-
tiplication of discrete Fourier transform of the image I with
the log-Gabor wavelet filter. Functions dft and idft denote
the forward and inverse discrete Fourier transforms, respec-
tively. The combinations of 3 scales and 6 orientations and
3 features per combination yield a descriptor containing 54
features.

4.3.9 Binary texton features (BTF)

We used the “Binary-MR8” features exactly as described in
[16]. These features were chosen since they do not require
training. In brief, these features are computed by employ-
ing a bank of maximum-response filters consisting of some
anisotropic filters at different orientations and scales and
some radially symmetric filters. This is followed by a dimen-
sionality reduction process which yields a texture descriptor
of length 2048.

4.3.10 Fusion of LGWF and ARPCH (L–A)

LGWF and ARPCH focus on two different aspects of filter
responses. The LWGF is based on the global statistics of log-
Gabor response image, whereas the ARPCH is based on the
local statistics of the phase congruency of the filters response.
Various face recognition algorithms focus on the use of phase
as well as magnitude-based features of Gabor responses [37]
[29]. On the similar lines, considering the complementary
(global vs. local) nature of LGWF and ARPCH features, we
fused them to be used as a new texture descriptor L–A. Fusion
was performed at the “score level” by computing the distance
metric (Chi-square) for LGWF and ARPCH separately for
each pair of images, normalizing these distances with the
min–max normalization described previously, and taking the
sum of the normalized distances as the distance between the
query image and the database images.

4.3.11 Fusion of LGWF and BTF (L–B)

The filters used in the extraction of binary texton features
(BTF) are sensitive to different image features compared
to the log-Gabor wavelets used in LGWF. The filter bank
used to compute BTF features is rotationally invariant and
contains isotropic (Gaussian and Laplacian of Gaussian) as
well as anisotropic derivative-based filters which aim to cap-
ture edges and bars at multiple orientations and scales and,
thus, is well capable of encoding both rotationally invari-
ant and oriented textures. BTF features are derived from the
responses of MR8 filters, generating a binary texton for mul-
tiple orientations, in a fashion similar to rotation-invariant
uniform LBP features. LGWF features are based on response
statistics of the log-Gabor filter bank, which consists of log-
Gabor filters that are defined in the log-polar coordinates
of the Fourier domain as Gaussians shifted from origin, well
capable of obtaining the localized frequency information and
their zero response for a constant signal provides invariance
to greylevel shift. Given the complementary nature of these
features, we combined them to create a new texture descriptor
L–B for raw material characterization. This fusion is imple-
mented at the score level as described in Sect. 4.3.10.
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4.3.12 Fusion of LGWF, ARPCH, and BTF (L–A–B)

We previously observed that LGWF is complementary to
ARPCH and BTF. ARPCH and BTF are also comple-
mentary. ARPCH is derived from local phase congruency
which is an illumination and contrast-invariant feature of
an image, whereas BTF is based on anisotropic first and
second derivatives, and both of them are based on two dif-
ferent broad approaches to feature analysis in human vision.
The possibility of making human feature detection complete
by combining insights from both the approaches is listed
out in [17]. We fused all three of these descriptors into a
new descriptor L–A–B, again using score-level fusion as
described in Sect. 4.3.10.

4.3.13 Fusion of LGWF, ARPCH, and SFTA (L–A–S)

Finally, the complementary descriptors LGWF, ARPCH, and
SFTA were combined using score-level fusion as in Sect.
4.3.10. This feature is abbreviated as L–A–S.

5 Image-based search algorithm for bifaces

5.1 Feature extraction

The shape descriptor f , the geometric features g =

{g1, . . . , g7}, and all thirteen texture descriptors described
in Sect. 4.3 were computed for each image.

5.2 Dissimilarity measures

The distance between each geometric feature of a query
image Q and a database image I is defined as a simple
absolute difference:

Dgeo
i (Q, I ) =

∣

∣

∣

(

g
Q
i − g I

i

)∣

∣

∣ , i = 1, . . . , 7, (11)

where g
Q
i and g I

i represent the geometric features of objects
in images Q and I , respectively.

The distance between shape descriptors of Q and I is
defined as the L2 norm:

Dshape(Q, I ) =

nshape
∑

i=1

√

(

f
Q

i − f I
i

)2
, (12)

where f
Q

i and f I
i represent the shape features of images Q

and I , respectively, and nshape is the number of shape features,
which, as previously noted, is 39.

The distance between texture descriptors of images Q and
I is defined as the Chi-square distance:

Dtexture(Q, I ) =

ntex
∑

i=1

(

H
Q
i − H I

i

)2

H
Q
i + H I

i

, (13)

where H
Q
i and H I

i represent the features of the texture
descriptors of images Q and I , respectively, and ntex is the
length of the texture descriptor.

The min–max normalization technique [18] is employed
to separately normalize each of the geometric feature dis-
tances:

Dnorm(i)
geo (Q, I ) =

Di
geo(Q, I ) − mink

(

Di
geo (Q, Ik)

)

maxk

(

Di
geo (Q, Ik)

)

− mink

(

Di
geo (Q, Ik)

) ,

i = 1, 2 . . . , 7 (14)

where the index k is over all images in the database. Shape
and texture distances, Dshape and Dtexture, are normalized in
the same way.

1. Preprocess the query image as in Sect. 4.1.
2. For the input query image, compute the geometric, shape, fea-

tures described in Sect. 4.2 (these are precomputed for the database
images).

3. For the query image, extract the texture features for one of the tex-
ture descriptors in Sect. 4.3 (these are precomputed for the database
images).

4. Apply Eq. 11 to find Di
geo(Q, I ) for i = 1, 2, ..., 7 between query

image Q and each database image I . Normalize these distances
using min–max normalization (Eq. 14).

5. Apply Eqs. 12 and 13 to find Dshape(Q, I ) and Dtexture(Q, I )

between the query image Q and each database image I . Normalize
these distances using min–max normalization.

6. Fuse the 9 normalized distances between Q and each database
image I by taking their sum.

7. Based on the fused distances, return the N least dissimilar matches
from the database.

Algorithm 1 Proposed algorithm for archaeological image
retrieval system.

5.3 Retrieval algorithm

Given a query image, the steps mentioned in Algorithm 1 are
performed to retrieve similar images from the database. In
order to avoid online computation, the geometric, shape, and
texture descriptors of the objects in the database images are
precomputed. The algorithm can be used with any one of the
texture descriptors described in Sect. 4.3 together with the
geometric features g and the shape descriptor f .
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6 Validation of the image-based search algorithm

This section discusses the performance evaluation of Algo-
rithm 1.

6.1 Validation methodology

For each texture descriptor, the 1167 front-view images
were used in a leave-one-out style methodology. Each of the
images was used once as the query image and the N most sim-
ilar images were retrieved from the set of remaining images
using Algorithm 1.

Section 2.1 briefly described the metadata associated with
each image. Certain fields of this metadata were used to
analyse the performance of Algorithm 1 by comparing the
metadata of the retrieved images to the metadata of the query
image. Many of the metadata fields contain information that
is not useful for image-based matching because they do not
directly describe appearance of the objects, for example,
fields that detail the date and location of the find. The meta-
data fields chosen for the use in the analysis were motivated
by the findings of the CI study detailed in Sect. 3. The biface

type (e.g. hand axe) field was used due to its relationship
with biface morphology and the blade vs. flake categoriza-
tion. The raw material type field (e.g. flint or chert) was used
because this is related to geographic location and availabil-
ity of material at a site. Several metadata fields describing
physical measurements of the artefacts were used since they
can be used to judge how well the physical measurements of
the bifaces are extracted from the images. These fields were:
Area, Aspect Ratio, Length, Breadth, Breadth at 20% of the

length (Breadth20, the breadth of the artefact at 20% of the
distance between the wider end of the artefact to the narrower
end of the biface), Breadth at 80% of the length (Breadth80),
and the ratio of Breadth80 to Breadth20.

6.2 Individual metadata match performance

As a first look at how the different texture descriptors per-
formed, for each texture descriptor t and metadata field m, we
computed the percentage of retrieved images over all queries
where field m of the retrieved image matched field m of the
query image. The results are shown in Table 2 for the 10, 20,
and 99 most similar images retrieved by Algorithm 1. The
biface type field was matched about 93% of the time for all
texture descriptors; the lack of variability observed coincides
with the expectation that texture descriptors do not capture
information about biface type.

Different texture descriptors exhibited greater differences
in ability to match raw material type ranging from about
71% for ULBP, OCLBP, and GWF to about 76% for L–A–S
for the top 99 retrievals. Generally, the various descriptors
consisting of descriptors fused with LWGF resulted in the

most raw material type matches, with SFTA and ARPCH also
performing well on their own. For 10 and 20 retrievals the
same trends are present, though the spread increases to a low
of about 72% to a high of about 81% for 10 retrievals. This
indicates that the descriptors which are fusions with LWGF
are more likely to return bifaces of the same raw material
type with higher ranks.

Even though the texture descriptors are not capturing
information about a biface’s physical dimensions, the trend
was that ULBP, and OCLBP resulted in more matches for the
physical measurement metadata fields, while the fusions of
descriptors with LGWF performed the worst, though in all
cases the difference between best and worst was only about
four percentage points. This suggests that texture descrip-
tors that are better at matching raw material type do so at
the expense of finding bifaces of a more similar size, likely
because bifaces of the same raw material type but with greater
differences in physical dimensions are selected over bifaces
of more similar physical dimensions. The last two columns
of the table where we have aggregated the results for meta-
data features meant to be, respectively, captured by shape
and size image features, and we can see the trade-off clearly.
Texture descriptors that are better able to extract bifaces with
the correct raw material type do so at the expense of matching
objects of more similar shape and size.

6.3 Normalized accuracy

In order to get a better picture of the performance of the
retrieval system we must recognize that, in general, it will
not be possible to get very high percentages of metadata
matches since there may not even exist sufficiently many
relevant images with similar metadata. In this section we use
a measure we call normalized accuracy which compares the
number of metadata matches in the retrieved images to the
highest number of metadata matches that it would be possible
to achieve by retrieving the same number of images.

The relevance score, relscore, which characterizes the rel-
evance of an image D retrieved by Algorithm 1 to the given
query image Q is defined as:

relscore(Q, D) =

9
∑

i=1

metai
score(Q, D), (15)

where metai
score(Q, D) is the binary match score function

metai
score(Q, D) =

{

1, if metai (Q) = metai (D),

0, otherwise
(16)

where metai (Q) and metai (D) refer to the value of the i th

metadata feature of Q and D, respectively. Thus, if the two
images exactly match in all of their metadata features, the
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Table 2 Percentage of queries for which each metadata field matched for each texture descriptor
Top 99 Retreivals

Shape erutxeTeziS
Descriptor Type Breadth Ratio Aspect Area Breadth20 Breadth80 Length Breadth Raw Mat. All Shape All Size

ULBP 93.66 53.92 55.1 70.61 50.44 62.54 66.95 64.87 71.13 67.56 63.08
OCLBP 93.66 53.98 55.21 70.66 50.52 62.56 67.08 64.94 71.2 67.62 63.15
SFTA 93.65 53.62 51.58 70.4 49.92 62.09 65.11 64.34 74.85 66.28 62.37
GPCH 93.69 53.99 53.52 70.75 50.25 62.61 66.35 65.05 72.65 67.07 63.0
ARPCH 93.73 54.13 52.5 70.38 50.3 62.15 65.61 64.55 73.05 66.79 62.6
OPCH 93.63 53.23 54.93 70.12 49.98 62.04 66.6 64.39 72.31 67.26 62.63
GWF 93.57 53.32 52.95 70.11 49.56 62.0 65.88 64.5 70.83 66.61 62.41
LGWF 93.57 52.48 52.01 69.2 48.72 61.17 64.89 63.45 71.67 66.02 61.49
BTF 93.66 53.18 56.21 70.13 49.72 61.69 66.96 63.88 71.89 67.68 62.48
L-A 93.65 51.9 51.14 68.01 47.73 59.68 63.74 61.9 73.4 65.56 60.21
L-B 93.58 51.34 54.93 68.0 47.55 59.53 65.12 61.55 72.33 66.62 60.35
L-A-B 93.66 50.83 54.08 66.75 46.71 58.3 63.82 60.13 73.95 66.19 59.14
L-A-S 93.61 51.02 50.21 66.94 46.71 58.68 62.47 60.38 76.2 64.95 59.03

Top 20 Retreivals

Shape erutxeTeziS
Descriptor Type Breadth Ratio Aspect Area Breadth20 Breadth80 Length Breadth Raw Mat. All Shape All Size

ULBP 93.54 67.77 70.37 80.86 64.91 72.77 79.01 75.57 71.54 77.22 74.63
OCLBP 93.59 67.87 70.65 80.86 65.02 72.73 79.1 75.64 71.59 77.37 74.67
SFTA 93.57 66.18 66.66 80.36 63.37 72.14 76.99 74.53 76.91 75.47 73.48
GPCH 93.56 67.62 69.19 80.5 64.19 72.7 78.33 75.68 74.3 76.79 74.28
ARPCH 93.56 67.06 67.81 80.07 63.99 72.01 77.32 74.95 75.02 76.15 73.67
OPCH 93.53 67.16 69.83 80.46 64.59 72.55 78.65 75.32 73.44 76.84 74.31
GWF 93.35 66.91 67.79 79.88 63.72 72.41 77.88 74.96 71.38 76.02 73.77
LGWF 93.44 65.49 66.27 78.93 62.31 71.52 76.99 74.15 73.42 75.07 72.78
BTF 93.62 66.97 71.02 80.24 64.26 72.52 78.92 75.07 73.33 77.2 74.2
L-A 93.48 64.22 64.72 77.99 61.24 70.3 75.38 73.09 76.5 74.14 71.6
L-B 93.53 63.99 68.27 78.12 61.34 70.45 77.0 73.01 75.0 75.26 71.98
L-A-B 93.56 62.87 66.95 77.27 60.39 69.32 75.96 71.93 77.73 74.46 70.97
L-A-S 93.55 62.7 63.57 77.24 59.72 69.14 74.21 71.3 79.75 73.27 70.32

Top 10 Retreivals

Shape erutxeTeziS
Descriptor Type Breadth Ratio Aspect Area Breadth20 Breadth80 Length Breadth Raw Mat. All Shape All Size

ULBP 93.32 72.35 74.82 83.16 69.59 75.64 81.97 78.76 71.87 80.16 77.82
OCLBP 93.33 72.54 74.87 83.4 69.61 75.78 82.21 78.91 71.71 80.25 77.98
SFTA 93.59 70.59 71.95 82.95 67.27 75.47 80.18 77.69 77.13 78.71 76.71
GPCH 93.54 72.38 73.54 82.94 68.89 75.52 81.08 78.4 75.23 79.82 77.37
ARPCH 93.51 71.6 72.21 82.58 68.71 75.15 80.47 77.69 75.85 79.11 76.92
OPCH 93.56 71.89 74.18 82.86 69.48 75.35 81.74 78.56 73.63 79.88 77.6
GWF 93.23 71.98 72.55 82.3 68.78 75.51 80.46 78.06 71.6 79.25 77.02
LGWF 93.28 69.9 70.89 81.55 66.7 74.8 79.6 77.21 74.26 78.02 75.97
BTF 93.61 71.45 75.21 82.91 69.02 75.52 82.02 78.83 74.15 80.09 77.66
L-A 93.32 68.76 69.36 80.6 66.13 73.49 78.74 76.08 77.55 77.15 75.01
L-B 93.37 68.9 72.0 80.69 65.87 74.04 79.83 76.42 76.12 78.09 75.37
L-A-B 93.47 67.5 70.61 79.89 65.09 72.62 78.69 75.21 78.96 77.2 74.3
L-A-S 93.44 67.19 67.69 80.24 63.94 72.42 77.51 74.76 81.07 76.11 73.77

The last two columns group the results for metadata meant to be captured by size and shape features, respectively

relevance score would be 9 and the image D is considered
highly relevant to the query image Q.

The maximum possible total relevance score, denoted as
maxscore(Q), for a query image Q and N retrievals is deter-
mined by computing relscore(Q, D) for every database image
D and finding images E1, . . . , EN with the N largest rele-
vance scores. Then maxscore(Q) =

∑N
i=1 relscore(Q, Ei ).

Similarly, the actual total relevance score achieved by
Algorithm 1 for query image Q is queryscore(Q) =
∑N

i=1 relscore(Q, Di ), where D1, . . . , DN are the N images
that were retrieved. Finally, the normalized accuracy for a
given query Q is:

Retaccuracy(Q) =
queryscore(Q)

maxscore(Q)
. (17)

For each texture descriptor, the normalized accuracy was
computed for each query using the leave-one-out method-

ology described in Sect. 6.1 at N = 99 retrievals. The
mean normalized accuracy for each texture descriptor over
all queries is shown in Fig. 4. A Wilcoxon signed-rank test
was performed pairwise on the texture descriptors to test
the null hypothesis that the 1167 paired normalized accu-
racy scores came from the same distribution. In nearly all
cases the null hypothesis was rejected at the α = 0.05
level with p < 0.0069 with the exceptions of ULBP/GPCH
(p = 0.0733) and OPCH/BTF (p = 0.9236). Results for
N = 10 and N = 20 retrievals were extremely similar,
both in the magnitude of the means for each descriptor and
the results of the Wilcoxon signed-rank tests. These results
indicate that all of the texture descriptors (along with the
shape and geometric features) are doing very well overall in
matching the most relevant images. The differences in perfor-
mance, while small in magnitude, are statistically significant
and indicate that ULBP, OCLBP, GPCH, and BTF are the
best texture descriptors on average.
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Fig. 4 Mean and standard deviation of normalized accuracy for each texture descriptor over all queries using Algorithm 1, N = 99 retrievals

However, given that this image retrieval system is intended
to support user search and reasoning over archives, looking
only at differences in mean performance does not pro-
vide a sufficiently nuanced understanding of the differences
between the algorithms and what the consequences of those
differences might be for the search experience. In the next
section, we propose an alternative analysis that examines the
data sets from a differing perspective.

For the remainder of our analysis we will be interested in
the behaviour of the ULBP, OLCBP, GPCH, and BTF as the
group of descriptors that had the “best” overall performance
in Table 4 which will refer to as the SO group (superior
overall group) and the fused descriptors L–A, L–B, L–A–B,
and L–A–S as the IO group (inferior overall group) which
had the “worst” performance in Fig. 4.

6.4 Pairwise symmetric difference comparisons

All of the texture descriptors resulted in similar overall accu-
racy (Fig. 4). When the overall accuracy score is within two
to three percentage points, it is tempting to say that any par-
ticular algorithm would be suitable. However, because this
algorithm is intended to support user search, these aggregate
measures of accuracy do not give us any indication of what
result sets look like which could be very important in choos-
ing a particular algorithm. There could be distinct differences
in the sets of images that are returned because when compar-
ing any two descriptors across the nearly 1200 query images,
there are a number of different distributions of results that
could produce similar overall accuracy scores. If there are
situations where one descriptor performs particularly well or
particularly poorly this may skew the average up or down.
Similarly, if the result sets retrieved by two different descrip-
tors consistently share a number of results, this will obscure
the actual differences between the algorithms.

To better elucidate the previously observed trade-offs
apparent in the set of texture descriptors we performed an
analysis in which, for a given query image Q and pair of
texture descriptors D1 and D2, we only considered the sym-

metric difference of the images retrieved by Algorithm 1
using D1 and D2, that is, images not in common to both
retrievals.

For a pair of descriptors D1 and D2, let R1
q and R2

q be the
set of images retrieved for a given query image q by Algo-
rithm 1 using D1 and D2, respectively. Obtain the symmetric
difference of R1

q and R2
q : ∆q(D1, D2) = R1

q ∪ R2
q \ R1

q ∩ R2
q .

Let δ1
q(D1, D2) be the elements of ∆q(D1, D2) in R1

1 , and

let δ2
q(D1, D2) be the elements of ∆q(D1, D2) in R2

q .

6.4.1 Average number of disagreements

If two sets of results for a given query image using different
descriptors are identical, then they are performing nearly the
same for that image. For retrieved sets that are small (e.g. 10
retrievals), then it would be expected that most results would
be shared. If two descriptors return largely the same set of
images, then we can assume there is no major difference
between them and that the descriptors are doing essentially
the same thing. For larger retrieval sets, there are fewer appro-
priate matches that will occur, so it is valuable to examine
which feature performs best after removing shared items.

Table 3 presents the results for each pair of descriptors for
the top N = 10 and N = 99 retrievals. Looking closely at the
results for the SO feature group, we see that these descriptors
are all performing nearly identically in that the largest aver-
age difference between retrieval sets for pairs of descriptors
in this group is 2.46 (GPCH vs. BTF). However, when com-
paring these 4 descriptors to those in the IO group, we find
that there are substantial differences between the retrieval
sets for the IO group and the SO group with ULBP/L–A–S
producing the highest mean difference of 5.2 images between
the sets.

When we increase to 99 retrievals we find similarities
between the IO group and the SO group that are even more
pronounced. Pairwise, all of ULBP, OCLBP, and GPCH pro-
duce result sets that have fewer than 13 different images on
average. As a result, it is hardly worth calculating the dif-

123



Image-based search and retrieval for biface artefacts using features capturing...

Table 3 Average size of the symmetric difference for the top 10 and top 100 retrievals

Top 10 Retreivals – Avg. Number of Disagreements
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 0.69 3.18 1.63 2.42 1.60 2.49 3.54 1.82 4.17 3.76 4.34 4.98
OCLBP 0.69 0.00 3.10 1.88 2.70 1.59 2.63 3.76 1.68 4.45 3.99 4.61 5.20
SFTA 3.18 3.10 0.00 3.20 3.60 3.29 3.70 4.15 3.11 4.64 4.21 4.71 4.15
GPCH 1.63 1.88 3.20 0.00 1.61 2.14 2.69 3.34 2.46 3.55 3.61 3.84 4.43

ARPCH 2.42 2.70 3.60 1.61 0.00 2.77 3.04 3.42 3.04 3.05 3.65 3.39 4.03
OPCH 1.60 1.59 3.29 2.14 2.77 0.00 3.02 3.86 2.10 4.44 4.03 4.54 5.13
GWF 2.49 2.63 3.70 2.69 3.04 3.02 0.00 2.32 3.04 3.33 2.79 3.63 4.25
LGWF 3.54 3.76 4.15 3.34 3.42 3.86 2.32 0.00 3.87 1.92 1.51 2.41 3.13
BTF 1.82 1.68 3.11 2.46 3.04 2.10 3.04 3.87 0.00 4.49 3.57 4.26 5.08
L-A 4.17 4.45 4.64 3.55 3.05 4.44 3.33 1.92 4.49 0.00 2.24 1.40 2.21
L-B 3.76 3.99 4.21 3.61 3.65 4.03 2.79 1.51 3.57 2.24 0.00 1.75 3.09

L-A-B 4.34 4.61 4.71 3.84 3.39 4.54 3.63 2.41 4.26 1.40 1.75 0.00 2.34
L-A-S 4.98 5.20 4.15 4.43 4.03 5.13 4.25 3.13 5.08 2.21 3.09 2.34 0.00

0 1.7 3.3 5

Top 99 Retreivals – Avg. Number of Disagreements
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 2.65 17.63 8.92 12.98 9.89 14.16 20.12 7.88 25.05 20.52 25.05 30.30
OCLBP 2.65 0.00 17.65 9.92 14.27 9.83 14.93 21.20 7.29 26.44 21.56 26.40 31.53
SFTA 17.63 17.65 0.00 17.35 19.52 19.68 20.79 23.83 18.13 27.62 24.66 28.05 24.62
GPCH 8.92 9.92 17.35 0.00 8.23 14.36 14.38 18.73 12.92 21.23 20.44 22.51 26.62

ARPCH 12.98 14.27 19.52 8.23 0.00 17.03 16.67 19.45 16.17 18.59 21.07 20.29 24.48
OPCH 9.89 9.83 19.68 14.36 17.03 0.00 18.46 23.69 11.73 28.24 23.74 27.92 32.76
GWF 14.16 14.93 20.79 14.38 16.67 18.46 0.00 11.76 16.69 18.66 14.77 20.20 24.79
LGWF 20.12 21.20 23.83 18.73 19.45 23.69 11.76 0.00 22.01 11.02 8.97 13.85 18.28
BTF 7.88 7.29 18.13 12.92 16.17 11.73 16.69 22.01 0.00 26.83 19.70 24.82 31.07
L-A 25.05 26.44 27.62 21.23 18.59 28.24 18.66 11.02 26.83 0.00 13.44 8.48 12.82
L-B 20.52 21.56 24.66 20.44 21.07 23.74 14.77 8.97 19.70 13.44 0.00 10.04 18.70

L-A-B 25.05 26.40 28.05 22.51 20.29 27.92 20.20 13.85 24.82 8.48 10.04 0.00 14.09
L-A-S 30.30 31.53 24.62 26.62 24.48 32.76 24.79 18.28 31.07 12.82 18.70 14.09 0.00

0 20 40 60

ferences in average accuracy in these algorithms as they are
doing largely the same thing.

Comparing the SO group to the IO group we see a much
more pronounced difference. OCLBP and L–A–S have 31.5
different images (nearly a third) in their result sets on average.
Most pairs consisting of one IO and one SO group member
average between 10 and 25 disagreements (10.1–25.3% of
retrievals). These results show that on average, there are a
non-trivial number of differences between the set of results
returned by different descriptors, but these are masked in the
overall accuracy result. Given these differences, it is worth
looking closely at the differences, first by looking at the mean
accuracy of the differences.

6.4.2 Differences in metadata matches for symmetric

differences

We computed the difference in the percentage of metadata
matches for all of the images in the symmetric differences of
each query. The process is now explained in detail.

Let m1
q(D1, D2) be the number of metadata matches

between the elements of R1
q and the query image q, and

n1
q(D1, D2) = 9|R1

q | (the total number of metadata fields

associated with the elements of R1
q ). Symmetrically define

m2
q(D1, D2) and n2

q = 9|R2
q |. Then compute:

P(D1, D2) =

∑

q m1
q(D1, D2)

∑

q n1
q(D1, D2)

−

∑

q m2
q(D1, D2)

∑

q n2
q(D1, D2)

(18)

which is the difference between the percentage of metadata
matches in the symmetric difference of query results aris-
ing from descriptors D1 and D2. The two subtractive terms
in Eq. 18 are relevance scores for D1 and D2, and we call
P(D1, D2) the relevance score difference.

Table 4a shows the relevance score difference for all pairs
of texture descriptors for queries using Algorithm 1. The rows
are indexed by D1 and columns by D2; thus, the top-right
most entry indicates that the percentage of metadata fields
matched was 5% more for ULBP than for L–A–S. This table
confirms the observations from Table 2 that the descriptors in
the SO group have the best overall performance (most entries
in their rows are positive).

Table 4b shows the same relevance score difference but
only considering the single metadata field Breadth at 20%

Length (definitions of m1
q , m2

q , n1
q , and n2

q are adjusted
accordingly) rather than all metadata fields together. The
results indicate that the SO group are generally overall strong
performers for matching this metadata field. Results are sim-
ilar for the other geometric features in g.

Table 4c shows the relevance score difference considering
only the metadata field biface type. The data indicate that
the choice of texture descriptor has very little effect on the
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Table 4 Relevance score difference comparisons for top 10 retrievals

(a) Top 10 Retreivals – Relevance Score Difference – All Metadata
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 -1.44 1.63 -0.02 1.70 0.16 3.13 4.17 -0.76 4.65 4.21 4.98 5.18
OCLBP 1.44 0.00 1.99 0.51 1.89 0.79 3.35 4.19 -0.23 4.58 4.22 4.90 5.15
SFTA -1.63 -1.99 0.00 -1.63 -0.29 -1.50 0.71 2.32 -2.11 3.07 2.53 3.49 4.97
GPCH 0.02 -0.51 1.63 0.00 2.59 0.14 2.91 4.44 -0.55 5.48 4.39 5.64 5.84

ARPCH -1.70 -1.89 0.29 -2.59 0.00 -1.40 1.21 3.12 -1.81 5.00 3.21 5.15 5.39
OPCH -0.16 -0.79 1.50 -0.14 1.40 0.00 2.50 3.76 -0.78 4.31 3.86 4.70 4.98
GWF -3.13 -3.35 -0.71 -2.91 -1.21 -2.50 0.00 3.01 -3.02 3.49 2.88 3.80 4.24
LGWF -4.17 -4.19 -2.32 -4.44 -3.12 -3.76 -3.01 0.00 -4.17 2.41 0.70 2.83 3.53
BTF 0.76 0.23 2.11 0.55 1.81 0.78 3.02 4.17 0.00 4.62 4.83 5.40 5.35
L-A -4.65 -4.58 -3.07 -5.48 -5.00 -4.31 -3.49 -2.41 -4.62 0.00 -1.59 1.58 2.90
L-B -4.21 -4.22 -2.53 -4.39 -3.21 -3.86 -2.88 -0.70 -4.83 1.59 0.00 3.30 3.24

L-A-B -4.98 -4.90 -3.49 -5.64 -5.15 -4.70 -3.80 -2.83 -5.40 -1.58 -3.30 0.00 1.80
L-A-S -5.18 -5.15 -4.97 -5.84 -5.39 -4.98 -4.24 -3.53 -5.35 -2.90 -3.24 -1.80 0.00

(b) Top 10 Retreivals – Relevance Score Difference – Breadth at 20% Length
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 -0.38 7.28 4.31 3.62 0.66 3.24 8.17 3.13 8.30 9.88 10.37 11.34
OCLBP 0.38 0.00 7.54 3.87 3.34 0.83 3.17 7.76 3.55 7.84 9.39 9.81 10.90
SFTA -7.28 -7.54 0.00 -5.04 -3.99 -6.71 -4.08 1.39 -5.61 2.48 3.33 4.64 8.03
GPCH -4.31 -3.87 5.04 0.00 1.09 -2.79 0.39 6.57 -0.54 7.79 8.35 9.89 11.17

ARPCH -3.62 -3.34 3.99 -1.09 0.00 -2.79 -0.23 5.90 -1.01 8.46 7.78 10.66 11.84
OPCH -0.66 -0.83 6.71 2.79 2.79 0.00 2.32 7.22 2.21 7.56 8.95 9.67 10.79
GWF -3.24 -3.17 4.08 -0.39 0.23 -2.32 0.00 9.00 -0.78 7.98 10.43 10.17 11.38
LGWF -8.17 -7.76 -1.39 -6.57 -5.90 -7.22 -9.00 0.00 -6.00 2.97 5.47 6.65 8.80
BTF -3.13 -3.55 5.61 0.54 1.01 -2.21 0.78 6.00 0.00 6.44 8.82 9.22 9.98
L-A -8.30 -7.84 -2.48 -7.79 -8.46 -7.56 -7.98 -2.97 -6.44 0.00 1.13 7.40 9.85
L-B -9.88 -9.39 -3.33 -8.35 -7.78 -8.95 -10.43 -5.47 -8.82 -1.13 0.00 4.46 6.25

L-A-B -10.37 -9.81 -4.64 -9.89 -10.66 -9.67 -10.17 -6.65 -9.22 -7.40 -4.46 0.00 4.91
L-A-S -11.34 -10.90 -8.03 -11.17 -11.84 -10.79 -11.38 -8.80 -9.98 -9.85 -6.25 -4.91 0.00

(c) Top 10 Retreivals – Relevance Score Difference – Biface Type
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 -0.13 -0.86 -1.35 -0.80 -1.47 0.39 0.12 -1.59 0.00 -0.12 -0.34 -0.25
OCLBP 0.13 0.00 -0.85 -1.12 -0.68 -1.44 0.40 0.14 -1.67 0.02 -0.09 -0.30 -0.22
SFTA 0.86 0.85 0.00 0.16 0.22 0.11 1.00 0.76 -0.06 0.59 0.54 0.26 0.36
GPCH 1.35 1.12 -0.16 0.00 0.16 -0.08 1.17 0.79 -0.29 0.62 0.49 0.18 0.22

ARPCH 0.80 0.68 -0.22 -0.16 0.00 -0.16 0.95 0.69 -0.32 0.63 0.41 0.13 0.17
OPCH 1.47 1.44 -0.11 0.08 0.16 0.00 1.10 0.73 -0.25 0.53 0.48 0.19 0.22
GWF -0.39 -0.40 -1.00 -1.17 -0.95 -1.10 0.00 -0.23 -1.27 -0.29 -0.50 -0.68 -0.52
LGWF -0.12 -0.14 -0.76 -0.79 -0.69 -0.73 0.23 0.00 -0.86 -0.23 -0.58 -0.80 -0.53
BTF 1.59 1.67 0.06 0.29 0.32 0.25 1.27 0.86 0.00 0.64 0.69 0.33 0.33
L-A -0.00 -0.02 -0.59 -0.62 -0.63 -0.53 0.29 0.23 -0.64 0.00 -0.20 -1.07 -0.55
L-B 0.12 0.09 -0.54 -0.49 -0.41 -0.48 0.50 0.58 -0.69 0.20 0.00 -0.60 -0.26

L-A-B 0.34 0.30 -0.26 -0.18 -0.13 -0.19 0.68 0.80 -0.33 1.07 0.60 0.00 0.11
L-A-S 0.25 0.22 -0.36 -0.22 -0.17 -0.22 0.52 0.53 -0.33 0.55 0.26 -0.11 0.00

(d) Top 10 Retreivals – Relevance Score Difference – Raw Material Type
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 2.29 -16.58 -20.68 -16.48 -10.98 1.09 -6.76 -12.58 -13.63 -11.30 -16.35 -18.49
OCLBP -2.29 0.00 -17.48 -18.75 -15.33 -12.09 0.43 -6.78 -14.58 -13.15 -11.06 -15.73 -17.99
SFTA 16.58 17.48 0.00 5.95 3.55 10.66 14.98 6.93 9.59 -0.91 2.42 -3.87 -9.48
GPCH 20.68 18.75 -5.95 0.00 -3.88 7.51 13.53 2.92 4.39 -6.55 -2.45 -9.71 -13.19

ARPCH 16.48 15.33 -3.55 3.88 0.00 8.04 14.01 4.67 5.60 -5.57 -0.72 -9.14 -12.95
OPCH 10.98 12.09 -10.66 -7.51 -8.04 0.00 6.73 -1.63 -2.50 -8.85 -6.17 -11.73 -14.50
GWF -1.09 -0.43 -14.98 -13.53 -14.01 -6.73 0.00 -11.49 -8.43 -17.91 -16.21 -20.28 -22.28
LGWF 6.76 6.78 -6.93 -2.92 -4.67 1.63 11.49 0.00 0.27 -17.18 -12.33 -19.49 -21.77
BTF 12.58 14.58 -9.59 -4.39 -5.60 2.50 8.43 -0.27 0.00 -7.57 -5.51 -11.28 -13.60
L-A 13.63 13.15 0.91 6.55 5.57 8.85 17.91 17.18 7.57 0.00 6.41 -10.03 -15.87
L-B 11.30 11.06 -2.42 2.45 0.72 6.17 16.21 12.33 5.51 -6.41 0.00 -16.22 -16.05

L-A-B 16.35 15.73 3.87 9.71 9.14 11.73 20.28 19.49 11.28 10.03 16.22 0.00 -9.04
L-A-S 18.49 17.99 9.48 13.19 12.95 14.50 22.28 21.77 13.60 15.87 16.05 9.04 0.00

-20% -10% 0% +10% +20%

matching of biface type which is consistent with the intuition
that texture should not be indicative of the type of biface since
this is primarily determined by shape.

Table 4d shows the relevance score difference considering
only the metadata field raw material type. Here we see a dra-
matic difference in performance where the table colouring
resembles an inversion of the other tables. The best per-
forming descriptors in the other tables are among the worst

performers for matching raw material type. The descriptors
in the IO group are the best performers which is consistent
with observations from Table 2.

This set of results demonstrates that the descriptors in the
IO group are better at matching biface type at the expense
of other metadata fields. The more pronounced differences
in performance between descriptors observed in all of these
tables, relative to Table 2, are because we are considering
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only images in the symmetric differences of the retrievals,
that is, the query results for which two different descriptors
disagree.

For the top 99 retrievals the results are similar to those for
the top 10 retrievals.

6.4.3 Dominance

As we can see from the above results, there are distinct dif-
ferences in the mean accuracy of the symmetric difference.
However, like the overall accuracy calculations, these aver-
ages may be hiding nuances about the symmetric difference
sets. If, for example, one descriptor consistently performs
better in its results, then it could be argued to choose one
over another. As a result, we considered the question of how
often does one descriptor perform better than another descrip-
tor which we will refer to as dominance which is calculated
using the A-primed statistic [35].

For query image q and descriptors D1 and D2, we rank
the elements of the symmetric difference of the query results
∆q(D1, D2) according to the number of metadata matches
with the query image as they would be in a Mann–Whitney
test. The image in ∆q(D1, D2) with the greatest number of
metadata matches gets rank 1, the next most gets rank 2, and
so on. In the case of ties, the tied images get the average of
the rank they occupy, so if three images that occupy ranks 7,
6, 5, and 4 have the same number of metadata matches, they
are all assigned rank 5.5. We then calculate the sum of these
ranks for the images from ∆q(D1, D2) that are in R1

q , which

we previously named δ1
q(D1, D2) (see Sect. 6.4) and denote

this as ranksum. Then, dominance for query q is:

Aq(D1, D2) =

(

ranksum
|δ1

q (D1,D2)|
−

(

|δ1
q(D1, D2) + 1

)

/2

)

|δ2
q(D1, D2)|

(19)

The results for dominance are shown in Table 5 for the
top N = 10 retrievals, respectively. The top-most subtable
shows the average dominance (on average how often does
one descriptor perform better than another), and the middle
subtable shows the percentage of queries where one descrip-
tor performs better than another. The bottom-most subtable
shows how often one descriptor has a “big win” over another
descriptor, by which we mean the percentage of queries for
which a descriptor has a dominance ≥0.8 over the descriptor
to which it is being compared.

From Table 5 we can see that when features in the SO
group are compared to each other, the dominance scores
are are all approximately 50%. For these descriptors, if you
choose two at random you have about an equal chance of
getting the most accurate return set for a given query image.

For the IO group there is a gradual progression of L–A–S
dominating the other three, with the smallest difference being
between L–A–B and L–A–S. When we compare descriptors
in the IO group with those in the SO group, we find that those
in the SO group dominate approximately 60% of the time.
However, considering “big wins” (Table 5b), we find that the
SO group query results rarely dominate the IO group query
results with a dominance of more than 0.8. That is, while the
SO group on average produces results with more metadata
matches than the IO group, it is rare that the SO consistently
produces many more metadata matches. This tends to indi-
cate that the IO descriptors are returning a comparable set
of results to the SO group results but with a different set
of images that are less focused on matching the metadata
precisely.

6.5 Discussion and conclusions

Our results have built a robust picture of the strengths and
weaknesses of the different descriptors. Considering overall
accuracy, it does appear that the descriptors perform largely
the same in the way that they match images, with less than
a percentage point of accuracy between the top 5 methods.
This means that if we were worried strictly about finding as
close to perfect matches as we can, then any of these descrip-
tors would likely be adequate. This is particularly true when
there are small numbers of images in the sets that have exact
matches against the ground truth metadata. For example, if
there are only 7 objects that perfectly match in the ground
truth to the query image, we can be relatively certain each of
the algorithms will return those 7 reliably.

However, given that we are looking to support online
search, we are interested in more than just exact matches.
Researchers working with image archives rely on comparing
and contrasting different, yet related, objects together while
making their decisions. As a result, it was important to under-
stand whether each descriptor was just returning the same sets
as every other descriptor or whether there were distinct dif-
ferences in their performance. There was distinct difference
between the best and worst overall performing descriptors
(the SO group and the IO group). First, it is interesting that
in the SO group there is almost no variation in the sets of
images they retrieve. Even at their most varied, we are only
seeing about 13% variation in the images that are returned
from the standard descriptors, with most hovering around
only 8% difference. This tends to imply that if you choose
any one of these algorithms, you are going to get largely the
same set of images being returned.

In comparison, the IO group of descriptors retrieves image
sets that are 20–30% different from the SO group. It appears
that the IO descriptors are better at detecting differences in
material while trading off shape matching accuracy, whereas
the SO descriptors are doing the opposite. If we are working
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Table 5 Average dominance, frequency of dominance, and frequency of “big wins” for top 10 retrievals

Top 10 Retreivals - Avg. Dominance over all queries (closer to 1.0 means descriptor in the row dominates)
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 0.48 0.54 0.51 0.54 0.49 0.55 0.58 0.49 0.60 0.58 0.61 0.61
OCLBP 0.52 0.00 0.54 0.52 0.54 0.51 0.56 0.58 0.50 0.60 0.58 0.61 0.61
SFTA 0.46 0.46 0.00 0.46 0.49 0.46 0.50 0.54 0.45 0.56 0.55 0.57 0.60
GPCH 0.49 0.48 0.54 0.00 0.56 0.49 0.55 0.59 0.49 0.62 0.59 0.62 0.63

ARPCH 0.46 0.46 0.51 0.44 0.00 0.46 0.51 0.57 0.46 0.61 0.57 0.61 0.62
OPCH 0.51 0.49 0.54 0.51 0.54 0.00 0.55 0.58 0.49 0.59 0.58 0.60 0.61
GWF 0.45 0.44 0.50 0.45 0.49 0.45 0.00 0.57 0.43 0.58 0.57 0.59 0.60
LGWF 0.42 0.42 0.46 0.41 0.43 0.42 0.43 0.00 0.41 0.55 0.51 0.56 0.58
BTF 0.51 0.50 0.55 0.51 0.54 0.51 0.57 0.59 0.00 0.60 0.60 0.62 0.62
L-A 0.40 0.40 0.44 0.38 0.39 0.41 0.42 0.45 0.40 0.00 0.47 0.53 0.57
L-B 0.42 0.42 0.45 0.41 0.43 0.42 0.43 0.49 0.40 0.53 0.00 0.57 0.58

L-A-B 0.39 0.39 0.43 0.38 0.39 0.40 0.41 0.44 0.38 0.47 0.43 0.00 0.54
L-A-S 0.39 0.39 0.40 0.37 0.38 0.39 0.40 0.42 0.38 0.43 0.42 0.46 0.00

Top 10 Retreivals - % of Queries for which descriptor in the row dominates.
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 0.18 0.48 0.34 0.47 0.32 0.48 0.62 0.33 0.66 0.61 0.66 0.70
OCLBP 0.23 0.00 0.49 0.37 0.50 0.33 0.49 0.63 0.34 0.67 0.63 0.68 0.71
SFTA 0.36 0.36 0.00 0.37 0.42 0.37 0.45 0.55 0.35 0.60 0.57 0.62 0.66
GPCH 0.32 0.31 0.48 0.00 0.42 0.37 0.49 0.59 0.37 0.65 0.61 0.67 0.72

ARPCH 0.33 0.33 0.43 0.26 0.00 0.35 0.43 0.55 0.34 0.61 0.57 0.63 0.67
OPCH 0.35 0.31 0.49 0.39 0.47 0.00 0.50 0.61 0.36 0.65 0.61 0.67 0.69
GWF 0.31 0.30 0.42 0.32 0.41 0.33 0.00 0.52 0.30 0.57 0.53 0.60 0.65
LGWF 0.27 0.27 0.35 0.28 0.32 0.28 0.29 0.00 0.27 0.42 0.35 0.49 0.56
BTF 0.38 0.34 0.50 0.42 0.49 0.38 0.52 0.63 0.00 0.67 0.63 0.69 0.72
L-A 0.26 0.26 0.32 0.25 0.26 0.27 0.30 0.30 0.27 0.00 0.34 0.35 0.49
L-B 0.28 0.27 0.34 0.28 0.33 0.29 0.31 0.32 0.26 0.44 0.00 0.44 0.54

L-A-B 0.25 0.25 0.31 0.24 0.27 0.25 0.28 0.31 0.23 0.30 0.27 0.00 0.44
L-A-S 0.25 0.24 0.25 0.22 0.24 0.24 0.28 0.30 0.22 0.29 0.29 0.34 0.00

Top 10 Retreivals - % of Queries for which descriptor in the row has dominance ≥ 0.8).
ULBP OCLBP SFTA GPCH ARPCH OPCH GWF LGWF BTF L-A L-B L-A-B L-A-S

ULBP 0.00 0.15 0.17 0.20 0.22 0.19 0.21 0.19 0.18 0.19 0.18 0.20 0.18
OCLBP 0.18 0.00 0.18 0.20 0.19 0.20 0.22 0.18 0.20 0.19 0.18 0.19 0.17
SFTA 0.11 0.11 0.00 0.10 0.10 0.11 0.11 0.12 0.11 0.13 0.12 0.14 0.20
GPCH 0.19 0.18 0.17 0.00 0.27 0.18 0.21 0.22 0.16 0.25 0.21 0.25 0.21

ARPCH 0.14 0.14 0.12 0.17 0.00 0.13 0.16 0.19 0.11 0.25 0.18 0.26 0.21
OPCH 0.21 0.20 0.18 0.19 0.19 0.00 0.18 0.18 0.17 0.17 0.18 0.19 0.16
GWF 0.14 0.13 0.12 0.14 0.14 0.11 0.00 0.24 0.09 0.20 0.21 0.20 0.20
LGWF 0.07 0.07 0.07 0.07 0.09 0.06 0.12 0.00 0.05 0.24 0.22 0.24 0.22
BTF 0.21 0.21 0.18 0.17 0.17 0.20 0.20 0.18 0.00 0.17 0.21 0.20 0.17
L-A 0.04 0.04 0.05 0.06 0.08 0.04 0.08 0.16 0.04 0.00 0.16 0.26 0.25
L-B 0.06 0.07 0.08 0.07 0.08 0.06 0.10 0.19 0.06 0.21 0.00 0.28 0.21

L-A-B 0.05 0.04 0.04 0.06 0.07 0.05 0.06 0.12 0.04 0.19 0.16 0.00 0.21
L-A-S 0.03 0.03 0.05 0.03 0.04 0.03 0.04 0.08 0.03 0.13 0.08 0.15 0.00

0 .21 .42 .63

with a single collection of flint, where most pieces come from
the same source stone, then the SO descriptors are likely
to perform better. However, for a more varied collection of
bifaces, comprised of flint, glass, etc., we would expect the
IO descriptors to be superior.

Considering the dominance between the different descrip-
tors, it appears that one could choose one of the SO
descriptors at random and produce largely the same results
over a series of query images. However, choosing one of the
IO descriptors would result in a system that returns slightly
more varied results. This may be important if search sys-
tem designers want to encourage serendipity in their search,
something which is often valued by researchers.

In future work, we will pursue the evaluation of these dif-
ferent descriptors with users in the archaeological archives.
It would be particularly interesting to know which, if any,
descriptor is preferred by users in supporting their search.

Overall, the new fused descriptors proposed in this paper
have a set of advantages and disadvantages over the descrip-
tors in the SO group. In general, the new descriptors appear to
work well in finding relevant and related images in an image
search. However, they have the advantage of producing more
varied sets of results which may add value to search systems,
in particular in heterogeneous image archives where there
will be large variation in material qualities of artefacts.
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