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EMBEDDING IN FACTORISABLE RESTRICTION MONOIDS

VICTORIA GOULD, MIKLÓS HARTMANN, AND MÁRIA B. SZENDREI

Abstract. Each restriction semigroup is proved to be embeddable in a factorisable re-
striction monoid, or, equivalently, in an almost factorisable restriction semigroup. It is
also established that each restriction semigroup has a proper cover which is embeddable
in a semidirect product of a semilattice by a group.

1. Introduction

Restriction semigroups are non-regular generalisations of inverse semigroups. They are
semigroups equipped with two additional unary operations which satisfy certain identities.
In particular, each inverse semigroup determines a restriction semigroup where the unary
operations assign the idempotents aa−1 and a−1a, respectively, to any element a. The
class of restriction semigroups is just the variety of algebras generated by these restriction
semigroups obtained from inverse semigroups, see [3]. Restriction semigroups (formerly
called weakly E-ample semigroups) have arisen from a number of mathematical perspec-
tives. For a historical overview of restriction semigroups and a detailed introduction to
their fundamental properties the reader is referred to [5].

So far, a number of important results of the rich structure theory of inverse semigroups
have been recast in the broader setting of restriction semigroups. The current paper is a
contribution to this body of work. Our primary goal is to prove the following (see Theorem
3.10).

Main result Any restriction semigroup is embeddable in a factorisable restriction
monoid as a restriction semigroup, that is, in a way that respects both unary operations.

Earlier works [7], [8], [11], [12] have achieved embeddings of some or all restriction
semigroups in members of wider classes that are inherently one-sided. The difficulty of
our task is perhaps understood when we remark that it is undecidable whether a finite
restriction semigroup embeds as a restriction semigroup into an inverse semigroup [6]. To
this end we need to develop a proof strategy that is different in some crucial aspects from
earlier ones.

In the theory of inverse semigroups, semidirect products of semilattices by groups play
an important role. One of the reasons for this is that every inverse semigroup divides
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such a semidirect product (see [9] for the main results in this area and for references). In
fact, something stronger is true, namely that every inverse semigroup can be embedded
into an (idempotent separating) homomorphic image of such a semidirect product. One
way to see this result is through extensions of partial isomorphisms of semilattices: an
inverse semigroup determines partial isomorphisms of its semilattice of idempotents, and
constructing the corresponding semidirect product in fact includes embedding this semi-
lattice into a bigger one, and finding a group acting on the bigger semilattice such that
the original partial isomorphisms are restrictions of the automorphisms determined by the
group action.

The situation for restriction semigroups is similar, but also different in some crucial re-
spects. In this case groups are replaced by monoids, which gives rise to several problems.
The first result analogous to that formulated above for inverse semigroups was obtained
by the third author in [12]: she has shown that every restriction semigroup can be em-
bedded into a (projection separating) homomorphic image of a so-called W -product of a
semilattice by a monoid, that is, into an almost left factorisable restriction semigroup (cf.
[4]). An alternative proof, based on the idea of extending partial isomorphisms to injective
endomorphisms, has been presented by Kudryavtseva in [8].

In a W -product in general, the monoid acts by injective endomorphisms on the semi-
lattice, and this was the case in the results of [12] and [8] mentioned. In particular, if
the monoid acts by automorphisms on the semilattice then the W -product becomes a
semidirect product.

In this paper we obtain the strongest possible result in this direction by showing that
the monoid and the semilattice can be chosen such that the monoid acts on the semilattice
by automorphisms, thus demonstrating that any restriction semigroup can be embedded
into a (projection separating) homomorphic image of a semidirect product of a semilattice
by a monoid where the monoid acts on the semilattice by automorphisms. In other words,
we prove that any restriction semigroup can be embedded into an almost factorisable
restriction semigroup, or, equivalently, into a factorisable restriction monoid (cf. [4], [12]).
Furthermore, the construction applied in the proof of this result allows us to show that the
proper cover embeddable in a W -product, which is provided for a restriction semigroup in
[11] and [8], is embeddable also in a semidirect product of a semilattice by a group.

Note that restriction semigroups in general, proper restriction semigroups, almost fac-
torisable restriction semigroups, factorisable restriction monoids, and the semidirect prod-
ucts of semilattices by monoids where monoids act on semilattices by automorphisms are
defined in a left-right symmetric way. However, this is not the case with almost left factoris-
able restriction semigroups or W -products. Therefore the embedding results of the present
paper reflect the left-right symmetry of restriction and proper restriction semigroups, while
this was not the case with the foregoing results in [11] and [8].

In the last section, we strengthen some results in [8] and [7] by proving that each ultra
F -restriction, or, equivalently, each perfect restriction monoid S whose greatest reduced
factor is a free monoid is embeddable in a semidirect product of a semilattice by a monoid in
such a way that the monoid acts on the semilattice by automorphisms, and all congruences
of S extend to the semidirect product.
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2. Preliminaries

In general, mappings and partial mappings are considered as right operands, and so their
products are calculated from the left to the right. This applies, amongst others, to the
group of automorphisms Aut Y , to the Munn semigroup TY of a semilattice Y , and to the
symmetric inverse monoid I(X) on a set X . By writing Autop Y , T op

Y , etc., we indicate
that the (partial) mappings in them are considered left operands, and their products are
calculated from the right to the left.

2.1. Restriction semigroups. [5] A left restriction semigroup is defined to be an alge-
bra of type (2, 1), more precisely, an algebra S = (S; ·, +) where (S; ·) is a semigroup and
+ is a unary operation such that the following identities are satisfied:

(1) x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

A right restriction semigroup is defined dually, that is, it is an algebra S = (S; ·, ∗) satisfying
the duals of the identities (1). Finally, if S = (S; ·, +, ∗) is an algebra of type (2, 1, 1) where
S = (S; ·, +) is a left restriction semigroup, S = (S; ·, ∗) is a right restriction semigroup
and the identities

(2) (x+)
∗
= x+, (x∗)+ = x∗

hold, then it is called a restriction semigroup. Notice that the defining properties of a
restriction semigroup are left-right dual. Therefore in the sequel dual definitions and
statements will not be explicitly formulated.

Among restriction semigroups, the notions of subalgebra, homomorphism, congruence
and factor algebra are understood in type (2, 1, 1), which is emphasised by using the ex-
pressions (2, 1, 1)-subsemigroup, (2, 1, 1)-morphism, (2, 1, 1)-congruence and (2, 1, 1)-factor
semigroup, respectively. A restriction semigroup with identity element is also called a
restriction monoid.

In particular, each monoid M becomes a restriction monoid by defining a+ = a∗ = 1
for any a ∈ M . It is easy to see that these restriction semigroups are just those with
both unary operations being constant. Such a restriction monoid is called reduced. No-
tice that the submonoids, congruences, etc. of monoids and the (2, 1, 1)-subsemigroups,
(2, 1, 1)-congruences, etc. of the reduced restriction monoids obtained from them coincide.
Therefore we often consider reduced restriction monoids just as monoids, and vice versa.
Similarly, each semilattice Y becomes a restriction semigroup by defining a+ = a∗ = a
for every a ∈ Y . These restriction semigroups are just those where both unary opera-
tions equal the identity map. Clearly, the (2, 1, 1)-subsemigroups, (2, 1, 1)-congruences,
etc. of such a restriction semigroup Y are just the subsemilattices, congruences, etc. of the
semilattice Y . Therefore such a restriction semigroup is simply considered and called a
semilattice.

Let S be any restriction semigroup. By (2), we have {x+ : x ∈ S} = {x∗ : x ∈ S}.
This set is called the set of projections of S, and is denoted by P (S). By (1) and its dual,
P (S) can be seen to be a (2, 1, 1)-subsemigroup in S which is a semilattice. Notice that
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a restriction semigroup S is reduced if and only if P (S) is a singleton, and, if this is the
case, then the unique element of P (S) is the identity element of S.

Given a restriction semigroup S, we define a relation ≤ on S such that, for every a, b ∈ S,

a ≤ b if and only if a = a+b.

It is easy to see that a ≤ b if and only if a = eb for some e ∈ P (S). Observe that the
dual of this relation is the same since a = a+b implies a = b(a+b)∗ = ba∗, and the dual
implication is also valid. The relation ≤ is a compatible partial order on S, and it extends
the natural partial order of the semilattice P (S). It is called the natural partial order on
S.

We also consider a relation on S, denoted by σS, or simply σ: for any a, b ∈ S, let

a σ b if and only if ea = eb for some e ∈ P (S).

Again notice that if there exists e ∈ P (S) with ea = eb then there exists also f ∈ P (S) with
af = bf , and conversely. Therefore the relation defined dually to σ coincides with σ. The
relation σ is the least congruence on S = (S; ·) where P (S) is in a congruence class, which
we denote by P (S)σ. Consequently, it is the least (2, 1, 1)-congruence ρ on S = (S; ·, +, ∗)
such that the (2, 1, 1)-factor semigroup S/ρ is reduced. Therefore we call σ the least reduced
(2, 1, 1)-congruence on S. Obviously, P (S)σ is the identity element of S/σ. The reduced
restriction monoid S/σ is often considered just as a monoid S/σ = (S/σ; ·, P (S)σ).

Let S and T be restriction semigroups. We say that S is proper if, for every a, b ∈ S,
the relations a+ = b+ and a σ b together imply a = b and the dual property also holds. It
is easy to see that each (2, 1, 1)-subsemigroup of a proper restriction semigroup is proper.
A (2, 1, 1)-morphism ϕ : T → S is called projection separating if eϕ = fϕ implies e = f for
every e, f ∈ P (T ). We say that T is a proper cover of S if T is proper and there exists a
projection separating (2, 1, 1)-morphism from T onto S.

2.2. Semidirect products and factorisability. [4], [12] Let T be a monoid and X =
(X ;∧) a semilattice. We say that T acts on X (on the left) by automorphisms if a monoid
homomorphism α : T → Autop X , t 7→ αt is given. The element αta (t ∈ T, a ∈ X ) is
usually denoted by t · a. The fact that T acts on X by automorphisms is equivalent to
requiring that the mapping αt : X → X , a 7→ t · a is bijective for every t ∈ T , and that the
following equalities are valid for every a, b ∈ X and t, u ∈ T :

(3) t · (a ∧ b) = t · a ∧ t · b, u · (t · a) = (ut) · a, 1 · a = a.

The semidirect product X ⋊ T is the algebra of type (2, 1, 1) defined on the set X × T =
{(t · a, t) : a ∈ X , t ∈ T} with the following operations:

(t · a, t)(u · b, u) = (t · (a ∧ u · b), tu), (t · a, t)+ = (t · a, 1) and (t · a, t)∗ = (a, 1).

Note that since T acts by automorphisms, the multiplication and the + operation may be
also expressed as

(a, t)(b, u) = (a ∧ t · b, tu), and (a, t)+ = (a, 1).

The reason for the unusual formulation is in the definition of the operation ∗: since T
is not necessarily a group, one cannot use t−1. It is routine to check that X ⋊ T is a
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proper restriction semigroup where P (X ⋊ T ) = {(a, 1) : a ∈ X} is isomorphic to X , the
relation σ is just the kernel of the second projection X ⋊ T → T, (t · a, t) 7→ t, and so
(X ⋊T )/σ is isomorphic to T . Moreover, the natural partial order is the following relation:
(t · a, t) ≤ (u · b, u) if and only if a ≤ b and t = u. The semidirect product X ⋊ T is a
(proper restriction) monoid if and only if X has an identity element. In this case the fact
that T acts by automorphisms implies that t · e = e for any t ∈ T where e is the identity
element of X . To avoid confusion, we call the attention to the fact that, from now on,
when speaking about a semidirect product of a semilattice by a monoid, it is always meant
to be a restriction semigroup just defined. In particular, the action of the monoid on the
semilattice is taken to be an action by automorphisms.

Note that the semidirect product X ⋊T is isomorphic to the reverse semidirect product
T ⋉ X where the right action of T on X is given by the monoid homomorphism T →
AutX , t 7→ α−1

t . By definition (see [4]), the reverse semidirect product T ⋉X is, in fact, a
W -product W (T,X ). Therefore the same is the case with the semidirect product X ⋊ T .

In this paper, an action of a monoid T on a semilattice X by automorphisms will
frequently come as a restriction of an action of a group G to its submonoid T . In this case,
the ∗ operation may be expressed as

(a, t)∗ = (t−1 · a, 1),

and so we will prefer representing the elements of the semidirect product X ⋊ T , as it is
usual within the inverse semigroup X ⋊ G, in the form (a, t) with a ∈ X , t ∈ T . In this
form, the natural partial order is (a, t) ≤ (b, u) if and only if a ≤ b and t = u.

Note that, instead of assuming that a monoid T is embeddable in a group and it acts
on a semilattice X by automorphisms, we can require without loss of generality that T
is a submonoid in a group G which it generates, G acts on X , and the action of T is
the restriction of the action of G. For, recall first that if T is embeddable in a group
then the inclusion map κ : T → GT where GT = 〈T |Ξ〉 is given by the defining relations
Ξ = {tuv−1 : t, u, v ∈ T and tu = v in T} is an embedding. Second, if the action of
T on X is defined by the homomorphism α : T → Autop X then αtαuα

−1
v is the identity

automorphism for every t, u, v ∈ T with tu = v, and so there exists a homomorphism
β : GT → Autop X such that α = κβ. Thus β defines an action of GT on X , and its
restriction to T is just α.

Factorisable restriction monoids and almost factorisable restriction semigroups were in-
troduced in [12] (see also [4]) analogously to factorisable inverse monoids and almost fac-
torisable inverse semigroups, respectively. A restriction monoid F is called factorisable if
F = P (F )U(F ) where U(F ) = {u ∈ F : u+ = u∗ = 1} is the reduced (2, 1, 1)-subsemigroup
of F analogous to the group of units in an inverse monoid. Note that F = P (F )U(F ) if
and only if F = U(F )P (F ), therefore factorisability is a left-right symmetric property. The
notion of an almost factorisable restriction semigroup is defined by means of permissible
subsets but, instead of the definition, it suffices for the purposes of this paper to recall
how they relate to factorisable restriction monoids ([12, Proposition 3.10 and Theorem
3.11]). If F is a factorisable restriction monoid then both F and the (2, 1, 1)-subsemigroup
F \ U(F ) of F are almost factorisable, and conversely, each almost factorisable restriction
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semigroup is, up to (2, 1, 1)-ismomorphism, of the latter form. In particular, this implies
that a restriction semigroup is (2, 1, 1)-embeddable in a factorisable restriction monoid if
and only if it is (2, 1, 1)-embeddable in an almost factorisable restriction semigroup.

In the proof of the main result of the paper, we need the following description of these
restriction semigroups by means of semidirect products.

Proposition 2.1. [12, Theorem 3.12] A restriction monoid (semigroup) is factorisable
(almost factorisable) if and only if it is a (2, 1, 1)-morphic image of a semidirect product
of a semilattice with identity (a semilattice) by a monoid.

Given an almost factorisable restriction semigroup F− in the above form, now we
establish for later use, how to construct a factorisable restriction monoid F such that
F− = F \ U(F ).

Lemma 2.2. Consider an almost factorisable restriction semigroup F− = (X⋊T )/ρ, where
T is a monoid acting on the semilattice X by automorphisms, and ρ is a (2, 1, 1)-congruence
on the restriction semigroup X ⋊T . Let X e be the semilattice obtained from X by adjoining
an identity element e /∈ X even if X has an identity element. Extend the action of T on
X to X e by putting t · e = e for every t ∈ T , and consider the relation ρe = ρ ∪ ı on the
semidirect product X e

⋊T where ı is the equality relation on U = (X e
⋊T )\ (X ⋊T ). Then

ρe is a (2, 1, 1)-congruence on the restriction monoid X e
⋊T extending ρ, F = (X e

⋊T )/ρe
is a factorisable restriction monoid with U(F ) = {uρe : u ∈ U} = {{(e, t)} : t ∈ T}, and
the mapping F− → F, (a, t)ρ 7→ (a, t)ρe ((a, t) ∈ X ⋊ T ) is an injective (2, 1, 1)-morphism
with range F \ U(F ).

Proof. Obviously, T acts on X e by automorphisms, the semidirect product X e
⋊ T is a

restriction monoid with U(X e
⋊T ) = U , and X ⋊T is a (2, 1, 1)-subsemigroup and ideal of

X e
⋊ T . Moreover, it is also clear that the relation ρe is an equivalence whose restriction

to X ⋊ T is ρ, and that it is compatible with both unary operations. It remains to check
that ρe is compatible with the multiplication. We have to verify that if (a, t) ρ (b, u) in
X ⋊ T and v ∈ T then both (a, t)(e, v) ρ (b, u)(e, v) and (e, v)(a, t) ρ (e, v)(b, u) hold, that
is, both (a, tv) ρ (b, uv) and (v · a, vt) ρ (v · b, vu) are valid. We verify the first relation, the
second being similar. Since ρ is a (2, 1, 1)-congruence on X ⋊ T , we have (a ∧ t · c, tv) =
(a, t)(c, v) ρ (b, u)(c, v) = (b∧u ·c, uv) for every c ∈ X . Choosing c to be the unique element
of X such that t ·c = a, we obtain that (a, tv)ρ = (b∧u ·c, uv)ρ ≤ (b, uv)ρ in F−. Changing
the roles of (a, t) and (b, u) the equality follows, proving the first relation. �

2.3. Congruences on restriction semigroups generated by relations. [12] Given
a set X of variables, by a (restriction) term in X we mean a formal expression built up from
the elements of X by means of the operational symbols — the binary operational symbol
· and the unary operational symbols + and ∗ — in finitely many steps. Since the binary
operation · is always interpreted in a semigroup we delete the unnecessary parentheses from
the terms. If S is a fixed restriction semigroup then we introduce a nullary operational
symbol for every element s in S, and, for simplicity, denote it also by s. By a polynomial
of S we mean an expression obtained in a way similar to terms, but from variables and
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these nullary operational symbols. A polynomial can also be interpreted in the way that
such nullary operational symbols — briefly elements of S — are substituted for certain
variables in a term. So a unary polynomial of S, that is, a polynomial in one variable
x, is of the form t(x, s1, . . . , sk−1) for some term t in k variables and for some elements
s1, . . . , sk−1 ∈ S. To simplify our notation, we denote by S⋆ the set of finite (possibly
empty) sequences of elements of S, and we use Greek letters to denote elements of S⋆.
The length of the sequences will be determined by the context where they appear. For
example, if t is a term in k variables and we are talking about t(x, α) for some α ∈ S⋆

then the length of α is k − 1.
Let S be a restriction semigroup and let τ ⊆ S × S be a symmetric relation. We denote

by τ# the (2, 1, 1)-congruence on S generated by τ . It is a basic fact of universal algebra
that if s, t ∈ S then s τ# t if and only if there exist a sequence p1(x), p2(x), . . . , pk(x) of
unary polynomials of S and elements c1, d1, . . . , ck, dk ∈ S such that (ci, di) ∈ τ for all
i (1 ≤ i ≤ k) and

s = p1(c1), p1(d1) = p2(c2), . . . , pk(dk) = t.

In general, unary polynomials over a restriction semigroup can be quite complicated. How-
ever, it is shown in [12] that the unary polynomials appearing in the sequence can be chosen
to be simpler, and this will be key to our later arguments.

We define two sequences of terms in variables x, y, z, y0, z0, . . . in the following way: let

t
(0)
+ (x, y0, z0) = (y0xz0)

+, t(0)∗ (x, y0, z0) = (y0xz0)
∗,

and, for every i ∈ N, let

t
(i)
+ (x, y0, z0, . . . , yi−2, zi−1, yi) =

(

yit
(i−1)
∗ (x, y0, z0, . . . , yi−2, zi−1)

)+
,

t(i)∗ (x, y0, z0, . . . , zi−2, yi−1, zi) =
(

t
(i−1)
+ (x, y0, z0, . . . , zi−2, yi−1)zi

)∗
.

For convenience we note that

t
(1)
+ (x, y0, z0, y1) =

(

y1(y0xz0)
∗
)+

,

t
(1)
∗ (x, y0, z0, z1) =

(

(y0xz0)
+z1

)∗
,

t
(2)
+ (x, y0, z0, z1, y2) =

(

y2
(

(y0xz0)
+z1

)∗)+
,

t
(2)
∗ (x, y0, z0, y1, z2) =

((

y1(y0xz0)
∗
)+

z2
)∗
.

We define the following sets of terms:

T(+) = {t
(i)
+ , t(i+1)

∗ : i ∈ N0 is even}, T(∗) = {t(i)∗ , t
(i+1)
+ : i ∈ N0 is even},

T = {t : t(x, y, z) = yxz or t(x, y, z, y0, z0, . . .) = yuz where u ∈ T(+) ∪T(∗)}.

Notice that T(+) (T(∗)) contains terms with + (∗) as innermost unary operation. The set
T(+) (T(∗)) differs from the set T+ (T∗) used in [12] since the latter consists of the terms
with + (∗) as outermost unary operation. The reason for this modification (and slightly
awkward notation) is that, in contrast to the proof of the main result of [12], we are going
to distinguish cases depending on the innermost unary operation.

It is shown in [12] that the terms in T are enough to determine a (2, 1, 1)-congruence
generated by a symmetric relation.
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Proposition 2.3. [12, Proposition 4.5] If τ is a symmetric relation on a restriction semi-
group S then, for any s, t ∈ S, we have s τ# t if and only if s = t or there exist k ∈ N,
t1, . . . , tk ∈ T, α1, . . . , αk ∈ S∗ and (c1, d1), . . . , (ck, dk) ∈ τ such that

s = t1(c1, α1), t1(d1, α1) = t2(c2, α2), . . . , tk(dk, αk) = t.

Let S and S ′ be restriction semigroups such that S is a (2, 1, 1)-subsemigroup of S ′,
and let ρ be (2, 1, 1)-congruence on S. A (2, 1, 1)-congruence ρ′ on S ′ is said to extend
ρ if the restriction of ρ′ to S equals ρ. We say that ρ extends to S ′ if there exists a
(2, 1, 1)-congruence ρ′ on S ′ extending ρ. Notice that ρ extends to S ′ if and only if the
(2, 1, 1)-congruence on S ′ generated by ρ extends ρ.

2.4. Free restriction monoids. [3] A transparent model of the free restriction monoid
on a set is given in [3] as a full subsemigroup in the free inverse monoid on the same set
(cf. [9]).

Let Ω be a non-empty set, and denote by Ω∗ and FG(Ω), respectively, the usual models
of the free monoid and the free group on Ω, where Ω∗ consists of all words (i.e., of finite
(possibly empty) sequences) over Ω and FG(Ω) consists of all reduced words over Ω∪Ω−1.
The empty word is denoted by 1. Obviously, Ω∗ is a subsemigroup of FG(Ω), and 1 is the
identity element in both.

Let C be the Cayley graph of FG(Ω) which is well known to be a tree. Therefore
each finite subset A ⊆ FG(Ω) determines a maximum subgraph of C having A as its set
of vertices. From now on, we identify A with this subgraph. Let X be the set of all
finite connected subgraphs of C (i.e., of all finite subtrees), partially ordered by reverse
inclusion. Then X is a semilattice without an identity. Clearly, Y = {A ∈ X : 1 ∈ A} is a
principal order ideal of X and a subsemilattice with identity element 1 = {1}. Moreover,
(FG(Ω),X ,Y) is a McAlister triple where FG(Ω) acts on the partially ordered set X by
multiplication: if g ∈ FG(Ω) and A ∈ X then g · A = {ga : a ∈ A}. It is well known that
the P -semigroup P (FG(Ω),X ,Y) is a free inverse monoid on Ω.

It is established in [3] that

FR(Ω) = {(A,w) ∈ P (FG(Ω),X ,Y) : w ∈ Ω∗}

is a (2, 1, 1)-subsemigroup in P (FG(Ω),X ,Y), it is a free restriction monoid on Ω and
FRS(Ω) = FR(Ω) \ {(1, 1)} is a free restriction semigroup on Ω. The main result of this
paper depends on certain property of the action of the free monoid Ω∗ involved in this
model of FR(Ω). We are going to specify this property in the next section, but show here
how FR(Ω) fits into the picture.

Since the free inverse monoid P (FG(Ω),X ,Y) is F -inverse, the partially ordered set
X , where the partial order will subsequently be denoted ≤, is a semilattice. Thus Y is
a principal ideal in it with identity element 1, and the action of FG(Ω) on the partially
ordered set X is, in fact, an action on the semilattice X . Since C is a tree, for every finite
subgraph A ⊆ FG(Ω), there exists a minimum subtree A′ containing A. The semilattice
operation ∧ of X can be given by the rule A ∧ B = (A ∪ B)′ (A,B ∈ X ). Thus the
semidirect products X ⋊ FG(Ω) and X ⋊ Ω∗ are defined, and FR(Ω) can be given in this
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context as the following (2, 1, 1)-subsemigroup of X ⋊ Ω∗:

FR(Ω) = {(A,w) ∈ Y × Ω∗ : A ≤ w · 1}.

Note that the free inverse monoid P (FG(Ω),X ,Y) is usually considered as an inverse
subsemigroup of a semidirect product of another semilattice by FG(Ω), namely, of the
semilattice of all finite subgraphs of C with respect to the usual join. In the sequel, we
need the approach in the previous paragraph, as it was the case with theW -product applied
in [11] and [12].

3. Main result

Our aim is to show that every restriction monoid, and consequently, every restriction
semigroup is (2, 1, 1)-embeddable in a factorisable restriction monoid, or equivalently in
an almost factorisable restriction semigroup. We obtain a (2, 1, 1)-embedding by taking a
free restriction monoid FR(Ω), having the given restriction monoid S as its image via a
(2, 1, 1)-morphism, say, ϕ, and by considering the (2, 1, 1)-embedding of FR(Ω) into the
semidirect product X ⋊ Ω∗ described in the previous section where the monoid Ω∗ acts
on the semilattice X by automorphisms. Since the kernel of ϕ : FR(Ω) → S is a (2, 1, 1)-
congruence on FR(Ω), we consider the (2, 1, 1)-congruence on the semidirect product X⋊Ω∗

it generates. If the restriction of the latter congruence to FR(Ω) equals the kernel, then we
obtain a (2, 1, 1)-embedding of S into a (2, 1, 1)-morphic image of the semidirect product,
that is, into an almost factorisable restriction semigroup. As it turns out, the fact that
this approach works depends only on the fact that the actions of the free monoid Ω∗ and
of the free group FG(Ω) on the semilattice X satisfy a simple condition. This allows us to
slightly generalise our approach.

From now on, let X be a semilattice and let Y be a principal ideal of X . Denote the
identity element of Y by 1. Let T be a monoid embeddable in a group, and suppose that
T acts on X (on the left) by automorphisms. We have seen formerly that, in this case,
there exists a group G acting on X such that T is a submonoid of G generating G, and the
action of T is the restriction of the action of G. Let us choose and fix such a group G. In
the sequel we will use boldface letters to represent the elements of the semidirect products
X ⋊ G and X ⋊ T , the corresponding capital letters and overlined letters to denote their
first and second components, respectively — for example, a = (A, a).

Define the following subset of the semidirect product X ⋊ T :

(4) R = {(A, a) ∈ Y × T : A ≤ a · 1}.

Note that if (A, a) ∈ R and A = a·B ≤ a·1 where B ∈ X , then as T acts by automorphisms
we have B ≤ 1. It is now easy to check that R is a (2, 1, 1)-subsemigroup in X ⋊ T with
identity element (1, 1), and so it is a proper restriction monoid. Notice that, for any
(A, a) ∈ X ⋊T there exists a maximum element of R less than or equal to (A, a) which we
denote by (A, a)↓. It is clear that (A, a)↓ = (1 ∧ A ∧ a · 1, a).

Observe that G · Y is the smallest subsemilattice in X containing Y which is invariant
under the action of G. Since, for any g, h ∈ G and A,B ∈ Y , we have g · A ∧ h · B =
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g · (A ∧ g−1h ·B), and Y is an ideal in X , we see that G · Y is, indeed, a subsemilattice of
X . Since we have R ⊆ Y × T , we can assume without loss of generality that X = G · Y .

A sequence w1, w2, . . . , wn of elements of G is called an alternating sequence in T if,
for every i (1 ≤ i ≤ n), we have wi = tǫii for some ti ∈ T, ǫi ∈ {1,−1}, and, for every
i (1 ≤ i < n), we have ǫi+1 = −ǫi. A factorisation g = w1w2 · · ·wn of an element g ∈ G is
called a nice factorisation in T with respect to 1 if w1, w2, . . . , wn is an alternating sequence
in T such that, for every i (1 ≤ i < n), we have that

wi · 1 ≥ 1 ∧ wi · · ·wn · 1.

We say that the action of the monoid T on the semilattice X (necessarily by automor-
phisms) is nice over the group G with respect to the element 1 ∈ X if every element g ∈ G
has a nice factorisation in T with respect to 1. Note that, in particular, the action of a
group on a semilattice is always nice over the group itself with respect to any element of
the semilattice. We say that X ⋊ T is a nice semidirect product of a semilattice X by a
monoid T if T is a submonoid of a group G acting on X such that the following conditions
are satisfied:

(a) T generates G,
(b) the action of T on X in X ⋊ T is the restriction of the action of G,
(c) the action of T on X is nice over G with respect to an element 1 ∈ X such that

X = G · Y for the principal ideal Y of X with identity 1.

Example 3.1. The action of Ω∗ on the semilattice X defined in Subsection 2.4 is nice over
FG(Ω) with respect to 1. It is easy to see that if g ∈ FG(Ω), then the unique reduced
alternating factorisation g = w1w2 · · ·wn where w1, w2, . . . , wn ∈ Ω∗ ∪ (Ω∗)−1 is a nice
factorisation of g in Ω∗ with respect to 1. Moreover, we have X = FG(Ω) · Y where Y is a
principal ideal with identity 1, and so X ⋊ Ω∗ is a nice semidirect product.

Example 3.2. Let G and T be the free Abelian group and free commutative semigroup,
respectively, on the set Ω. Then for every g ∈ G, there exist unique elements u, t ∈
T such that g = u−1t. We say that a subset A ⊆ G is min-closed if, for every g =
ωa1
1 · · ·ωas

s , h = ωb1
1 · · ·ωbs

s ∈ A, where ω1, . . . , ωs are pairwise distinct elements of Ω, we

have that ω
min(a1,b1)
1 · · ·ω

min(as,bs)
s ∈ A. Let X = {A ⊆ G : A 6= ∅, A is min-closed} and,

for all A,B ∈ X , let A∧B be the smallest min-closed subset of G containing A∪B. Then
X is a semilattice and G acts on X by multiplication. Furthermore, Y = {A ∈ X : 1 ∈ A}
is a principal ideal of X with identity {1} = 1. Note that, for any g ∈ G, the unique
factorisation g = u−1t is nice in T with respect to 1, because if g = ωa1

1 · · ·ωas
s then

u−1 = ω
min(a1,0)
1 · · ·ωmin(as ,0)

s ∈ {1} ∧ {g}, showing that u−1 · 1 ≥ 1 ∧ g · 1.

Let G be a group acting on a semilattice X , and let ε be a congruence on X . We say
that ε is G-invariant if x ε x′ implies g · x ε g · x′ for every x, x′ ∈ X and g ∈ G. In
this case, G acts by automorphisms on X /ε by the rule g · (xε) = (g · x)ε. The following
observation is straightforward.

Lemma 3.3. If an action of a monoid T on a semilattice X is nice over a group G with
respect to an element 1 ∈ X and ε is a G-invariant congruence on X , then the restriction
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of the action of G on X /ε to T is also nice over G with respect to 1ε ∈ X /ε. Consequently,
if X ⋊ T is a nice semidirect product then the same holds for (X /ε)⋊ T .

From now on, additionally to our former assumptions on X , Y , T and G, we suppose
that the action of T on X is nice over the group G with respect to 1.

Lemma 3.4. Let t(i) ∈ T(+) ∪ T(∗) and let α ∈ (X ⋊ T )⋆. Then there exist U, V ∈ X ,
g ∈ G depending on α such that

t(i)(c, α) = (U ∧ g · C̃ ∧ gc̃ · V, 1)

for every c ∈ R where

c̃ = (C̃, c̃) =

{

(C, c) if t(i) ∈ T(+),
(c−1 · C, c−1) if t(i) ∈ T(∗).

Proof. We proceed by induction on i. If i = 0 then t(i) = (y0xz0)
+ or t(i) = (y0xz0)

∗, and
α =

(

(A, a), (B, b)
)

for some (A, a), (B, b) ∈ X ⋊ T . If t(i) ∈ T(+) then

t(i)(c, α) =
(

(A, a)(C, c)(B, b)
)+

= (A ∧ a · C ∧ a c · B, 1),

so we can set U = A, V = B and g = a . Similarly, if t(i) ∈ T(∗) then

t(i)(c, α) =
(

(A, a)(C, c)(B, b)
)∗

= (b
−1
c−1a−1 · A ∧ b

−1
c−1 · C ∧ b

−1
· B, 1),

so we can set U = b
−1

· B, V = a−1 · A and g = b
−1
.

Let i ≥ 1 and t(i) ∈ T(+) ∪ T(∗), and suppose that we have proven the statement for

i − 1. Then t(i) =
(

yit
(i−1)

)+
or t(i) =

(

t(i−1)zi
)∗

for an appropriate t(i−1) ∈ T(+) ∪ T(∗)

and α =
(

α′, (A, a)
)

where α′ ∈ (X ⋊ T )⋆ and (A, a) ∈ X ⋊ T . Note that t(i) ∈ T(+) if

and only if t(i−1) ∈ T(+), since T(+) contains terms with + as innermost unary operation.

By the induction hypothesis there exist U ′, V ′ ∈ X and g′ ∈ G such that t(i−1)(c, α′) =

(U ′ ∧ g′ · C̃ ∧ g′c̃ · V ′, 1) for all c ∈ R. If t(i) =
(

yit
(i−1)

)+
then

t(i)(c, α) =
(

(A, a)(U ′ ∧ g′ · C̃ ∧ g′c̃ · V ′, 1)
)+

= (A ∧ a · U ′ ∧ ag′ · C̃ ∧ ag′c̃ · V ′, 1),

so we can set U = A ∧ a · U ′, V = V ′ and g = ag′. Similarly, if t(i) =
(

t(i−1)zi
)∗

then

t(i)(c, α) =
(

(U ′ ∧ g′ · C̃ ∧ g′c̃ · V ′, 1)(A, a)
)∗

= (a−1 ·U ′ ∧ a−1g′ · C̃ ∧ a−1g′c̃ ·V ′ ∧ a−1 ·A, 1),

so we can set U = a−1 · U ′ ∧ a−1 · A, V = V ′ and g = a−1g′. �

The previous lemma showed that for all terms t ∈ T(+) ∪ T(∗), the elements t(c, α)
(α ∈ (X ⋊ T )⋆) are of special form. Our aim is to replace in certain circumstances the
sequence of constants α by β ∈ R⋆ and the term t by a term t′ such that t(c, α)↓ = t′(c, β)
for all c ∈ R. The following lemma constitutes the first step in this direction.

Lemma 3.5. Let U, V ∈ X and g ∈ G. Then there exist t ∈ T(+) and β ∈ R⋆ such that

(1 ∧ U ∧ g · C ∧ gc · V, 1) = t(c, β)
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for all c ∈ R. Dually, there exists t ∈ T(∗) and β ∈ R⋆ such that

(1 ∧ U ∧ gc−1 · C ∧ gc−1 · V, 1) = t(c, β)

for all c ∈ R.

Proof. Let g = w1 · · ·wn be a nice factorisation. We prove the lemma by induction on n.
If n = 1 then there are four cases to consider (recall the definition of the element (C̃, c̃)

from Lemma 3.4):

Conditions ((1 ∧ U ∧ w1 · C̃ ∧ w1c̃ · V, 1) =

w1 ∈ T, t ∈ T+

(

(1 ∧ U ∧ w1 · 1, w1)(C, c)(1 ∧ V, 1)
)+

w1 ∈ T−1, t ∈ T+

(

((C, c)(1 ∧ V, 1))+ (1 ∧ w−1
1 · U ∧ w−1

1 · 1, w−1
1 )

)∗

w1 ∈ T, t ∈ T∗

(

(1 ∧ U ∧ w1 · 1, w1)
(

(1 ∧ V, 1)(C, c)
)∗)+

w1 ∈ T−1, t ∈ T∗

(

(1 ∧ V, 1)(C, c)(1 ∧ w−1
1 · U ∧ w−1

1 · 1, w−1
1 )

)∗

The equalities are easy to check and left to the reader. Note that throughout variations of
the inequalities w1 · 1 ≥ w1 · C and c · 1 ≥ C are used.

Let us suppose that for some n ≥ 2 we have proven the lemma for every g′ ∈ G which
admits a nice factorisation having less than n factors, and let us suppose that g = w1 · · ·wn

is a nice factorisation. Then w−1
1 g = w2 · · ·wn is also a nice factorisation, so applying the

induction hypothesis for U ′ = w−1
1 · U, V ′ = V and g′ = w−1

1 g, there exists t′ ∈ T(+) and
β ′ ∈ R⋆ such that

(1 ∧ w−1
1 · U ∧ w−1

1 g · C ∧ w−1
1 gc · V, 1) = t′(c, β ′)

for all c ∈ R. Now there are two cases to consider. If w1 ∈ T then w1 ·1 ≥ 1∧g ·1 ≥ 1∧g ·C,
and so

(1 ∧ U ∧ g · C ∧ gc · V, 1) =
(

(1 ∧ w1 · 1, w1)(1 ∧ w−1
1 · U ∧ w−1

1 g · C ∧ w−1
1 gc · V, 1)

)+

=
(

(1 ∧ w1 · 1, w1)t
′(c, β ′)

)+
= t(c, β)

for t = (yit
′)+ and β =

(

β ′, (1 ∧ w1 · 1, w1)
)

. If w1 ∈ T−1 then by the same fact we have

(1 ∧ U ∧ g · C ∧ gc · V, 1) =
(

(1 ∧ w−1
1 · U ∧ w−1

1 g · C ∧ w−1
1 gc · V, 1)(1 ∧ w−1

1 · 1, w−1
1 )

)∗

=
(

t′(c, β ′)(1 ∧ w−1
1 · 1, w−1

1 )
)∗

= t(c, β)

for t = (t′zi)
∗ and β =

(

β ′, (1 ∧ w−1
1 · 1, w−1

1 )
)

. To finish this part of the proof, one
has to note that the fact that the factorisation g = w1 · · ·wn is alternating implies that
the terms defined above are all contained in T(+). This proves the first statement of the
lemma. The induction step for the second statement is proven similarly, utilising the fact
that w1 · 1 ≥ 1 ∧ gc−1 · C. �

Lemma 3.6. Let t ∈ T and let α ∈ (X ⋊ T )⋆. Then there exist t′ ∈ T and β ∈ R⋆ such
that

(5) t(c, α)↓ = t′(c, β)

for all c ∈ R.
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Proof. There are three cases to consider: the first one is if t = yxz. In this case let t′ = t,
and let β =

(

(1 ∧ A ∧ a · 1, a), (1 ∧ B ∧ b · 1, b)
)

if α =
(

(A, a), (B, b)
)

. Note that since
c ∈ R, the inequalities ac · 1, a · 1 ≥ a · C imply that

t(c, α)↓ = (1 ∧ A ∧ a · C ∧ ac · B ∧ acb · 1, acb)
= (1 ∧ A ∧ a · 1, a)(C, c)(1 ∧ B ∧ b · 1, b) = t′(c, β).

The second case is where t = yrz for some r ∈ T(+). Then α =
(

α′, (A, a), (B, b)
)

for

some (A, a), (B, b) ∈ X ⋊ T and α′ ∈ (X ⋊ T )⋆. By Lemma 3.4 there exist U, V ∈ X and
g ∈ G such that r(c, α′) = (U ∧ g · C ∧ gc · V, 1) for every c ∈ R. In this case

t(c, α) = (A, a)(U ∧ g · C ∧ gc · V, 1)(B, b) = (A ∧ a · U ∧ ag · C ∧ agc · V ∧ a · B, ab).

By Lemma 3.5, there exist t̃ ∈ T(+) and β ′ ∈ R⋆ such that for all c ∈ R we have

(1 ∧ A ∧ a · U ∧ ag · C ∧ agc · V ∧ a · B, 1) = t̃(c, β ′).

So altogether

t(c, α)↓ = (1 ∧A ∧ a · U ∧ ag · C ∧ agc · V ∧ a · B ∧ ab · 1, ab)
= (1 ∧A ∧ a · U ∧ ag · C ∧ agc · V ∧ a · B, 1)(1 ∧ ab · 1, ab)
= t̃(c, β ′)(1 ∧ ab · 1, ab),

so t′ = yt̃z and β =
(

(1, 1), (1 ∧ ab · 1, ab)), β ′
)

satisfy the requirements of the lemma.
The third case, where t ∈ T(∗), can be dealt with similarly to the previous case. �

Lemma 3.7. Let ρ be a (2, 1, 1)-congruence on R and let ρ# be the (2, 1, 1)-congruence on
X ⋊ T generated by ρ. Then the restriction of ρ# to R equals ρ, i.e., ρ# extends ρ. As a
consequence, R/ρ is (2, 1, 1)-embeddable in (X ⋊ T )/ρ#.

Proof. Let (s, t) ∈ ρ# ∩ (R× R). Then there exists a ρ-sequence

s = t1(c1, α1), t1(d1, α1) = t2(c2, α2), . . . , tn(dn, αn) = t

connecting s and t in X ⋊ T . By Lemma 3.6, for every k (1 ≤ k ≤ n), there exist t′k ∈ T

and βk ∈ R⋆ satisfying (5). Thus for every k (1 ≤ k ≤ n), we have

tk(ck, αk)
↓ = t′k(ck, βk), t′k(dk, βk) = t(dk, αk)

↓,

showing that the sequence

s = t1(c1, α1)
↓ = t′1(c1, β1), t

′
1(d1, β1) = t′2(c2, β2), . . . , t

′
n(dn, βn) = tn(dn, αn)

↓ = t

connects s and t within R, proving that (s, t) ∈ ρ. �

Although this lemma easily implies our embedding result referred in the title to, before
formulating it, we show two lemmas in order to prepare our result on proper covers. Note
that in the first lemma the action of T need not be nice.

Lemma 3.8. Let ρ ⊆ σ be a (2, 1, 1)-congruence on the semidirect product X⋊T . Then, for
every (A, a), (B, b) ∈ X ⋊ T , we have (A, a) ρ (B, b) if and only if a = b and (A, 1) ρ (B, 1).
As a consequence, ρ is generated by its restriction to the projections.
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Proof. Let τ = {
(

(A, a), (B, b)
)

∈ (X ⋊ T ) × (X ⋊ T ) : a = b and (A, 1) ρ (B, 1)}. It is

clear that ρ ⊆ τ . Conversely, let
(

(A, a), (B, b)
)

∈ τ . Then

(A ∧ B, a) = (A, 1)(B, a) ρ (B, 1)(B, a) = (B, a),

which together with its dual completes the proof. �

Lemma 3.9. Let ρ be a (2, 1, 1)-congruence on R. Denote by ρP the restriction of ρ to
P × P , with P = P (R), and by τ and τ# the (2, 1, 1)-congruences on R and on X ⋊ T ,
respectively, generated by ρP . Then R/τ (2, 1, 1)-embeds into (X /ε)⋊T for an appropriate
G-invariant congruence ε on X , and (X /ε) ⋊ T is a nice semidirect product of X /ε by
T . Moreover, the (2, 1, 1)-congruence ρ/τ on R/τ is projection separating, and the corre-
sponding congruence on the image of R/τ in (X /ε)⋊ T extends to a (2, 1, 1)-congruence
on (X /ε) ⋊ T . Consequently, R/ρ is (2, 1, 1)-embeddable in a (2, 1, 1)-morphic image of
(X /ε)⋊ T .

Proof. Notice that τ ⊆ σR and τ# ⊆ σX⋊T . By definition, ρP ⊆ τ ⊆ ρ, and as the
restriction of ρ to P equals ρP the same is true for τ , thus the (2, 1, 1)-congruence ρ/τ on
R/τ is projection separating. Denote by ρ# the (2, 1, 1)-congruence on X ⋊ T generated
by ρ. Since T acts nicely over G on X , we see by Lemma 3.7 that ρ# and τ# extend ρ
and τ , respectively. Put ε = {(A,B) ∈ X × X : (A, 1) τ# (B, 1)}. Then ε is obviously
a congruence on X , and it is easily seen to be G-invariant. For, let A,B ∈ X with
AεB and a ∈ T . Then we obtain by Lemma 3.8 that (A, a) τ# (B, a) which implies
(a−1 · A, 1) = (A, a)∗ τ# (B, a)∗ = (a−1 · B, 1). Hence a−1 · Aε a−1 · B follows. Moreover,

we also see that (a · A, 1) = (a · A, a)+ =
(

(a · A, a)(A, 1)
)+

τ#
(

(a · A, a)(B, 1)
)+

=
(a(A ∧ B), a)+ = (a(A ∧ B), 1), and so we deduce that a · A ε a · (A ∧ B). Similarly,
a ·B ε a · (A∧B) also holds, implying the relation a ·A ε a ·B. Since G is generated by T ,
one can see that g ·A ε g ·B for every g ∈ G. Thus ε is, indeed, G-invariant, so the action
of G on X induces an action of G on X /ε, and defines semidirect products (X /ε)⋊G and
(X /ε)⋊ T . Lemma 3.3 implies that the latter semidirect product is nice.

By Lemma 3.8 we also have that ι : (X ⋊ T )/τ# → (X /ε)⋊ T, (A, a)τ# 7→ (Aε, a) is an
isomorphism. Let ρ̃ be the congruence on (X /ε)⋊T corresponding via ι to the congruence
ρ#/τ# on (X ⋊T )/τ#. The rest follows by basic universal algebra: since ρ# and τ# extend
ρ and τ , respectively, we obtain that ρ#/τ# extends ρ/τ , thus (2, 1, 1)-embedding R/ρ,
which is isomorphic to (R/τ)/(ρ/τ), into ((X /ε)⋊ T )/ρ̃. �

Now we are ready to formulate the main result of the paper. It strengthens [12, Theorem
4.1] which establishes that every restriction semigroup is (2, 1, 1)-embeddable in an almost
left factorisable restriction semigroup, and [11, Theorem 4.11] which says that every re-
striction semigroup has a proper cover (2, 1, 1)-embeddable in a W -product of a semilattice
by a monoid.

Recall from Subsection 2.2 that a restriction semigroup (monoid) is almost factorisable
(factorisable) if and only if it is a (2, 1, 1)-morphic image of a semidirect product of a
semilattice (semilattice with identity) by a monoid.
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Theorem 3.10. (i) Every restriction semigroup is (2, 1, 1)-embeddable in an almost
factorisable restriction semigroup, or, equivalently, in a factorisable restriction
monoid.

(ii) Every restriction semigroup has a proper cover which is (2, 1, 1)-embeddable in a nice
semidirect product of a semilattice by a monoid, and consequently, in a semidirect
product of a semilattice by a group.

Proof. (i) Let S be a restriction semigroup. By Lemma 2.2, it suffices to embed the
restriction monoid S1 into a (2, 1, 1)-morphic image of a semidirect product of a semilattice
by a monoid. Clearly, S1 is isomorphic to FR(Ω)/ρ for some set Ω and (2, 1, 1)-congruence
ρ on FR(Ω). Here FR(Ω) is just the (2, 1, 1)-subsemigroup R in (4) of the semidirect
product X ⋊ Ω∗ given in Subsection 2.4. Example 3.1 shows that the action of Ω∗ on X
is nice over FG(Ω) with respect to 1, and so Lemma 3.7 implies that FR(Ω)/ρ and its
(2, 1, 1)-isomorphic copy S1 (2, 1, 1)-embed into a (2, 1, 1)-morphic image of X ⋊ Ω∗.

(ii) Applying Lemma 3.9 for R = FR(Ω) and the (2, 1, 1)-congruence ρ in the previous
paragraph, we obtain that FR(Ω)/τ is (2, 1, 1)-embeddable in a nice semidirect product
X ′

⋊ Ω∗ where X ′ is a factor semilattice of X over a FG(Ω)-invariant congruence. This
implies that the semidirect product X ′

⋊ FG(Ω) is also defined, and X ′
⋊ Ω∗ is a (2, 1, 1)-

subsemigroup in X ′
⋊FG(Ω). The restriction monoid FR(Ω)/τ is proper since the semidi-

rect product X ′
⋊ Ω∗ is. Moreover, Lemma 3.9 also establishes that ρ/τ is a projection

separating (2, 1, 1)-congruence on R/τ . This shows that FR(Ω)/τ is a proper cover of
(FR(Ω)/τ)/(ρ/τ), and so of FR(Ω)/ρ and S1. This completes the proof if S = S1, that
is, if S is a monoid. In the opposite case, it is routine to check that we can ensure the
ρ-class of the identity element of FR(Ω) is a singleton, and the same property follows for τ .
This implies that the restriction semigroup obtained from FR(Ω)/τ by deleting its identity
element is a proper cover of S with the required properties. �

Note that, similarly to the embedding theorems in [12] and [8], the embedding given
here is not a monoid embedding.

4. Additional remarks

One can see from Lemmas 3.8 and 3.9 (see also the proof of Theorem 3.10(ii)) that if C
is a restriction monoid which is a (2, 1, 1)-factor monoid of a free restriction monoid over
a (2, 1, 1)-congruence contained in σ, then C is (2, 1, 1)-embeddable in a nice semidirect
product. Both Kudryavtseva [8] and Jones [7] have introduced a somewhat more general
class of restriction monoids, called ultra F -restriction monoids in [8] and perfect restriction
monoids in [7]. Moreover, if the greatest reduced factor of such a restriction monoid is a free
monoid then it is proved to be (2, 1, 1)-embeddable in a W -product in [8, Theorem 28]. In
this section we strengthen this result by considering an even more general class of restriction
monoids and showing that their members are (2, 1, 1)-embeddable in a nice semidirect
product in such a way that each of their (2, 1, 1)-congruences extends to the semidirect
product. Later on, we adopt the name ‘perfect’ from [7] for the class of restriction monoids
mentioned, and we use the notation of [8].
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Let T be a monoid and Y a semilattice with identity element. Denote by OY the
inverse submonoid of the symmetric inverse monoid I(Y) consisting of all isomorphisms
between the ideals of Y . Notice that the Munn semigroup TY is an inverse submonoid in
OY . A left partial action of T on Y is defined to be a dual monoid prehomomorphism
α : T → Oop

Y , t 7→ αt, that is, α is required to have the properties that α1 is the identity
automorphism of Y , and αtαu is a restriction of αtu for every t, u ∈ T . For any t ∈ T
and A ∈ Y , we denote the element αtA ∈ Y by t ⋄ A. Since OY is an inverse monoid, the
mapping α′ : T → OY , t 7→ α−1

t is a dual monoid prehomomorphism, and so α′ defines a
right partial action of T on Y . For any t ∈ T and A ∈ Y , the element Aα′

t ∈ Y will be
denoted by A ◦ t. Clearly, the partial actions ⋄ and ◦ are reverse to each other, that is, for
every t ∈ T and A ∈ Y , if t ⋄A is defined then (t ⋄A) ◦ t is also defined and (t ⋄A) ◦ t = A,
and similarly, if A ◦ t is defined then t ⋄ (A ◦ t) is also defined and t ⋄ (A ◦ t) = A.

Consider the set

M(T,Y) = {(A, t) ∈ Y × T : A ◦ t is defined},

and define the following operations on it:

(A, t)(B, u) = (t ⋄ ((A ◦ t) ∧ B), tu), (A, t)+ = (A, 1) and (A, t)∗ = (A ◦ t, 1).

Then M(T,Y) is a proper restriction monoid, and, conversely, each proper restriction
monoid S is isomorphic to M(S/σ, P (S)) where the left partial action of S/σ on P (S) is
induced by S in a natural way, see [1].

A congruence ρ on a semigroup S is called perfect if for every a, b ∈ S we have (aρ)(bρ) =
(ab)ρ, where the left hand side of the equality is the set product of the classes aρ and bρ.
A restriction monoid S is called perfect if σ is a perfect congruence and each σ-class has
a greatest element with respect to the natural partial order. It follows ([7, Theorem 1.1])
that a restriction monoid is perfect if and only if it is isomorphic to a restriction monoid
M(T,Y) where the left partial action of T on Y is a monoid homomorphism from T into
T op
Y .

Remark 4.1. (i) Note that [8] uses the term ‘left partial action’ in a more general
sense. However, in a semilattice, the order ideals (resp. principal order ideals) and
the ideals (resp. principal ideals) coincide. Moreover, the order isomorphisms and
the isomorphisms between the ideals of a semilattice coincide. Therefore a left
partial action of a monoid T on a semilattice Y defined above is just what is called
in [8] a ‘left partial action of T on Y such that axioms (A),(B),(C) hold’.

(ii) The restriction monoid denoted by W (T,Y) in [7] is the left-right dual of M(T,Y)
defined above, and so it is a much more general construction than what is usually
meant by the notation W (T,Y) (see [2], [4], [8], [11], [12]), in particular in this
paper, called a W -product of a semilattice by a monoid and denoted W (T,Y).

Suppose now that T is a monoid embeddable in a group, X is a semilattice, and T acts on
X by automorphisms. As above, let us choose and fix a group G such that T is a submonoid
in G generating G, G acts on X , and the action of T on X is just the restriction of the action
of G on X . Moreover, consider a principal ideal Y of X , and denote its greatest element by
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1. It is routine to check that the restriction of the action of G on X to Y is a left partial
action α : G → T op

Y where the domain and range of αg (g ∈ G) are the principal ideals of
Y with greatest elements g−1 · 1 ∧ 1 and g · 1 ∧ 1, respectively. Therefore the restriction
monoids M(G,Y) and M(T,Y) are defined, and we have M(T,Y) 6 M(G,Y). Taking
into account that all elements of X appearing in M(G,Y) belong to the subsemilattice
G · Y , we can suppose without loss of generality that X = G · Y . In this case, (G,X ,Y)
is a McAlister triple, and it is easy to see that M(G,Y) = P (G,X ,Y), the P -semigroup
defined by it. This implies that M(G,Y) is an F -inverse monoid, and it is an inverse
subsemigroup in the semidirect poduct X ⋊G. Furthermore, it also follows that M(T,Y)
is equal to the (2, 1, 1)-subsemigroup R of the semidirect product X ⋊ T defined in (4).
Thus Lemmas 3.7 and 3.9 imply the following statement.

Proposition 4.2. Suppose that a left partial action of a monoid T on a semilattice Y
with identity 1 can be extended to an action · of T on a semilattice X containing Y as a
principal ideal such that the action · is nice over a group G with respect to 1, and we have
X = G · Y. Then the following hold:

(i) M(T,Y) 6 X ⋊T,M(G,Y) 6 X ⋊G where X ⋊T is a nice semidirect product and
M(G,Y) is an F -inverse monoid;

(ii) every (2, 1, 1)-congruence ρ on M(T,Y) extends to X ⋊ T ;
(iii) for every (2, 1, 1)-congruence ρ of M(T,Y) with ρ ⊆ σM(T,Y), the restriction monoid

M(T,Y)/ρ embeds into a nice semidirect product of a factor semilattice of X by T .

Since any proper restriction monoid S is (2, 1, 1)-isomorphic to the monoidM(S/σ, P (S))
defined by means of the induced left partial action, we have the following consequence.

Corollary 4.3. Let S be a proper restriction monoid such that the induced left partial
action of S/σ on P (S) can be extended to an action · of S/σ on a semilattice X containing
P (S) as a principal ideal in such a way that the action · is nice over a group G with respect
to the identity element of P (S) and X = G · P (S). Then each (2, 1, 1)-factor monoid of
S is embeddable in a (2, 1, 1)-factor semigroup of the nice semidirect product X ⋊ (S/σ),
which is a (2, 1, 1)-subsemigroup in the inverse semigroup X ⋊ G. Moreover, for every
(2, 1, 1)-congruence ρ of S with ρ ⊆ σ, the (2, 1, 1)-factor monoid S/ρ embeds into a nice
semidirect product of a factor semilattice of X by S/σ.

Now we establish that the perfect restriction monoids M(Ω∗,Y) studied in [8] and [7]
satisfy the assumptions of Proposition 4.2 and Corollary 4.3.

Let Ω be a set, Y a semilattice with identity element 1, and consider a left partial action
of the free monoid Ω∗ on Y which is a monoid homomorphism α : Ω∗ → T op

Y . This defines
a perfect restriction monoid S = M(Ω∗,Y). The free monoid Ω∗ is a submonoid of the
free group FG(Ω) such that FG(Ω) is generated by Ω∗, and each element of FG(Ω) can
be uniquely written as a product of members of an alternating sequence, see Example 3.1.
This allows us to extend α to a left partial action, also denoted by α, of FG(Ω) on Y by
putting αt−1 = α′

t for every t ∈ Ω∗, and then by defining αw1w2···wn
= αw1

αw2
· · ·αwn

in
T op
Y for every alternating sequence w1, w2, . . . , wn in Ω∗. Notice that the left partial action

α : FG(Ω) → T op
Y is no longer a monoid homomorphism. However, if g, h ∈ FG(Ω) such
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that g, h and gh (the concatenation of g and h) are reduced words then αgαh = αgh. For
every g ∈ FG(Ω) denote the identity element of the range of αg by Mg. By definition, we
clearly have M1 = 1 and, since Mg−1 equals the identity element of the domain of αg, we
have

(6) Mg = g ⋄Mg−1 for every g ∈ FG(Ω).

The restriction monoid M(FG(Ω),Y) is easily seen to be an F -inverse monoid, where the
greatest element in the σ-class corresponding to g ∈ FG(Ω) is (Mg, g). HenceM(FG(Ω),Y)
can be represented as a P -semigroup P (FG(Ω),Y ,X ) where X is a semilattice and is, up
to isomorphism, uniquely determined. Futhermore, by [10], X can be constructed in the
following manner. The relation χ on the set Y × FG(Ω), defined by (A, g)χ (B, h) if and
only if B = A ◦ g−1h, is a preorder, and so it induces a partial order ≤ on the set X of
all χ-classes where χ is the join of χ and its converse. Denoting the χ-class of the element
(A, g) ∈ Y × FG(Ω) by [A, g], we can deduce from the proof of [9, Theorem 7.4.5] that

(7) [A, g] ∧ [B, h] =
[

g−1h ⋄
(

(A ∧Mg−1h) ◦ g
−1h ∧ B

)

, g
]

for every element [A, g], [B, h] in the semilattice X . Hence X0 = {[A, 1] : A ∈ Y} is
a principal ideal in X , and the mapping Y → X0, A 7→ [A, 1] is an isomorphism. By
identifying X0 with Y along this isomorphism, Y becomes a principal ideal of X . The rule
h · [A, g] = [A, hg] (h ∈ FG(Ω), [A, g] ∈ X ) defines an action of the group FG(Ω) on X
such that X = FG(Ω) ·Y , and the restriction of this action to Y is obviously the left partial
action ⋄.

On the other hand, the action · of FG(Ω) on X naturally restricts to an action, also
denoted by ·, of Ω∗ on X . Now we establish that this action of Ω∗ on X is nice over FG(Ω)
with respect to the element 1. It suffices to show that if g, h ∈ FG(Ω) are reduced words
such that there is no non-empty common prefix of g and h then the inequality 1 ≥ g ·1∧h·1
holds in X , or equivalently, g · 1 ∧ h · 1 ∈ Y . Applying (7), (6) and that Mg ∈ Y for every
g ∈ FG(Ω), we obtain that

[1, g] ∧ [1, h] =
[

g−1h ⋄
(

(1 ∧Mg−1h) ◦ g
−1h ∧ 1

)

, g
]

=
[

g−1h ⋄ (Mg−1h ◦ g
−1h), g

]

= [Mg−1h, g] = [g−1h ⋄Mh−1g, g].

Since g−1h is a reduced word by assumption, we have g−1h ⋄ Mh−1g = αg−1hMh−1g =
αg−1(αhMh−1g), whence it follows that both αhMh−1g = h ⋄ Mh−1g and αg−1(αhMh−1g) =
(h ⋄Mh−1g) ◦ g are defined. This implies by the definition of the preorder χ that

[1, g] ∧ [1, h] = [(h ⋄Mh−1g) ◦ g, g] = [h ⋄Mh−1g, 1] ∈ Y ,

thus completing the proof that g · 1 ∧ h · 1 ∈ Y .
Summarising, we have strengthened the results [8, Theorem 28] and [7, Proposition 8.4]

in the following way:

Corollary 4.4. Let S be a perfect restriction monoid such that S/σ is a free monoid on a
set Ω. Then the induced left partial action of S/σ on P (S) can be extended to an action · of
S/σ on a semilattice X contaning P (S) as a principal ideal such that the action · is nice over
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the free group FG(Ω) with respect to the identity element of P (S) and X = FG(Ω) · P (S).
Consequently, S is (2, 1, 1)-embeddable in the nice semidirect product X ⋊ Ω∗, which is a
(2, 1, 1)-subsemigroup in the inverse semigroup X ⋊ FG(Ω), and the following are valid:

(i) each (2, 1, 1)-congruence of S extends to X ⋊Ω∗ (along the (2, 1, 1)-embedding), and
(ii) for every (2, 1, 1)-congruence ρ of S with ρ ⊆ σ, the restriction monoid S/ρ embeds

into a nice semidirect product of a factor semilattice of X by Ω∗.
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