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Individual differences in internal noise are consistent 

across two measurement techniques 
 

Greta Vilidaite & Daniel H. Baker 

Department of Psychology, University of York 

 

Abstract 

 
Internal noise is a fundamental limiting property on visual processing. Internal noise has previously been estimated 

with the equivalent noise paradigm using broadband white noise masks and assuming a linear model. However, in 

addition to introducing noise into the detecting channel, white noise masks can suppress neural signals, and the 

linear model does not satisfactorily explain data from other paradigms. Here we propose estimating internal noise 

from a nonlinear gain control model fitted to contrast discrimination data. This method, and noise estimates from 

the equivalent noise paradigm, are compared to a direct psychophysical measure of noise (double-pass 

consistency) using a detailed dataset with seven observers. Additionally, contrast discrimination and double-pass 

paradigms were further examined with a refined set of conditions in 40 observers. We demonstrate that the gain 

control model produces more accurate double-pass consistency predictions than a linear model. We also show that 

the noise parameter is strongly related to consistency scores whereas the gain control parameter is not; a 

differentiation of which the equivalent noise paradigm is not capable. Lastly, we argue that both the contrast 

discrimination and the double-pass paradigms are sensitive measures of internal noise that can be used in the study 

of individual differences. 

 

1 Introduction 
 

Internal noise is intrinsic to the assumptions of 

signal detection theory (Green & Swets, 1974; 

Macmillan & Creelman, 2005) and signal 

degradation due to internal variability is 

evident in both electronic systems (e.g. 

amplifiers) and living organisms. Neural 

internal noise is inherent to sensory neurons 

and acts as a limiting factor in signal 

transduction (Faisal, Selen, & Wolpert, 2008). 

In psychophysics, this leads to the 

psychometric function taking the shape of a 

sigmoid rather than transitioning sharply 

between sub-threshold and supra-threshold 

stimuli (Burgess & Colborne, 1988). A 

substantial body of research has attempted to 

measure noise psychophysically for many 

different visual cues, including luminance 

(Barlow, 1956), orientation (Jones, Anderson, 

& Murphy, 2003), shape (Sweeny, 

Grabowecky, Kim, & Suzuki, 2011), motion 

perception (Barlow & Tripathy, 1997) and 

contrast (Burgess & Colborne, 1988; Lu & 

Dosher, 2008; Pelli, 1985).  

 

Differences in internal noise have been 

reported in normal human development 

(Skoczenski & Norcia, 1998) and ageing 

(Pardhan, 2004) and in clinical conditions such 

as amblyopia (Levi, Klein, & Chen, 2007), 

macular degeneration (McAnany, Alexander, 

Genead, & Fishman, 2013) and autism 

(Dinstein et al., 2012; Milne, 2011). 

Furthermore, individual differences in contrast 

sensitivity for neurotypical adults have also 

been explained as being partly due to noise 

(Baker, 2013). In order to assess differences in 

internal noise levels between observers it is 

crucial to use a paradigm that is capable of 

distinguishing internal noise effects from other 

performance-influencing factors (such as 

sensitivity, suppression, uncertainty or 

efficiency). We now discuss several candidate 

psychophysical methods that might be used to 

achieve this aim. 

 

1.1 Equivalent noise 

 

Most commonly, the influence of internal 

noise on psychophysical task performance is 

assessed by purposefully degrading the 

performance of the observer by presenting 

external stimulus noise (such as 2D isotropic 

white noise; Pelli, 1985). The most widely 

adopted method is the equivalent noise (EN) 

paradigm (Legge, Kersten, & Burgess, 1987; 

Pelli, 1985) in which observers perform a two-

alternative-forced-choice (2AFC) detection 

experiment with white noise masks shown in 

both intervals and a target stimulus added to 

one. Detection thresholds are obtained for 

several mask contrast levels, and the mask 

noise level at which performance begins to 

decline is taken as an estimate of the amount of 

internal noise in the system.  

 

The EN paradigm assumes a linear amplifier 

model (Pelli, 1985), that defines thresholds as: 
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where Cthresh is the threshold target contrast 

level, β is a parameter reflecting efficiency (Lu 

& Dosher, 2008) and σext and σint are the levels 

of external (stimulus) noise and internal noise 

respectively. The model posits a linear 

relationship between stimulus input and signal 

output, with additive internal noise. External 

stimulus noise introduces variability into the 

detecting mechanism that impairs performance 

at high noise contrasts (when σext > σint). 

 

However, there is abundant evidence that the 

relationship between stimulus contrast and 

visual response is not linear but rather 

accelerating at low contrasts and saturating at 

high contrasts (Baker, 2013; Boynton, Demb, 

Glover, & Heeger, 1999; Legge & Foley, 

1980; Tsai, Wade, & Norcia, 2012). 

Furthermore, due to the broad frequency and 

orientation profile of white noise masks, non-

target channels will also be activated by the 

mask and in turn inhibit the target channel. It 

has recently been demonstrated that broadband 

white noise has a strong suppressive effect 

similar to that of narrowband cross-oriented 

masks (Baker & Vilidaite, 2014). This 

suggests that impaired performance at high 

mask contrasts in the EN paradigm could be 

due to cross-channel suppression from white 

noise rather than within-target-channel noise 

(Baker & Meese, 2012).  

 

One potential solution to this is to inject 

variability only to the detecting channel tuned 

to the target. This is possible by removing 

from the mask all off-channel spatial 

frequency and orientation information. The 

result is a mask that is spatially identical to the 

target grating, but with a randomly selected 

contrast – a ‘zero-dimensional’ (0D) noise 

mask (Baker & Meese, 2012). Similar 

approaches have been previously used in 

luminance (Cohn, 1976), orientation (Dakin, 

Bex, Cass, & Watt, 2009) and auditory tone 

perception (Jones, Moore, Amitay, & Shub, 

2013). The contrast level of the mask is 

randomly sampled from a Gaussian 

distribution to create interval-by-interval 

contrast jitter. It has been shown that this type 

of mask produces stronger masking effects 

than white noise (Baker & Meese, 2012; 

Baker, 2013), and does not show evidence of 

cross-channel suppression, so it may offer a 

more suitable alternative to white noise masks.  

 

However, it has been pointed out (Allard & 

Faubert, 2013) that zero-dimensional noise 

masks tend to produce near perfect efficiency, 

implying that estimates of internal noise using 

this paradigm are determined entirely by 

detection thresholds in the absence of a noise 

mask! In addition, the EN paradigm still 

assumes a linear model that is at odds with 

contemporary accounts of contrast 

transduction (e.g. Baldwin, Baker, & Hess, 

2016). In order to take into account the 

nonlinearity of the human visual system, 

paradigms and models that have more accurate 

underlying assumptions must be considered. 

 

1.2 Pedestal masking 

 

One possible alternative to the equivalent noise 

approach is to obtain an estimate of internal 

noise by measuring and modelling 

discrimination data. This type of noise estimate 

has been used in auditory research where the 

fitted noise parameter was shown to be a good 

predictor of other measures of internal noise in 

the auditory system (Buss, Hall, & Grose, 

2009; Jones et al., 2013). The same method 

can be implemented in visual contrast 

discrimination (Baker, 2013; Baldwin et al., 

2016). In this paradigm, a fixed contrast 

pedestal stimulus is presented in both intervals 

of a 2AFC experiment with a target contrast 

increment added to one of the intervals. A 

staircase procedure is used to obtain 

discrimination thresholds at several pedestal 

contrast levels. The resulting function takes the 

shape of a dipper (Nachmias & Sansbury, 

1974), with a facilitatory effect at low pedestal 

levels and threshold elevation from masking at 

higher levels of pedestal contrast. The contrast 

response function underlying the dipper (e.g. 

Boynton et al., 1999) is well described by a 

transducer nonlinearity (Legge & Foley, 1980; 

Tsai et al., 2012) adapted from the Naka-

Rushton equation (Naka & Rushton, 1966): 

 

 𝑟𝑒𝑠𝑝 = 	
78

9/	7:
+	𝜎=>"          (2) 

 

where C is the stimulus contrast, p and q are 

exponents that produce an accelerating 

response across low contrasts and a 

compressive response across high contrasts, Z 

is the saturation constant (the gain control 

parameter) and σint is proportional to the 

participant’s internal noise. To simulate 

contrast discrimination experiments, a 

response (resp) is generated for each of the 

two intervals (with zero mean Gaussian noise 

added to each), and the interval with the larger 

response is selected. The influences of gain 
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control and internal noise can be differentiated 

(see Figure 1): increasing the gain control 

parameter (Z) elevates thresholds only at low 

pedestal levels, whereas changing the noise 

parameter (σint) shifts the function vertically at 

all pedestal contrasts. Fitting the model to 

empirical contrast discrimination data will 

therefore provide an estimate of internal noise 

that is decoupled from estimates of sensitivity 

(or gain). However, it is currently unknown 

how accurate noise estimates using this 

method are, so it would be useful to compare it 

to a more direct measure. 

 

 
 

Figure 1. Panel A. Model predictions for contrast 

discrimination with different model parameters. The 

red curve shows a typical dipper function for 

reference (parameter values: σint=0.2, Z=8); the 

green curve shows the vertical shift of the whole 

dipper function when the noise parameter (σint) is 

increased by a factor of 3.5; and the blue curve 

shows the diagonal shift of the function when the 

gain control parameter (Z) is increased by a factor of 

4 (at low pedestal contrasts thresholds increase, but 

the dipper handles converge at high contrasts). 

Panel B. Corresponding contrast response curves. 

Red and green lines here overlap showing that 

changes in σint do not produce a shift in the function 

whereas an increase in Z produces a rightward shift. 

 

1.3 Double-pass consistency 

 

When there is no variability in the stimulus, 

most variability in an observer’s responses 

must be due to internal noise. One way of way 

estimating internal noise, therefore, is to 

present a sequence of noisy stimuli multiple 

times and look at the consistency of responses 

across repetitions. This method is considered 

to be a direct way of measuring internal noise 

(Burgess & Colborne, 1988; Lu & Dosher, 

2008), and is typically performed with two 

passes (and referred to as the double pass 

method). Double-pass methods are well 

established both in auditory (Green, 1964; 

Jones et al., 2013) and visual modalities 

(Burgess & Colborne, 1988; Hasan, Joosten, & 

Neri, 2012; Lu & Dosher, 2008), and have also 

been extended to more cognitive tasks 

(Diependaele, Brysbaert, & Neri, 2012). To 

estimate double pass consistency for contrast 

transduction, a 2AFC detection-in-noise 

experiment is run twice with identical 

sequences of noise in the two passes. If the 

consistency of responses between passes is 

high, there is low internal noise, if the 

consistency is low, the internal noise is high. 

 

1.4 Aim 

 

All three of the above-mentioned paradigms 

are widely used in contrast perception 

research, with double-pass and equivalent 

noise specifically aimed at estimating internal 

noise. There has been some attempt to 

compare pedestal masking and EN paradigms 

(Baker, 2013; Baldwin et al., 2016) as well as 

EN and double-pass (Baker & Meese, 2012; 

Lu & Dosher, 2008). However, estimates of 

internal noise from pedestal masking and 

double-pass consistency experiments are yet to 

be compared. Given that internal noise is an 

important limiting factor in signal transduction 

and an underlying cause of individual and, in 

clinical research, group differences it is of 

importance to determine the most accurate way 

of measuring it. This paper compares all three 

methods with detailed data sets for seven 

observers and a further investigation of 

double-pass and pedestal masking paradigms 

with a larger sample. 

 

2 Methods 

 

2.1 Observers 

 

Seven observers (three males) completed 

Study 1 and 46 observers (16 males) 

completed Study 2. Six of the 46 observers 

were excluded from the analysis as their 

performance was at chance for most or all of 

the conditions, suggesting either poor 

understanding of the task or an inability to 

follow instructions. All participants were 

neurotypical adults and reported normal or 

corrected to normal vision. Informed consent 

was obtained from all observers. 

 

2.2 Materials 

 

The stimuli were displayed on a gamma 

corrected Iiyama VisionMaster Pro 510 

monitor running at 100Hz. To enable accurate 

rendering of low contrast stimuli, we used a 

ViSaGe device (Cambridge Research Systems 

Ltd., Kent, UK) running in 14-bit mode. 

Responses were made using a computer 

mouse. 
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The stimuli were patches of 0.5c/deg sine-

wave grating with horizontal stripes, 

windowed by a circular raised cosine envelope 

(i.e. a circle blurred by a cosine function, with 

a full-width at half-height of 2.4 degrees, and 

blur width of 0.6 degrees, see Figure 2 for 

examples). The equivalent noise and double-

pass experiments used zero-dimensional (0D) 

noise masks (see Baker & Meese, 2012). The 

mask was identical to the target and had a 

contrast level randomly drawn from a 

Gaussian distribution of contrasts centred 

around 0% (negative contrasts constitute a 

polarity inversion). Stimuli flickered 

sinusoidally between zero and their maximum 

contrast at a rate of 7Hz (three cycles, lasting 

430ms), preserving the phase polarity of the 

stimulus during presentation. Contrast levels 

were expressed as percent Michelson contrast 

(C% = 100*(
?@A,B?@01

?@A,/?@01
), where Lmax and Lmin 

are the maximum and minimum luminances of 

the grating), or in decibels (dB), defined as CdB 

= 20*log10(C%). 

 

2.3 Procedure 

 

Experiments in Study 1 were completed over 

several days in sessions lasting 30-60 minutes. 

All observers completed the experiments in the 

same following order: pedestal masking, noise 

masking and double-pass experiment. Study 2 

was completed by each individual in a single 

50-60 minute session. The pedestal masking 

took approximately 20 minutes and the double-

pass experiment took 30-35 minutes to 

complete with short breaks in between blocks. 

For all experiments, the observers sat in a 

darkened room 105cm from the monitor with 

their heads supported by a chin rest. The 

instructions for all experiments were to 

‘Choose the interval in which the bar in the 

middle looks brighter’. The stimuli were 

presented foveally, along with a continuously 

presented central fixation cross. Each interval 

within a trial was presented for 430ms with an 

inter-stimulus interval of 400ms.  

 

2.3.1 Study 1 methods 

 

2.3.1.1 Equivalent noise experiment 

Each trial contained a mask only interval and a 

mask + target interval (example in Figure 2b). 

The mask contrast was drawn from a normal 

distribution with a mean of 0 and standard 

deviations of 0, 0.5, 1, 2, 4, 8, 16 and 32% 

Michelson contrast. Negative contrast values 

reversed the polarity of the stimulus. A 3-

down-1-up staircase procedure with a step size 

of 3dB controlled the target contrast. The 

staircase terminated after the lesser of 12 

reversals or 70 trials and was repeated 3 times.  

We used Probit analysis (Finney, 1971) to fit a 

psychometric function to the pooled data 

across all repetitions, to estimate a threshold at 

75% correct. 

 

2.3.1.2 Double-pass experiment 

The method of constant stimuli was used in 

these experiments. The stimuli had the same 

temporal and spatial configuration as in the 

equivalent noise experiments, with the mask 

and target + mask intervals presented in a 

random order on each pass (see Hasan et al., 

2012). In the second pass, the samples of noise 

used in the first pass were repeated. Three 

levels of noise standard deviation were used 

with six target contrast levels each: i) 0% 

mask, target levels 0.5, 0.7, 1, 1.4, 2 and 3%; 

ii) 2% mask, target levels 1, 1.4, 2, 3, 4 and 

5.6%; iii) 32% mask, target levels 8, 11, 16, 

22, 32, 45%. Each mask standard deviation 

also had a target absent condition where the 

target contrast was set to 0% (21 conditions in 

total). Each condition had 200 trials (100 trials 

in each pass).  The accuracy of responses was 

calculated as the proportion of correct 

responses out of all 200 trials in a condition; 

the consistency scores were calculated as the 

proportion of consistent responses across the 

two passes (Burgess & Colborne, 1988). For 

target absent trials nominal accuracy was 

calculated relative to an arbitrarily determined 

‘target’ interval. 

 

2.3.1.3 Pedestal masking experiment 

Pairs of three-down-1-up staircases 

(terminating after 12 reversals or 70 trials) 

were used to obtain 75% correct thresholds 

(estimated using Probit analysis) for 9 pedestal 

contrasts (0.25, 0.5, 1, 2, 4, 8, 16, 32, 64%) 

and also in a detection condition where the 

pedestal contrast was set to zero. Participants 

completed four repetitions of each condition. 
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Figure 2. Illustration of methods used in the study with relation to a common contrast intensity space (panel A). 

For the equivalent noise paradigm (model curve shown in panel C) two independent mask contrast samples are 

selected for each trial with the target contrast being added to one sample. Example selections for two trials can be 

seen in blue circles (panel A) with blue dotted lines connecting intervals within a trial. The same procedure applies 

for the double-pass paradigm (model curve shown in panel D) with green circles and dotted lines showing example 

stimuli used. Each pair of contrasts in the double-pass experiment was presented twice. Panel B shows four more 

examples of trials for both EN and double-pass experiments with blue circles indicating the higher positive 

contrast that the observer would be expected to select. The red arrows in panel A indicate the range of possible 

target values for each pedestal contrast in the pedestal masking experiment. The orange dotted line indicates 0% 

contrast below which the sine-wave gratings reverse in phase polarity. Thresholds for contrast discrimination 

experiments follow a characteristic dipper shape (panel E). 
 
2.3.1.4 Model fitting 

Equivalent noise data were fitted with the 

linear amplifier model (equation 1) with two 

free parameters (β and σint) for each observer 

and for the average data across observers. The 

gain control model (equation 2) was also used 

to simulate and predict EN masking data 

(100,000 stimulated trials for each condition) 

with p and q parameters fixed at 2.4 and 2 

(Legge & Foley, 1980) in order to keep the 

same number of free parameters as for the 

LAM. The two free parameters were the 

saturation constant (Z) and the internal noise 

(σint) parameters. Data from each observer and 

the average were fitted 50 times each with 

random starting values and the model that 

produced the lowest mean square error was 

chosen. This same procedure was used for 

fitting dipper data in Study 2. All models were 

fitted using a downhill simplex algorithm. 

 

Pedestal masking data were fitted with the gain 

control model using a downhill simplex 

algorithm with the same two free parameters. 

The parameters obtained from modelling EN 

with LAM and pedestal masking with the gain 

control model were then used to simulate the 

double-pass experiment (100000 simulations 

with the gain control model and 1000000 

simulations with LAM) and compare the 

predictions to the empirical data.  

 

2.3.2 Study 2 methods 

In Study 2, a smaller selection of the most 

informative conditions from the pedestal 

masking and double-pass experiments were 

run on a large number of observers in order to 

further compare the two methodologies. For 

pedestal masking, the same procedure and 

stimuli were used as in Study 1, albeit with 

pedestal contrast levels of 0, 2, 8 and 32%. 

Staircases for each condition were repeated 3 
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times. The double-pass procedure in Study 2 

was kept the same, however, there were only 

two conditions: no target and 4% contrast 

target. In both conditions the noise standard 

deviation was 4% contrast. All observers 

completed the pedestal masking experiment 

first. 

 

3 Results 

 
The raw data are available online at: 
https://dx.doi.org/10.6084/m9.figshare.3824250 

3.1 Study 1 

 

3.1.1 Equivalent noise 

 

Results for the equivalent noise paradigm had 

the typical form, with thresholds increasing as 

a function of noise contrast, and the upper limb 

of the masking functions having a slope of 1 

(Figure 3). The largest differences between 

participants can be seen at low noise levels (up 

to 0dB) where thresholds range between 0 and 

5dB. At higher mask contrasts, all thresholds 

converge on the line of unity, x=y, consistent 

with previous reports that observer efficiency 

is near perfect for this task (Allard & Faubert, 

2013). Best fits of the LAM (blue curves) 

described the data well (all RMS errors < 

1.54dB), but estimates of the efficiency 

parameter (β) were similar across subjects (see 

values in each panel of Figure 3). This means 

that the only meaningful degree of freedom in 

this model was the internal noise parameter 

(σint), which determined both detection 

threshold and the inflection point on the noise 

masking function. 

Figure 3. Noise masking thresholds from the equivalent noise experiment plotted as a function of noise contrast 

level. Blue dots show data points for all observers (panels S1-S7) with error bars indicating the standard error of 

the Probit fits. In panel H data points show the mean data averaged across observers (error bars show ±1SE across 

observers). Blue curves in all panels show simulated fits of the linear amplifier model and red dashed curves show 

simulated predictions of the gain control model. Values of parameters σint and β and the RMS error of the fit are 

shown in the upper left corner of each panel. 

 
3.1.2 Pedestal masking 

 

Figure 4 shows contrast discrimination data for 

7 observers and their average, all of which 

display the characteristic ‘dipper’ shape first 

reported by Campbell and Kulikowski (1966). 

The gain control model with two free 

parameters was fitted to each observer’s data 

individually and also to the mean data (fits to 

the mean data are duplicated in each panel 

with a red dashed curve, for comparison with 

the data of each observer). The model provided 

good fits to the data for all subjects (root mean 

square errors of less than 2.3dB). There is a 

noticeable influence of the gain control 

parameter (Z) on the threshold at the first four 

levels of pedestal contrast. For example, S4 

with Z=10.57 has a much higher threshold at 

low pedestal conditions compared to the mean 

whereas S2 with a lower Z=2.78 has lower 

thresholds at those pedestal levels.  
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Figure 4. Thresholds at 75% correct plotted against pedestal contrast for each observer (green dots) and the mean 

data across observers (red dots, panel H). Error bars in panels S1-S7 show ±1SE of the Probit fit; error bars in 

panel H show ±1SE across observers. Green curves are the gain control model fits with two free parameters for 

each observer separately; red dashed curves are the model fit to the mean data and can be used as a reference for 

how different values of saturation constant (Z) and internal noise (σint) influence the curves. Values of both 

parameters used for each model are indicated in the lower right of each panel along with the RMS error in dB 

units. 

 

3.1.3 Double-pass consistency 

 

Accuracy and consistency scores were 

calculated for each noise mask and target 

contrast condition in the double pass 

experiment (Figure 5). Increasing the variance 

of external noise produced increasingly 

consistent responses, whereas increasing target 

contrast levels produced increasingly accurate 

responses. Simulated predictions for double-

pass data were made using LAM fits to the EN 

data and gain control model fits to the pedestal 

masking data individually for each observer. 

For the majority of the observers the 

predictions for 0% and 2% mask contrasts 

were reasonably accurate from both the LAM 

and the gain control model. Both models 

produced comparatively poorer predictions for 

the 32% mask contrast conditions, tending to 

overestimate the level of consistency relative 

to that in the data (see also Lu & Dosher, 

2008). The errors between double-pass data 

points and model predictions were calculated 

and averaged over conditions for each 

observer. A paired-samples t-test showed the 

gain control model predictions had 

significantly smaller errors (mean=0.11, 

SD=0.03) than the LAM predictions 

(mean=0.14, SD=0.01, t=-4.14, p=0.004). 

 

Akaike’s Information Criteria (AIC=n * 

log(RMS) +2p, where n is the number of data 

points modelled, RMS is the root mean 

squared error and p is the number of free 

parameters in the model) were calculated for 

these the two original models as well as for 

LAM with a single free parameter (β fixed at 

1) and for a four free parameter gain control 

model (exponents p and q were also free). The 

gain control model with two free parameters 

performed best (AIC=20.17) compared to 

other models even when the number of free 

parameters is taken into account.  

 

As it is difficult to draw population-level 

inferences about the consistency of noise 

measurements on a between observer basis 

with only seven observers, the conditions that 

seemed to show the strongest individual 

differences were selected for a follow up 

experiment with 40 observers. 
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Figure 5. Double-pass consistency (x-axis) and accuracy (y-axis) for the seven observers (panels A-G) and their 

average (panel H) at (i) 0% (green squares), (ii) 2% (purple circles) and (iii) 32% mask standard deviation (blue 

triangles). Target contrast levels are not specified on the plots but generally follow an upward trend with 

increasing target contrast. Red curves show gain control model predictions for the three mask contrast levels for 

each observer and mean data; blue curves show LAM predictions. The error bars in panel H indicate ±1SE of the 

mean for accuracy (vertical) and consistency (horizontal) across observers. 
 

3.2 Study 2 

 

3.2.1 Pedestal masking 

 

Using similar methods to Study 1, contrast 

discrimination thresholds were obtained for 40 

observers (Figure 6a) and the same modelling 

procedure was implemented as described 

above. Thresholds varied between observers 

by 12dB (a factor of 4) or more at all pedestal 

levels. Pearson’s correlations were carried out 

between the Z and σint parameters obtained 

from the gain control model fits and the 

thresholds at each pedestal level of the dipper 

function in order to examine the influence of 

these parameters at different pedestal contrasts. 

Scatterplots for these correlations are shown in 

Figure 7, however, most importantly, the Z 

parameter significantly correlated with 

individual thresholds at detection (no pedestal 

condition; R=0.60, p<0.0001) and at low 

pedestal contrast (R=0.56, p=0.0002) but did 

not significantly correlate at higher pedestal 

contrasts of 18 and 30dB (R=-0.13, p=0.426 

and R=-0.17, p=0.283 respectively). This is in 

line with the prediction (see Figure 1) that 

changes in gain produce changes in threshold 

only at low pedestal contrasts. Conversely, the 

internal noise parameter σint significantly 

correlated with thresholds throughout the 

dipper function (0.69 ≤ R ≥ 0.87, p<0.0001) 

demonstrating that changes in the internal 

noise parameter shift the whole dipper function 

vertically in proportion to the magnitude of 

internal noise. 

 

3.2.2 Double-pass consistency 

 

Double-pass consistency and accuracy scores 

for the target and no target conditions were 

calculated in the same manner as in Study 1 

with data from all individual observers and 

their mean plotted in Figure 6b. For 

comparison with other variables, we averaged 

the consistency scores across the two target 

contrast conditions, with high levels of 

consistency implying low levels of internal 

noise. This measure was then correlated with 

the four pedestal masking thresholds and Z and 

σint parameters from the fits shown in Figure 

6a. The double-pass consistency and the fitted 

internal noise parameter (σint) showed a 

significant strong negative correlation (R=-

0.68, p<0.0001) indicating consistency 

between these two methods of estimating 

internal noise. On the other hand, double-pass 

consistency did not significantly correlate with 

the gain control parameter Z (R=-0.14, 

p=0.378) indicating that contrast gain control 

estimated from pedestal masking data is not a 

measure of internal noise, and does not 

confound double pass consistency estimates. 

 

Pearson’s correlations showed that double-pass 

consistency was negatively correlated with 

dipper thresholds at all pedestal contrasts (-

0.65 ≤ R ≥ -0.44, p<0.005), see Figure 9. This 

reiterates the point that internal noise has an 

influence across the entire contrast 

discrimination function. 
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Figure 6. Panel A shows contrast discrimination thresholds as a function of pedestal contrast. Grey dots show data 

points for each of the pedestal levels for all 40 observers and grey lines show the gain control model fits to each 

observer’s data. Blue dots show the mean of 40 observers with white error bars signifying inter-observer standard 

error of the mean. Thicker curves show the model fit for the 40 observers (blue) and model fit for 7 observers from 

Study 1 (red dashes). Panel B shows accuracy and consistency scores from the double-pass experiment of Study 2 

for all 40 observers (grey dots and lines) and mean scores (red), with white error bars showing inter-observer 

standard error of the mean. Dotted lines show chance performance levels and the black curve shows the expected 

performance with no external noise (Klein & Levi, 2009). 

 

 

 

 

Figure 7. Correlations between the gain control parameter Z and pedestal masking (dipper) thresholds (top row) 

and correlations between the internal noise parameter σint and thresholds (bottom row). Black lines represent 

Deming regression lines. R and p values from the Pearson’s correlations are shown in the upper left hand corner of 

each plot. 
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Figure 8. Scatterplots showing correlations between fitted parameters σint (left panel) and Z (right panel) and 

double-pass consistency scores averaged over the no target and target present conditions. Black lines represent 

Deming regression lines. R and p values from the Pearson’s correlations are shown in the lower left hand corners 

of the scatterplots. 

Figure 9. Scatterplots showing correlations between double-pass consistency scores averaged over the no target 

and target present conditions and pedestal masking thresholds at pedestal contrasts of 0, 2, 8 and 32% (from left to 

right). Black lines represent Deming regression lines. R and p values from the Pearson’s correlations are shown in 

the lower left hand corners of the scatterplots. 
 

4 Discussion 
 

We compared three different techniques for 

estimating internal noise. In our first study, we 

showed that a nonlinear model fitted to 

contrast discrimination data was able to predict 

performance in both an equivalent noise 

experiment and a double pass consistency 

experiment. In our second study, we showed 

that the noise parameter from a model fitted to 

contrast discrimination data was strongly 

correlated with double pass consistency, 

indicating that these two paradigms measure 

the same internal variable. We now discuss 

further details of the methods, and the 

practicalities of running experiments to 

estimate internal noise. 

 

4.1 Comparing 2AFC discrimination with 

yes/no tasks 

 

The suggestion to use contrast discrimination 

paradigms as a measure of internal noise is 

reasonably novel (Baker, 2013; Baldwin et al., 

2016), and may seem surprising to some. 

However, the general approach is entirely 

orthodox in studies that use a yes/no paradigm, 

where it is equivalent to measuring the slope of 

the yes/no psychometric function, or a just-

noticeable-difference (JND). In such 

experiments, stimulus intensity (contrast, 

luminance, pitch, facial expression etc.) for a 

single target is typically compared to a 

standard (either explicit or implicit), with 

participants indicating whether the target 

appears higher (‘yes’) or lower (‘no’) in 

intensity than the standard. The results are 

plotted on a linear x-axis, with steep 

psychometric functions indicating low internal 

noise (good discriminability), and shallow 

functions indicating high internal noise (poor 

discriminability). Often a JND ‘threshold’ is 

also estimated at some criterion performance 

level (typically 25% and 75%). Two example 

simulated psychometric functions for this 

paradigm are shown in Figure 10a, illustrating 

that individuals with higher internal noise 

produce shallower functions with larger JNDs. 
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Figure 10: Illustration of the relationship between yes/no and 2AFC paradigms for intensity discrimination 

experiments. Panel A shows simulated yes/no psychometric functions for an intensity discrimination task in which 

a target was compared to a standard with an intensity of 50 units (given by the vertical dashed line). A low noise 

participant (blue) will have a steep psychometric function, with small just noticeable differences (JNDs) at the 

25% and 75% points. A high noise participant (red) will have a shallower psychometric function and larger JNDs. 

Panel B shows the noise distributions for the two simulated observers. Panel C shows psychometric functions for a 

2AFC discrimination task, with a pedestal level of 50 units, and a range of target increments, which are always 

added to the pedestal. Again, the functions are shallower for the higher noise observer when plotted on a linear x-

axis, and the 75% correct threshold is higher. Panel D shows the same data replotted on a logarithmic x-axis. Now 

the psychometric functions are approximately parallel, and the high noise observer is differentiated only by having 

a higher threshold. All simulations used the gain control model given by equation 2, with parameters fixed at 

p=2.4, q=2, Z=1, and involved 1000000 simulated trials per target level. 

 

In two alternative forced choice discrimination 

experiments, such as those described here, a 

pedestal is presented in one interval, and a 

pedestal plus target increment in the other. The 

pedestal level is fixed, and target stimuli 

constitute an increment to the pedestal contrast 

(though some studies have also examined 

decrements, i.e. (Foley & Chen, 1999). As 

such, effectively only the upper portion of the 

yes/no function is measured, as shown in 

Figure 10c. However, for contrast 

discrimination experiments the target values 

are conventionally plotted on a logarithmic x-

axis (or alternatively converted to logarithmic 

units, such as the dB units used here). The log 

scaling of the target contrast values means that 

a zero point is not present, and the functions do 

not change in slope with changes in internal 

noise (see Figure 10d). Instead, only the 

threshold (at 75% correct) varies as noise 

increases. Given the close relationship between 

these paradigms, estimating noise levels from 
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the dipper function is not particularly radical, 

and we are somewhat surprised that it has 

rarely been attempted. 

 

4.2 Why is consistency overestimated? 

 

We attempted to predict the double pass 

consistency data using models fit to either the 

equivalent noise thresholds or the contrast 

discrimination thresholds (see Figure 5). Both 

models overestimated the empirical double-

pass consistency, especially at high mask 

levels. This is similar to findings from 

previous studies using white noise, which also 

found that a linear model fitted to threshold 

data overestimated consistency (Lu & Dosher, 

2008). One possible solution is to invoke 

additional processes, such as induced 

multiplicative noise that is caused by the mask. 

However direct tests of this approach have not 

provided evidence for changes in consistency 

via such mechanisms (Baker & Meese, 2013). 

Alternatively, lower than predicted response 

consistency could be explained by several 

biases and higher level decision strategies that 

are relatively independent of perception, such 

as interval bias, finger error (lapsing), and 

‘superstitious’ behaviours (i.e. choosing the 

opposite interval to the one selected on the 

previous trial). These low frequency events are 

difficult to isolate, particularly for binary 

decision tasks. Future work could use reports 

of confidence (e.g. Baker & Cass, 2013), 

involve an explicit mechanism for remediating 

trials on which an observer believes they have 

lapsed (Meese & Harris, 2001), or measure eye 

movements or other physiological variables to 

provide a basis for rejecting some trials. For 

our zero-dimensional noise, it is conceivable 

that observers might erroneously make 

judgements based on absolute contrast 

(ignoring phase polarity) on some trials, which 

would further reduce consistency estimates. 

4.3 What is the best way to measure internal 

noise? 

 

As previous studies have demonstrated, 

detection in white noise experiments is 

confounded by suppression from the mask 

(Baker & Meese, 2012; Baker & Vilidaite, 

2014). However, using a zero-dimensional 

noise mask to avoid this problem results in 

near-perfect efficiency (Allard & Faubert, 

2013), so that the inflection point of the noise 

masking function merely reflects detection 

threshold (see Figure 3). One alternative 

presented here and elsewhere (Baker, 2013; 

Baldwin et al., 2016) is to estimate internal 

noise using a discrimination paradigm. This is 

feasible for well-characterised processes such 

as contrast transduction, and previous findings 

can be reinterpreted in this context. For 

example, Greenaway, Davis, & Plaisted-Grant 

(2013) recently reported a contrast 

discrimination deficit in autism spectrum 

disorders, that could well be a consequence of 

increased internal noise in this population 

(Dinstein et al., 2012; Milne, 2011).  

 

However, discrimination paradigms may not 

be suitable for more complex stimulus 

domains, in which the mapping between 

stimulus and internal representation is 

unknown, and perhaps nonmonotonic. In such 

cases, the double pass method can still be 

applied, as it is relatively invariant to 

differences in the underlying transfer function, 

since the addition of external noise causes 

‘Birdsall linearization’ (Smith & Swift, 1985) 

that neutralises nonlinearities. For example, 

Baker & Meese (2013) recently showed that 

double pass consistency is unaffected by 

strong gain control suppression from a 

narrowband mask. The method has been 

successfully adapted to lexical decision tasks 

(Diependaele et al., 2012) and pitch 

discrimination (Jones et al., 2013), and we 

have recently run experiments using faces that 

vary in emotional expression, as well as value 

judgement tasks (Vilidaite, Yu, & Baker, 

2016). Data can be obtained without 

prohibitively large numbers of trials (here we 

used 200 trials per target level), and the 

interpretation of results is reasonably 

straightforward. Additionally, double-pass 

shows good internal reliability with split-half 

analysis showing a very high correlation 

(R=0.88, p<0.0001). 

 

4.4 Implications for understanding individual 

differences 

 

A previous analysis of 18 studies concluded 

that individual differences in gain control 

could account for more of the variance in 

contrast sensitivity than could internal noise 

(Baker, 2013). To see if this was also the case 

here, we conducted a further analysis of study 

2. Individual observer data from the dipper 

experiment (Figure 6a) were fitted as before 

but allowing only one free parameter, either Z 

or σint, fixing the other to the value obtained 

from modelling the average data. This 

procedure should reveal which of the free 

parameters can explain the largest proportion 

of the population variance. A paired samples t-

test was used to compare mean RMS errors 

between these two fits, and revealed that RMS 

errors were significantly lower when σint was a 
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free parameter (mean=2.89dB, SD=1.34dB) 

than when Z was a free parameter 

(mean=3.86dB, SD=1.75dB, t(39)=5.52, 

p<0.001). This suggests that internal noise had 

a larger influence on individual differences in 

contrast discrimination in this study than did 

gain control. 

 

The discrepancy between studies could be due 

to the fixed, low spatial frequency (0.5c/deg) 

used here, and the variety of spatial 

frequencies included in the analysis by Baker 

(2013). This seems a plausible explanation 

given that differences in sensitivity caused by 

changes in spatial frequency are largely due to 

differences in gain control, and not internal 

noise (Baldwin, Baker & Hess, 2016). This 

could imply that noise accounts for a greater 

proportion of inter-individual variation at some 

spatial frequencies than others, perhaps 

because optical and neural factors limit 

sensitivity more at higher spatial frequencies. 

Indeed, previous work that has addressed 

individual differences in contrast sensitivity 

has revealed independently varying factors that 

likely relate to channels tuned to different 

spatiotemporal scales (Peterzell, Werner & 

Kaplan, 1995; Peterzell & Teller, 1996). 

Although it may be tempting to relate these 

channels to magnocellular and parvocellular 

systems, we note that disambiguating these 

psychophysically is fraught with problems 

(e.g. Goodbourn et al., 2012; Skottun, 2000). 

 

In general, we take the theoretical position that 

internal noise is a stable and measureable 

property of the visual system that could, in 

principle, vary across individuals and clinical 

groups. Our aim here was to determine which 

experimental techniques might best be used to 

measure internal noise, with the intention of 

applying them in specific contexts (i.e. with 

different clinical groups). Because they are 

highly correlated with each other, double pass 

consistency and contrast discrimination appear 

to be suitable measures. Future work might use 

these tools to focus on how internal noise 

changes as a function of both genetic and 

environmental factors (e.g. ageing, diet, visual 

experience etc.), and how noise in one system 

(i.e. vision) relates to noise in other senses and 

tasks, or measured using different 

methodologies. 

 

4.5 Conclusions 

 

We compared three methods for estimating 

internal noise in contrast processing. Estimates 

from contrast discrimination and double pass 

consistency paradigms were highly correlated, 

and so are likely to be measuring the same 

underlying phenomenon. Depending on the 

dimension of interest, one or both of these 

methods appear to provide a good measure of 

internal variability, and could be used in 

individual differences research, or with 

different clinical groups. 
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