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Abstract — Cloud datacenters are compute facilities formed by 
hundreds and thousands of heterogeneous servers requiring 
significant power requirements to operate effectively. Servers are 
composed by multiple interacting sub-systems including 
applications, microelectronic processors, and cooling which reflect 
their respective power profiles via different parameters. What is 
presently unknown is how to accurately model the holistic power 
usage of the entire server when including all these sub-systems 
together. This becomes increasingly challenging when considering 
diverse utilization patterns, server hardware characteristics, air 
and liquid cooling techniques, and importantly quantifying the 
non-electrical energy cost imposed by cooling operation. Such a 
challenge arises due to the need for multi-disciplinary expertise 
required to study server operation holistically. This work provides 
a unified model for capturing holistic power usage within Cloud 
datacenter servers. Constructed through controlled laboratory 
experiments, the model captures the relationship of server power 
usage between software, hardware, and cooling agnostic of 
architecture and cooling type (air and liquid). An exciting prospect 
is the ability to quantify the amount of non-electrical power 
consumed through cooling, allowing for more realistic and 
accurate server power profiles. This work represents the first 
empirically supported analysis and modeling of holistic power 
usage for Cloud datacenter servers, and bridges a significant gap 
between computer science and mechanical engineering research. 
Model validation through experiments demonstrates an average 
standard error of 3% for server power usage within both air and 
liquid cooled environments. 

Keywords- Cloud datacenter, holistic energy, server power modeling.  

I.  INTRODUCTION  

Cloud datacenters form the backbone of modern Internet 
infrastructure globally, and are critical for provisioning digital 
services to consumers. These systems are driven by diverse user 
behavior and are composed by numerous interacting physical 
(servers, cooling), and virtual (applications, resource schedulers) 
sub-systems. Datacenters require vast amounts of compute and 
storage power to facilitate Internet-scale workload, and 
subsequently consume 1.8% electrical energy globally [1].  

Datacenters suffer numerous challenges towards achieving 
high energy-efficiency, stemming from cooling load [2], failures 
[3], and underutilization as low as 10%-25% [4], with idle 
datacenters (i.e. servers running with minimal usage) consuming 
almost half of their peak power [5]. Suppliers to the datacenter 
industry are starting to address aspects of energy-efficiency 
through layout for efficient cooling [7], efficient IT components 
and workload scheduling [8], consolidation, and resource 
throttling [9]. However, datacenters are mission critical facilities 
with implicit requirements including reliability, capacity, as well 
as explicit requirements including availability enforced through 
Service Level Agreements (SLAs). As a result Cloud datacenter 
providers are reluctant to deploy energy–efficiency mechanisms 

without precisely understanding its implication towards 
operational performance and business objectives. 

In order to achieve such an understanding, it is imperative to 
study holistic power profiles of servers – specifically the co-
relation between electrical and thermal energy produced in both 
hardware and cooling under different operational conditions 
driven by software utilization. Servers alone consume 29-31% 
of the total datacenter energy, requiring an additional 34-38% in 
facility-level cooling for heat removal from the facility [10], 
[11].  However, ascertaining such knowledge is challenging due 
to the complexity in identifying and analyzing key parameters 
within each sub-system, and importantly their interrelation (i.e. 
an increase in software resource utilization results in higher 
power consumption, resulting in higher chip temperature, thus 
requiring more server cooling load).  

This problem is inherently multi-disciplinary in nature due 
to the diversity of solutions which requires in-depth knowledge 
and understanding of the both virtual (software stacks) as well 
as physical (IT hardware, cooling) systems. Work towards 
energy-efficient datacenters primarily focuses on either the 
perspective of computing (scheduling, workload management, 
software, etc.) [14-16] or mechanical (cooling systems, UPS, 
layout, etc.) [2],[16], [18],[19] This has resulted in knowledge 
gaps as depicted in Fig. 1 towards understanding explicitly the 
holistic power profiles and sub-system interaction across both 
the virtual and physical layers within servers. As a result, there 
is a strong need to conduct experiments in controlled laboratory 
environments to study the holistic and correlative power profiles 
of server sub-systems. 

Determining this relationship and their respective power 
profiles would enable the creation of a unified model for holistic 
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power usage for Cloud datacenter servers. The effectiveness of 
such a model would require accurately capturing power profiles 
of all sub-systems agnostic of hardware specification and 
cooling type, enabling Cloud researchers and engineers to 
determine more accurate power profiles for computing servers 
when considering the power draw from its internal cooling 
capability. 

The objective of this work is to analyze and model holistic 
power usage within Cloud datacenter servers. Specifically, we 
propose a unified model comprising software utilization, server 
architecture and cooling type and how each contribute towards 
the total power usage of the server under different operational 
conditions. To our knowledge, this is the first endeavor towards 
empirically studying and modeling holistic Cloud datacenter 
server power profiles including cooling properties. This work 
provides a step change in bridging the gap between Computer 
Science and Mechanical Engineering – research disciplines 
which have closely aligned interested towards energy-efficient 
Cloud datacenters. Contributions are summarized as follows: 

Analysis of Cloud datacenter server sub-system power 
profiles. Through numerous experiments conducted we 
investigate the operational profile of the entire server including 
software utilization, hardware and cooling by extracting 
parameters including performance, resource usage, core 
temperature, and power consumption for hardware and cooling.  

Unifying model for Cloud datacenter server power usage. 
We propose an empirically validated statistical model for 
capturing sub-system power profiles and their co-relation that 
operates agnostic of server hardware and cooling type. 
Importantly, in addition to electrical power of server operation, 
we are able to capture the thermal energy rejected by cooling 
fans and/or pumps. Furthermore, we present a number of 
applications of the analysis findings and proposed model. 

Section 2 provides background of this work; Section 3 
discusses related work; Section 4 presents the experiment 
methodology; Section 5 presents the analysis findings; Section 
6 constructs the holistic power model; Section 7 presents the 
model validation; Section 8 discusses model application; 
Section 9 details conclusions and future work. 

II. BACKGROUND 

A. The Holistic Energy Chain  

Cloud datacenter servers (and by extension the greater 
facility) are formed by numerous interacting sub-systems. These 
sub-systems exhibit both implicit and explicit interactions with 
respect to their operational characteristics. As a result, a logical 
deduction is that changes to a particular sub-system will impact 
other sub-systems within the server.  

With respect to energy usage, as the user drives the 
operational characteristics and resource usage of the application 
software in the datacenter [6], it is intuitive to assume that 
alterations to application operation will impose a cascading 
affect throughout the entire system. As shown in Fig. 2, software 
comprises specific characteristics of energy cost (computation 
per watt) and performance (MIPS). This results in the generation 
of heat on the CPU chip that requires cooling for heat rejection 
from the motherboard. 

While it is possible to directly measure each sub-system and 
produce the sum of parameters, calculating the total power 
consumption is challenging when a specific sub-system changes. 

For example, if the software throughput increases, it is not 
obvious how this effect cascades throughout the server. This is 
particularly important when considering sub-systems may not 
necessarily follow a linear relationship for resource utilization 
and energy use [20], and that servers can be composed of air or 
liquid cooling reflecting different power profiles. This becomes 
even more challenging outside the boundary of a single server 
and within context of the entire facility. As a result, it is critical 
that not only is the holistic power usage of a datacenter is 
quantified, but more importantly how alterations within a 
specific sub-system impact such parameters.  

III.  RELATED WORK 

Power consumption of servers can be measured, estimated, 
or a combination of both. Measurements include devices that 
capture the electrical power of a server, while estimation are 
parameters that are inferred by correlated parameters (i.e. CPU 
utilization) [14]. There are numerous works that model sever 
power consumption comprising processors, VMs and servers. 

Works such as [21-23] quantify the datacenter power 
consumption of a server by measuring the voltage drop of 
resistors inserted on power rails across the server motherboard. 
As detailed in [14], direct measurement of datacenter servers 
requires precise insight into the mainboard layout so that supply 
lines are assigned to the correct subsystem, and relevant to this 
work are unable to capture subsystem power consumption that 
cannot be directly measured. Numerous works study and model 
the power profiles of computing servers.  

Heath et al. [24] propose an energy model for heterogeneous 
server clusters, where power consumption of an individual 
server is estimated using a linear model constructed from 
resource utilization parameters. The model is evaluated through 
simulation from trace requests from 1998 World Cup trace data, 
demonstrating an average error estimation of 1.3%. 

Economou et al. [25] propose a linear model to estimate 
server power consumption using the input parameters of CPU, 
memory, disk I/O and network rate. Through the use of custom 
benchmarks, they stress individual motherboard subsystems and 
measure their respective power profile. The proposed power 
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models were validated through experimentation, demonstrating 
model error between 0 – 15% for a blade server. 

Fan et al. [26] propose a nonlinear power model using CPU 
utilization at the input, and include an error correction factor 
determined based on system characteristics learnt during 
calibration. Model validation was performed on several hundred 
servers, reporting an average estimation error less than 1% on 
average.  

Harton et al. [27] propose a real-time power consumption 
model for a software defined datacenter. Their model requires 
inputs from utilization and electrical power from the Power 
Supply Unit. By using a MIMO/MISO model and machine 
learning regression techniques, they model server power 
consumption. They demonstrate through experiments that their 
model is capable of accurately predicting server power 
utilization within 5% margin of error. 

While each of these works provide accurate measurements 
and model validation of server electrical power consumption and 
validated models for server power consumption of numerous 
hardware components, none of them are able to quantify non-
electrical power consumed due to cooling requirements of the 
server itself. 

Beitelmal and Fabris [28] presented new IT efficiency metric 
based on a thermodynamic approach. This approach defined the 
ratio between IT work, which is the outcome of running the 
server, and the total power including cooling load. This metric 
restricted the efficiency of ICT, however indicated the need to 
potentially redefine the current metric standard for datacenters.  

A study of thermal effects of servers was analyzed by 
Sampath [20] and Pandiyan [33]. The analysis included 
measuring server component response to different levels of 
system load. The research focused on ambient temperature 
effects on power consumption and related cooling techniques. 
CFD models were used to investigate the feasibility of a power 
consumption prediction formula predict empirical formula for 
power consumption. All simulation results were validated with 
experimental work, and the error percentages were less than 
10%. They demonstrate a linear relationship between power 
consumption and processor utilization within their experiments. 
This results could be used to extrapolate energy-efficient studies 
at the datacentre level. 

Investigation of chiller-less cooling technology of 
datacenters has been conducted intensively [29], [32], [34]. A 
liquid-cooled server with an economizer based system was used 
to better understand the sectors of power through the datacenter. 
Results showed an excellent saving of energy of 25% when 
using energy-centric configuration for cooling. Further to these 
studies, David et al [30] investigated the operation conditions 
and scenarios effects on overall power consumption of liquid-
cooled rack of servers. Ham et al [31] presented an investigation 
of a simplified model to model datacenter cooling and energy 
consumption. The model focused on the effects of interior 
thermal management techniques for reducing energy bills.  

These works present a gap between studying the power 
utilization of servers and its respective cooling in a unified 
manner. Towards highlighting this challenges, there has been 
concentrated efforts towards studying datacenter power 
holistically. 

Shoukourrian, et al. [12] propose an evaluation toolset 
PowerDAM capable for a unified collection of energy profiles 
from HPC datacenter sub-systems. The system uses remote 
scripts to collect input data from system monitoring tools, 
resource management, and sensor data. They demonstrate that 
applying their approach within the LRZ HPC system, 
computation and cooling constitutes 84% and 4% of the total 
consume energy, respectively per user. 

Pelly et al. [13] presents an analytics framework for 
modeling total datacenter power towards understanding and 
abstracting total datacenter power. They integrate numerous 
parametric power models for datacenter component simulation 
including servers, chiller plants and cooling towers. They 
provide a case study for hypothetical datacenter and propose a 
technique for intelligent cooling management. 

IV.  METHODOLOGY 

A. Approach 

In order to construct a unifying model for Cloud datacenter 
server power profiles, it is first necessary to study the operational 
characteristics of the server holistically. This is performed by 
capturing parameters across all sub-systems. These parameters 
are categorized as virtual (i.e. CPU, application throughput), and 
physical (i.e. server power consumption, hardware temperature) 
as summarized in Table 1. As these sub-systems focus on a 
specific subset of system operation, they each entail a bespoke 
technique for parameter extraction ranging from built-in 
functions and external monitoring devices, and values derived 
from empirically validated mathematical models.  
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Fig. 3 provides an overview of sub-system parameter 
extraction and data collection. Parameters from numerous sub-
systems are transmitted to the Control Server. The Control 
Server is responsible for integrating unstructured data files 
detailing recorded parameters into CSV files with their 
respective timestamps. These CSV files are then stored in a 
database which can be queried for conducting analysis. 

B. Experiment Setup 

We conducted controlled laboratory experiments shown in 
Fig. 4 to study sub-system operation of a Sun Fire V20z, 2AMD 
Operton processor, 64-bit x86, 1GBx8, running Debian Ubuntu. 
We executed a generic three-tier web application to drive 
utilization. The three-tier web application is composed of a set 
of VM images, with its load balancer image implemented via 
HAProxy [36] that distributes load between application servers. 
These application servers are comprised of a single JBoss web 
container running within a Java VM and a pre-installed photo 
album application. The photo album application stores and 
retrieves data within a single MySQL image. The application 
enables to control the performance and throughput of the 
applications, creating additional threads thus increased server 
CPU utilization.  

Metrics were collected using the method illustrated in Fig. 3. 
Specifically, application performance was collected from the 
generation of system log files detailing application performance 
at fixed time intervals. Server resource usage was collected 
through the top command within Linux. Server temperature was 
determined by using the PCMI command to ls-sensors, and 
server electrical power collected using a Vol-tech 9000 meter.  

We also collected the power consumption of cooling 
equipment within the servers. The installed cooling pump is a 
CoolIT ECO III – 120 DCLC, and its power was measured from 
its manual specification. On the other hand, while the server has 

a built-in tachometer sensor to capture fan speed, the amount of 
power drawn by these fans is still unknown. To ascertain this, 
samples of Delta FFB0412SHN were tested in order to correlate 
speed (rpm) and electrical power (W). We studied the operation 
of 3 x DELTA FFB 40x40x28mm series fans. The test procedure 
included powering the fan using a controllable power supply 
within the ranges of 4.48 – 13.83V and measuring the power 
consumption at each level. Simultaneously, an iParaAiluRy 
digital tachometer is used to record the rotational speed of the 
fan at each level. This digital tachometer sends a laser beam to 
the blade of the fan and capture the reflection using a silver light-
reflective sticker attached to a fan blade. Depending on the 
number of laser signal detected indicates the revolution per 
minute, the resolution of the tachometer 1 rpm is capture with an 
error rate of ±0.05%.  

Fig. 5 shows the correlation between fan speed N and power 
Pfan using the three cases, where it is observable that the 
correlation follows a polynomial function. As a result, we are 
able to capture this correlation as  ܲ ൌ ଵ݂ܰ െ ଶ݂ܰଶ  ଷ݂ܰଷ                     ሺͳሻ 

In order to determine the correlation parameters f1, f2 and f3, 
the collected data were analyzed using non-linear regression. 
The estimation is based on Gauss-Newton method. This method 
starts with an initial approximation of values and then performs 
linearization around this selected value. This will require 
minimizer function  in order to achieve convergence as shown 
in Equation 2.  

Γ ൌ  ൬ݎ൫ݔሺሻ൯  ݔሺሻ൯்൫ݔ൫ݎ െ ሺሻ൯൰ଶೌೣݔ
ୀ      (2) 

Where k is the number of current iteration, x is the values of 
current approximation, and r is the evaluated function in matrix 
form at the assumed guess values. Once convergence occurs, 
after a number of iterations, the empirical constraints are ready 
to compute as shown in Table 2, with a proportion of variance  
(R = 0.993). 

Table 2. Empirical constant for the fan formula. 
Constant f1 f2 f3 

Value 2.46e-04 – 3.70e-08 3.11e-12 Fig. 5. Fan power measurement and modeling. 
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This equation can be used to directly map the fan speed of the 
server with its corresponding electrical output. 

In order to create different operational conditions for 
experiments, we used cpu-limit to enable the ability to control 
the CPU utilization of the server. Each experiment was 
conducted 10 times for a period of 5 minutes, resulting in a total 
of 70 experiment cases. All sub-system metrics after 
experiments were automatically transferred to a Windows 
machine via bash scripts and scp for conducting data analysis 
using RStudio.   

V. ANALYSIS 

Table 3 summarizes collected parameters across all 
experiment cases. It is observable that there exists a strong 
correlation between application throughput and all respective 
parameters indicated by a Pearson correlation value > 0.9. This 
result is intuitive given that users drive resource usage, and 
subsequent power and temperature profiles within the server. 
This is demonstrated by varying levels of CPU and server power 
consumption for each experiment case as shown in Fig.s 6(a) 
and 6(b), respectively.  

While all parameters with the exception of ambient 
temperature exhibits strong positive correlation, this relationship 
is not strictly linear as shown in Fig. 7 depicting change of 
parameters from idle server operation (i.e. no workload 
execution). Temperature of both CPU cores increases 
dramatically from 37.15ºC at 40% utilization to 45.19ºC at 
100% utilization for Core 0. Furthermore, we observe that server 

power usage and application performance is not perfectly linear 
– with performance degradation occurring at 80%+ utilization.  

Altering the system utilization levels of a server at different 
intensity results in a non-proportional change in corresponding 
parameters within the server in terms of performance, 
temperature and power consumption. This result indicates that 
alteration to software efficiency (i.e. reduced resource usage or 
increased throughput) results in different changes with respect 
to power. This is particularly noticeable when studying the 
change in utilization at step intervals as illustrated in Fig. 8. 
While these changes might appear minimal within a single 
server, such behavior becomes increasingly important within the 
context of large-scale systems composed of hundreds and 
thousands of servers over extended periods of time.  

The total electrical power of cooling systems consumed 
comprises cold plate pumps and fans. The cold plate pumps, 
require 2.88W to operate across all experiment cases. As 
mentioned previously in Section 4, the fan speed is correlated to 

  
Fig. 7. Change in sub-system parameters from idle. 

 
(b) 

Fig. 6. Datacenter server experiment cases  
(a) CPU utilization, (b) Power. 

(a) 

Table 3. Datacenter Sub-system Parameters.  
 Virtual Physical 

Case Software 
perf. CPU Power 

(W) 

Core 0 
temp. 
 (º C) 

Core 1 
temp. 
(ºC) 

Ambient 
temp.   
(º C) 

Fan 
(W) 

Pump 
(W) 

A 0.00 0.00 136.00 37.15 35.63 18.04 1.37 2.88 

B 48.42 20.00 152.99 37.26 35.86 18.17 1.55 2.88 

C 97.22 41.43 162.97 38.49 36.43 18.13 2.32 2.88 

D 183.98 59.15 184.25 41.59 40.09 18.11 2.98 2.88 

E 228.78 78.65 206.17 43.49 41.42 18.01 3.78 2.88 

F 250.08 89.21 211.42 43.85 41.90 18.07 3.90 2.88 

G 265.46 100.00 222.52 45.19 43.54 18.17 4.62 2.88 

 

 
Fig. 8. Illustration of disproportionate parameter change. 
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the power consumption. Therefore, the instantaneous power 
consumption of the fans can be recorded based on monitoring of 
fan speed. The average power consumption by fans is 3.81W (at 
100% utilization). On average, the cooling corresponds to 3.07% 
of the datacenter server electrical power consumption.  

This analysis demonstrates three items of interest. First, 
while there exists a positive correlation between an increase in 
CPU utilization and sub-system operation, this does not reflect a 
strictly linear within sub-system operation. Secondly, power 
consumed by the cooling systems themselves represent a non-
negligible amount of power consumption. Thirdly, such analysis 
and measurement of sub-system operation does not capture the 
non-electrical power expended for server cooling. Such 
observations highlight that there is an opportunity to further 
energy-efficient research in Computer Science by the inclusion 
of additional power to provide more realistic power profiles. 
Even if such cooling represents a small amount of additional 
power, such increments result in large power profiles consumed 
within the context of tens of thousands of datacenter servers. 

VI.  MODELING 

A. Construction 

We propose a unified model for capturing the relationship 
between resource utilization, microelectronic processor power, 
and cooling comprising electrical and non-electrical power. 

The research focuses on the relationship between thermal 
characteristics of servers and the corresponding reflect on the 
cooling system. The first part of model construction entails 
sectoring microelectronic processor power into three categories: 
Idle power, dynamic power, and static power. Idle power Pidle 
represents the power consumed by the motherboard and server 
processor when it is idle (i.e. ~ 0% CPU utilization). Dynamic 
power Pdynamic is the server power consumption driven by an 
increase in CPU resource utilization u. Static power Pstatic is the 
power consumed by the CPU driven by its die temperature T (i.e. 
physical temperature of the core). Each of these are interrelated 
to one another, and although their respective relationship 
appears intuitive, it is derived from complex electronics with 
static leakage power of CPU consumption (solely dependent on 
temperature and voltage) and a physics phenomenon known as 
the Poole-Frenkel effect. 

 Each of these categories together form the total power 
consumption consumed by IT processes PIT.   ூ்ܲ ൌ ܲௗ  ௗܲ௬  ௦ܲ௧௧                   (3) 

ௗܲ௬ ൌ ܽଵ(4)                                  ݑ  

௦ܲ௧௧ ൌ ܽଶ ܶ  ܽଷ ܶଶ                           (5) 

The constants ܽଵ , ܽଶ , ܽଷ for dynamic and static power are 
calculated based on the method detailed Equation (2) in Section 
4 producing parameters in Table 4 with an R value of 0.983 
indicating high accuracy. 

Table 4. Empirical constants for the power formula 
Constant a1 a2 a3 

Value 0.7605 0.05 0.005 
 

Datacenter server power consumption additionally 
comprises the operation of pumps Ppump and/or fans Pfan for 
cooling. This results in the total power consumption of the entire 
server PServer as 

ௌܲ௩ ൌ ூ்ܲ   ݉
ଵ ܲ௨   ݊

ଵ ܲ                 ሺሻ 

where m and n represent the total number of pumps and fan 
within the server, respectively. This summation of cooling 
components allows for the model to capture the power profiles 
of server cooling comprising liquid, air or a combination of both. 

The total power drawn by a server PTotal includes both power 
consumed by the microelectronics components, PServer, and 
power losses in the power supply units PSUs, PPSU. It is possible 
for PSUs to exhibit varied operational efficiencies (i.e. the ratio 
between input and output of electricity).  

 ݈ ሺͳ െ ሻߟ ܲௌ
ଵ                                  ሺሻ 

where Ș represents the power supply unit efficiency percentage 
and l represents the number of PSU used to power the server. 

While PTotal represents the consumed power by server 
microelectronic components, such components require cooling 
power internal and external of the server to function. Internally, 
there exist two types of cooling: (1) pumps which circulate water 
inside a cold-plate to collect heat from CPUs, and (2) fans which 
move colder air to pass over microelectronic components. The 
hot working fluid requires mechanical work to reject heat and 
back to the supply condition. This is performed by the heat 
exchanger and fans in conjunction, and represents the external 
power Pexternal. As shown in Fig. 9, Pexternal represents the amount 
of power expended to achieve temperature homeostasis between 
the input and output temperature of the server (heat transfer). As 
a result, the summation of internal and external power 
consumption of cooling Pcooling forms 

ܲ ൌ  ݉
ଵ ܲ௨   ݊

ଵ ܲ  ܲ௫௧       ሺͺሻ 

Thus, the total power consumption of a datacenter when 
considering all sub-systems holistically is represented as: 

 
Fig. 9. Illustration of Ptotal breakdown. 
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்ܲ௧ ൌ ூ்ܲ   ݈ ሺͳ െ ሻߟ ܲௌ
ଵ  ܲ          ሺͻሻ 

With this equation and its respective parts, it is possible to 
calculate the partial power utilization effectiveness (pPUE) of 
the server. The pPUE is defined as the ratio of power consumed 
within the IT and cooling, and aims to determine the 
effectiveness of server power usage. We have presented two 
methods to measure pPUE: exclusion and inclusion of internal 
cooling as shown in Equation 10 and 11, respectively.  ܧܷܲூ ൌ ூ்ܲ  ܲூ்ܲ                           ሺͳͲሻ 

ூூܧܷܲ  ൌ ௌܲ௩  ܲ௫௧ௌܲ௩                      ሺͳͳሻ 

The reason for providing two measurements for pPUE is due 
to limitations of knowledge pertaining to server operation. 
Feasibly, if the specification for fan and pump characteristics are 
unavailable or immeasurable it is not possible to fully construct 
a unified model. As a result, ܧܷܲூassumes full knowledge of 
sub-system operation and provides a higher degree of accuracy. ܧܷܲூூ instead measures the temperature difference of the server 
( ܲ௫௧), treating the internal cooling architecture as a black 
box.  

B. Validation 

In order to validate our proposed unifying model for server 
power consumption, we conducted numerous experiments to 
study model accuracy.  

The experimental setup used for model validation is a Sun 
Fire V20z, 2AMD Operton processor server using (1) air-
cooling only, and (2) liquid-cooling only. This is important as it 
drives different cooling behavior within the system (for 
example, the operation temperature directly effects the power 
consumption of the CPU cores). The temperature of supply and 
return water from the external heat exchanger were recorded at 
each level of the experiment. The recorded water temperature 
assists in determining the precise calculation of predicted power. 
In addition, it is required to measure the flow rate of the pumps, 
which is captured by timing the collection period of 300ml of 
water and dividing the volume by time.  

We used the SPECPower benchmark [35] in order to impose 
workload to control the server utilization between 0 – 100% at 
10% increments. At each level of utilization level the server is 
monitored and both the CPU die temperature and fan speed are 
recorded. The recorded data is analyzed, averaged and fitted into 
the proposed model to evaluate server power consumption. 

Fig. 10 and 11 contrasts the modelled server power profile 
against measured experiment outputs for air and liquid cooling, 
respectively. The model is able to successfully capture server 
power consumption with an average relative error rate of 0.98% 
and 1.62%, with values ranging between -5.60 – 3.92% (air) and  
-0.97 – 2.94% (liquid). The weakness of the model arises for idle 
server power usage, where the error rate deviates up to 7% for 
liquid cooling. The reason for this deviation is due to parameter 
selection for Equation 4 to represent PDynamic (i.e. a zero value for 
utilization with the applied constant results in a large 
discrepancy). While the model accurately model power 
consumption at various utilization level, there is future room for 
improvement for idle utilization through error correction. 

Fig. 12 demonstrates the breakdown of power usage within 
each server sub-system in liquid cooling. It is observable that 
increasing the resource utilization results in power usage within 
each sub-system increasing at different rates. PDynamic 
experiences the largest growth from 1% to 33%, driven by 
increased resource utilization of the server. Furthermore, it 
indicates that the total cooling constitutes an additional 5.9 – 
10% power for the datacenter server to operate, increasing with 

Fig. 12. Breakdown of server sub-system power usage for liquid 
cooling. 
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Fig. 11. Model accuracy vs. experiments with liquid cooling. 
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Fig. 10. Model accuracy vs. experiments with air cooling.      
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higher levels of resource utilization as shown in Fig. 13. In 
contrast, air cooling results in 3.44% – 13.44% additional power 
consumption, with similar breakdown of sub-system power 
usage observed within liquid cooling.  

Air cooling consumes on average 7% additional power in 
comparison to liquid, with the largest deviation of 13% at 100% 
utilization. When applying ܧܷܲூூ to servers with air and liquid 
cooling, we observe a PUE on average of 1.16 and 1.09, 
respectively. This is due to the capability of liquid to remove 
heat is greater than air and sustain a lower temperature due to its 
thermal capacity [19].  

VII.  APPLICATION OF MODEL 

The findings ascertained within this work combined with the 
proposed model indicates that it is possible to capture the total 
power consumption of Cloud datacenter servers comprising both 
hardware and cooling. We describe three potential applications 
of these findings within the Cloud computing and datacenter 
research community: 

A. Power profiling 

The proposed model is capable of producing detailed power 
profiles of all server sub-systems, and more importantly quantify 
the cooling power expended under different utilization levels 
and cooling techniques. By demonstrating that up to 10% and 
13% of the total server power usage is driven by cooling for air 
and liquid (non-detectable by server power meters), we envision 
the enhancement of numerous energy-efficient scheduling 
algorithms capable of capturing this new power profile. 

B.  Air and liquid cooling evaluation 

The unified power model allows for studying and 
experimenting with different server architectures using both 
liquid and air cooling. We envision that the proposed model can 
be exploited by the community in order to rapidly evaluate 
various datacenter server deployments under different cooling 
configurations. As demonstrated from our analysis and 
validation, each cooling type will result in different temperature 
and power profiles, therefore providing more accurate trade-off 
analysis for application performance and total facility cooling.  

C. Enhanced pPUE accuracy 

The pPUE metrics detailed in Equations (10) and (11) 
applied to the analysis results in Section 4 results in values of 
1.062 and 1.096 for ܧܷܲூ  and ܧܷܲூூ ǡ  respectively. While 
this difference is minimal, it is worth highlighting that ܧܷܲூூ 
provides increased accuracy for measuring energy-efficiency, 
and will be magnified within the context of thousands of servers. 
Moreover, the external heat rejection is very close to the IT 
equipment, whereas in larger scale systems the liquid/air must 
travel significant distance to reject heat. Furthermore, in many 
scenarios it is not practical or economically feasible to collect 
data from every sub-system for energy-aware decision making. 
Therefore the metrics combined withim our model allow for 
providers to determine and select which metric is most suitable 
for their requirements. 

VIII.  CONCLUSIONS 

In this paper we have presented a unified model of power 
usage within a Cloud datacenter server comprising software, 
hardware and cooling holistically. Through controlled 
experiments within a laboratory environment, we analyzed the 
alteration in operational characteristics for multiple sub-systems 
and propose a model capable of capturing sub-system power 
usage cross-cutting the entire architecture at various utilization 
levels. We validate our model in air and liquid cooling 
experiments, demonstrating high model accuracy under 
numerous system conditions. We foresee that this model can be 
rapidly integrated into existing and future server power models 
for enhanced accuracy. Our contributions are summarized as 
follows: 

Different power profiles within heterogeneous utilization, 
architectures and cooling systems. Through our analysis we 
demonstrate that while there exists an intuitive relationship 
between sub-systems parameters from application performance, 
microprocessor temperature, fan speed and server power, this 
relationship is not strictly linear and is dependent on utilization 
levels and cooling type. This requires rethinking the cascading 
effects of improvements in application efficiency and its impact 
onto other sub-systems (and vice versa). 

Cooling represents a non-negligible amount of server power 
usage. Our findings show that the actual power consumed and 
rejected by cooling systems within the server represents up to 
10% and 13% within the total server, varying dependent on 
cooling type and utilization levels. Such an assumption is 
frequently omitted in energy-aware scheduling in computer 
science due to solely measuring server electrical power. Our 
model allows for researchers to easily integrate this 
characteristic into their assumptions for server power usage. 

Future work includes applying our method and model to a 
greater number of server architectures and cooling techniques to 
further validation. Furthermore, we believe that there is potential 
to apply error correction factoring to further enhance model 
accuracy for idle server usage to be in line with other utilization 
levels. Finally, we intend to exploit this model to create new 
energy-aware scheduling algorithms as well study its integration 
with facility level power models. 
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