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Abstract 

The evaluation of the hydraulic properties evolution of granular sandstones in relation with 

groundwater inrush within faults is an important issue for mining engineering applications. This 

paper presents the results of an experimental investigation of small  particle migration from granular 

sandstone samples under different original porosities, particle size compositions and water flow 

pressures. A new rock testing system has been setup to carry out the tests. Based on the results, it is 

observed that the overall permeability evolution during the tests can be divided into four different 

phases, including i) re-arrangement of large rock fragments, ii ) water inrush with substantial particle 

migration, iii ) continued moderate particles seepage, and iv) steady state water flow. The crushing of 

edges and corners of large rock fragments, and the evolution of the fracture network has mainly been 

observed in the first two phases of the tests. The results indicate that the migration of small particles 

has an essential effect on permeability and porosity increase during water inrush through fractured 

sandstone. The samples with higher original porosity, higher percentage of fine particles in their 

formation and under higher water flow pressures, achieve higher permeability and porosity values 

when the test is complete. Furthermore, using the measured data, the performances of a number of 

empirical models, for permeability evolution in fractured porous media, have been studied. The 

prediction results indicate that not all of the fractures in a sample domain contribute in small particle 

migration. There are parts of the fracture network that are not effective in particle flow, a sample 

with less original porosity, more fine particles and under lower water pressure shows less ineffective 

fractures. Therefore, using the concept of the effective porosity (fracture) is sufficient enough for the 

flow calculation. 

 

Keywords: granular sandstone; groundwater inrush; particle migration; permeability; porosity. 
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List of Symbols 

d  particle size [L] 

d  percentage remaining for particles with size 2.5~10 mm [–] 

d  percentage remaining for particles with size 2.5~15 mm [–] 

sh  height of the sample before loading [L] 

0h  height of the sample after loading [L] 

1H  height of the cylindrical tube [L] 

2H  pedestal thickness [L] 

3H  porous plate thickness [L] 

4H  filter pad thickness [L] 

5H  water flushing cap thickness [L] 

6H  height of the outflow regulator inside the cylindrical tube [L] 

7H  height of the outflow regulator [L] 

8H  height of the outflow regulator exceeding the cylindrical tube [L] 

sm  mass of the sample [M] 
p  water pressure [ML–1T–2] 

ap  water pressure at the intake boundary [ML–1T–2] 

bp  water pressure connected with atmosphere [ML–1T–2] 
2R  coefficient of determination [–] 

r  radius of the sample container [L] 
t  time [T] 
v  water flow velocity [LT–1] 

z  vertical axis going through the center of the sample [L] 

  partial differential operator [–] 

() z   Nabla operator [L–1] 

w  water kinetic viscosity [ML–1T–1] 

  porosity [–] 

s  porosity of the sample before loading [–] 

0  porosity of the sample after loading and before water flow initiation [–] 

  permeability [L2] 

0  permeability of the sample after loading and before water flow initiation [L2] 

s  mass density [ML–3] 

w  water density [ML–3] 
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1. Introduction 

China, after Russia and the United States, has the largest proven reserves of coal in the world, it is 

currently the world's largest coal producer (Miao and Qian, 2009). Currently, coal accounts for 70 

percent of China's primary energy production; therefore, China's economic development during the 

foreseeable future will still be highly dependent on coal extraction and production. The extraction of 

this important resource is often associated with groundwater inrush accidents. Indeed, more than 90% 

of the casualties in mining work accidents in China are due to water inflow from karst aquifers into 

the mine through the floor of the coal seam (Li and Zhou, 2006). According to recent statistics (State 

Administration of Coal Mine Safety, 2014), during the 2000’s, groundwater inrush accidents in 

Chinese mines resulted in the death of several hundred miners each year; although since mid 2000’s 

with increasing application of groundwater inrush prevention systems, the number of related coal 

mine accidents has shown a clear descending trend (Sun et al., 2016).  

In addition to threatening the safety of mining operations, groundwater inrush also causes 

pollution due to mine spillage (Li and Zhou, 2006; Wu and Zhou, 2008; Zhu and Wei, 2011). 

Therefore, over the past few years, field and laboratory investigations of the effects of groundwater 

inrush on hydraulic and mechanical properties of rocks (Bai et al., 2013), and consequently mining 

environment (Bai and Miao, 2016), have been carried out extensively (e.g., Wu and Zhou, 2008; Ma 

et al., 2015a). The results from these investigations show that high pressure groundwater can break 

through the reduced stress zones around the mining face and leak into the working areas which can 

potentially trigger the hazardous water inrush incident (Li et al., 2011; Miao et al., 2011a). The 

characteristics of confined aquifer, combined with the mining-induced strata failure (Meng et al., 

2016) and the inherent geological structures of the field (Huang et al., 2016), such as water 

conducting faults, are among the main factors that set off such events (Li and Zhou, 2006; Li et al., 

2011; Wu and Zhou, 2008; Zhang et al., 2014; Zhu et al., 2013; Zhu and Wei, 2011). As shown in 
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Fig. 1, the fault fracture zones that contain lots of granular rock fragments can act as effective water 

inrush channels. It can be argued that the existence of small particles within the faults and voids 

could be a controlling factor in determining the safety of coal mining activities above confined 

aquifers (Lu and Wang, 2015; Li et al., 2015; Lu et al., 2015; Ma et al., 2016a).  

Up to now, the studies on groundwater inrush mechanism have been mainly concentrated on 

either the reaction of faults or the damage of floor strata (Caine et al., 1996; Babiker and 

Gudmundsson, 2004; Zhu and Wei, 2011). Potentially influential aspects, such as the configurational 

structure of particles within the crushed rock zone and the variations of hydraulic properties have 

been mainly overlooked in the past studies of the faults (Zhang et al., 2016). A number of researchers 

have studied the effect of fluid flow on particle rearrangements within a granular setting and have 

reported strong permeability variation (e.g., Miao et al., 2004, 2011b; Johnsen et al., 2007, 2008; 

Niebling et al., 2012; Ma et al., 2015b, 2016b). Therefore, in addition to the factors such as the 

geological features of the mining fields (Rutter et al., 2013; Zhang et al., 2014), groundwater 

condition and extraction percentage of mines (Blodgett and Kuipers, 2002; Booth, 2006), it is also a 

significant issue to consider the hydraulic properties of granular rocks within the faults.  

This paper aims to study the effects of small particle migration on the mechanism of mining-

induced water inrush within faults. To carry out the investigation, a new experimental system has 

been set up, which is capable of quantifying the influence of varying porosity, particle size 

composition and water pressure on the hydraulic properties of granular sandstones. In the following 

the details of the testing system and conducted experiments are explained. 

2. Experimental Details 

2.1. Testing equipment 

As shown in Fig. 2, the experimental system for testing small particle migration within fractured 

rocks is comprising of five different parts: (a) rock particle flow testing cell and frame, (b) water 
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pressure control equipment, (c) sample porosity control device, (d) automatic data acquisition and 

storage system and (e) rock particle collection module. Further details of each part of the testing 

system are explained in the following. 

(a) The key component of this experimental system is the in-house made rock particle flow 

equipment (Fig. 3), which is mainly made up of a cylindrical sample container, an overflow 

tank, a water flushing cap and an outflow regulator. The main feature of the designed 

system is that it allows small particles to migrate out of the sample container under water 

pressure. Fig. 3(a) shows the schematics of the main components of the designed system. 

The loading ram (no. 1 in Fig. 3(a)) at the top of the sample container is used to apply 

vertical pressure on the sample in order to alter its porosity. The porosity variation is 

controlled by the sample porosity control device (Fig. 2c), that applies displacement to the 

sample from its bottom boundary. The over flow tank (no. 3 in Fig. 3(a)) is fixed to the 

cylindrical sample container (no. 6 in Fig. 3(a)) using the bolts (nos. 5 and 12 in Fig. 3(a)). 

The cylindrical sample container cell (no. 6 in Fig. 3(a)) is sealed to the pedestal (no. 8 in 

Fig. 3(a)) at the bottom by rubber O-rings (no. 7 in Fig. 3(a)). The porous metal disk (no. 9 

in Fig. 3(a)), with uniformly distributed holes, ensures that the water flows evenly; 

furthermore, the filter pad (no. 10 in Fig. 3(a)) at the bottom of the sample captures the 

small sandstone particles so that the porous metal disk (no. 9 in Fig. 3(a)) is not blocked. 

The particular design of the water flushing cap (no. 13 in Fig. 3(a)), at the top of the sample, 

together with the outflow regulator (no. 14 in Fig. 3(a)), ensure that the small rock particles 

with a diameter of less than 10 mm can be washed out of the sample medium and are not 

thrown out of the overflow tank. Moreover, the water flushing cap and the outflow regulator 

can prevent the sideslip of overflow tank cover (no. 2 in Fig. 3(a)) that ensures stable 

loading and uniform compression of the sandstone samples. 
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(b) The water pressure control equipment shown in Fig. 2(b) is made up of a water pump and a 

relief valve, which can supply a constant and stable water pressure to the sample. During the 

test the water pump is used to fill the hydraulic cylinder with water and then, using the oil 

pump, the water is flushed into the sample with a constant flow pressure.  

(c) The porosity control device (Fig. 2c) includes a hydraulic cylinder, a displacement sensor 

and an oil pump. To replicate different compression levels, a compressive pressure is 

applied by means of the oil pump and the hydraulic cylinder, then the sample height is 

measured by a displacement sensor; therefore, the corresponding porosity of the sample can 

be calculated.  

(d) A water pressure transducer, a flow rate sensor and data logger and a personal computer are 

the main components of the automatic data acquisition and storage system (Fig. 2d), which 

is mainly used to collect the water pressure and flow velocity data.  

(e) The small particle collection module (Fig. 2e) is made up of fine gauze and vibrosieve, 

which is used to collect and filter the small particles mixed with the water flow. 

2.2. Sandstone specimens description 

According to the field investigations in Buliangou mining area of Zhungeer coalfield in Inner 

Mongolia of China, the geological condition of the area is mainly composed of a mixture of small 

rock particles and large rock masses (see Fig. 4). X-ray diffraction analysis tests (BGMRE, 2006) 

show that the sandstone component content of the in-situ rock is high. Therefore, sandstone rock 

blocks, taken from a depth of approximately 300 m from the abovementioned mining area, are used 

as testing material for this study. In the laboratory, the sandstone specimens have been crushed into 

particles smaller than 20 mm. The crushing of sandstone blocks has been done in two steps. Firstly, 

the sandstone blocks are hammered into pieces of 60 mm, or less, in diameter using steel piercers and 

iron hammers. Then, a special stone crusher is used to crush those large pieces into grains with sizes 
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less than 20 mm in diameter. Thereafter, using a vibratory sieve shaker, the crushed sandstone grains 

are separated into four groups with different particle size ranges of: 2.5–5 mm, 5–10 mm, 10–15 mm 

and 15–20 mm (see Fig. 5 for particle size of 15–20 mm as an example). 

For the experiments, the grain sizes of 0–5 mm and 5–10 mm, mixed with a weight ratio of 1:1, 

are defined as the small rock particles, and grain sizes of 10–15 mm and 15–20 mm, mixed with a 

weight ratio of 1:1 are considered as the main (large) rock fragments. The testing samples are 

prepared by small rock particles and main rock fragments combined with weight ratios of 1:2 

(sample A), 1:1 (sample B) and 2:1 (sample C). Therefore, the testing samples are constituted of 

different grain sizes with weight ratios of 1:1:2:2 for sample A, 1:1:1:1 for sample B, and 2:2:1:1 for 

sample C. Each sample weighs 1800 g.  

2.3. Experimental procedure  

The experiments are carried out at room temperature, the testing fluid is water with kinetic 

viscosity w =1.01×10–3 Pa∙s and density w =1000 kg/m3. Before each experiment, the sandstone 

samples are completely saturated with water. Each sample is tested three times for higher reliability 

of the measurements; the final result is taken as the average value from the three tests. The tests are 

conducted at different porosities, particle size distributions and water pressures, as summarized in the 

following 

 In terms of porosity, sample B at constant water pressure of 0.7 MPa, is tested at different 

heights of 110, 120 and 130 mm, with corresponding porosities of 0.288, 0.348 and 0.398. 

 In terms of particle size distribution, at constant water pressure of 0.7 MPa and similar 

sample height of 120 mm, three different samples A, B, and C are tested (with different 

particle size weight ratios). 

 In terms of water pressure, sample B at the same porosity (i.e., 120 mm sample height), is 

tested at three different pressures of 0.4, 0.7 and 1 MPa. 
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The details of each sample composition are summarized in Table 1. For each experiment the 

washed away particles are collected every 20 seconds, and the overall duration of the test is 160 

seconds.  

2.4. Measurement of hydraulic properties  

Within the setting of the experimental system detailed in previous section, water flow flushes the 

small particles out of the sandstone samples, which consequently results in the increase of 

permeability and porosity of the samples. Based on the rate of particle migration, the permeability 

and porosity increase rates of the samples can be evaluated as discussed in the following.  

2.4.1. Permeability  

To quantify the permeability evolution of the granular sandstone samples, the one-dimensional 

Darcy equation could be used as: 

1/ wp z v                                                            (1) 

where /p z   is the pore pressure gradient; z  is the dimensional variable; w  is the water viscosity; 

  is the permeability of the sample medium; v  is average water flow velocity which is calculated by 

the radius of cylindrical container r  and water flow rate Q  as 2/ ( )v Q r . In an incremental 

manner, the permeability can be calculated for each time interval it  (where i = 1…n). Therefore, Eq. 

(1) can be rewritten as: 

1/i i w i ip z v                                                            (2) 

For the tests, the bottom end of the sample is connected to the water pressure control equipment 

of the testing system that automatically records water pressure changes ip  over time it . The top end 

of the sample is connected with the atmosphere, resulting in an atmospheric pressure boundary bip  

equal to zero. The steady state value of pore water pressure at the intake boundary at time it  is 
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assumed to be aip , and with the water pressure not changing at the intake boundary during the time 

interval it , aip could be considered equal to p . Furthermore, the height of the sample 0h  is kept 

unchanged during the water flow. Therefore, the incremental water pressure gradient /i ip z   can be 

considered as /p z  , which is unchanged and could be determined by water pressure difference at 

the two boundaries of the sample, as: 

0 0 0/ ( ) / / /i i ai bi aip z p p h p h p h                                                   (3) 

The one–dimensional flow direction is vertically upward, therefore the incremental permeability 

i  at time it  can be obtained as: 

0 /i w ivh p                                                             (4) 

2.4.2. Porosity 

Porosity is a crucial factor to describe the hydraulic properties of granular sandstones. For these tests, 

the values of porosity before the application of load (i.e., axial displacement), and after the 

application of load (just before the water flow initiation) are calculated. The evolution of porosity 

during the water flow is also measured. 

 Porosity before the application of load  

At the first stage, the granular sandstone sample, with a mass 
s
m  of 1800 g, is placed into the 

sample container and the loading ram is lowered to preliminarily compress the sample. The porosity 

s  at this stage can be expressed as: 

21 / ( )s s s sm r h                                                            (5)  

where s  is the density of the sandstone sample, r is the radius of the cylindrical container, and sh  is 

the height of the sample. As shown in Fig. 6, considering the height of the cylindrical container 1H  
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(180 mm), the pedestal thickness 2H  (25 mm), the porous plate thickness 3H  (10 mm), the filter pad 

thickness 4H  (2 mm), the water flushing cap thickness 5H  (20 mm), and the height of the outflow 

regulator that intrudes the cylindrical tube 6H , the height of the samplesh can be calculated as: 

 1 2 3 4 5 6sh H H H H H H                                                (6) 

As 1 2 3, ,H H H  and 4H  have all been set when the testing system was designed, sh could be only 

related to 6H . The height 6H  can be evaluated by subtracting the height of the outflow regulator 

exceeding the cylindrical tube 8H , from the total height of the outflow regulator 7H (75 mm) 

              6 7 8 H H H                                                      (7) 

A displacement sensor could be used to measure 8H ; therefore, the sample height sh  before the 

application of load is 

     1 8 2 3 4 5 7 8 8180 25 10 2 20 75 48sh H H H H H H H H H                       (8) 

Consequently, Eq. (5), for the calculation of porosity, can be rewritten as: 

2
81 / [ ( 48)]s s sm r H                                                            (9) 

 Original porosity after load application and before water flow 

Before the initiation of water flow through the sample, an axial displacement is applied to 

compress the sample by h . Given the reduced initial sample height of 0 sh h h  , the so-called 

original porosity 0  of the sample at this stage can be calculated as: 

2 2
0 0 81 / ( ) 1 / [ ( 48)]s s s sm r h m r H h                                      (10) 

 Porosity evolution during water flow 
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During the test, the washed away particles are collected every 20 seconds (t ), and the masses 

measured at the time intervals read 1tm , 2tm … tnm . As the duration of each test is 160 seconds, 

the maximum n value is 8. The total collected mass tjm  for ( 1,2, , )jt j t j n   , and the average 

mass migration rate tjm  during any time interval can, respectively, be calculated as: 

1 2tj t t tjm m m m        ( 1,2, , )j n                                          (11) 

/tj tjm m t          ( 1,2, , )j n                                                  (12) 

The migration of small particles will result in the increase of porosity. The porosity tj  at a 

specific time jt , and the porosity increase rate tj  during any time interval can, respectively, be 

calculated by:  

2 2
0 0 0 1 2 0/ ( ) ( ) / ( )tj tj s t t tj sm r h m m m r h                  ( 1,2, , )j n          (13) 

( 1)( ) /tj tj t j t           ( 1,2, , )j n                                     (14) 

3. Results and discussions 

3.1. The evolution of hydraulic properties 

For each test, the evolution of permeability is calculated based on Eq. (4) and using an average value 

of water flow velocity iv  for the respective it (i = 1…n). The results for the permeability evolution 

are shown in Fig. 7. At every 20 seconds, based on the cumulative mass of migrated particles (see Eq. 

(11)), using Eq. (13) the value of sample porosity can be obtained. Furthermore, using Eqs. (12) and 

(14), for every time interval the average weight migration rate and the porosity increase rate can be 

calculated. Figs. 8(a) and (b) show, for different samples, the variations of porosity and the porosity 

increase rate with time, respectively.  

According to the experimental observations, the permeability and porosity changes settle after 

about 120 seconds from when the maximum rate of variations occurs (see Fig. 8(b)). Based on the 
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results illustrated in Fig. 7, the overall process of permeability evolution during the tests can be 

divided into four different phases. These phases, which are explained in the sequel, include 

adjustment of rock fragments, water inrush with substantial particle migration, continued moderate 

particle migration, and steady state water flow. 

The first phase involves the adjustment of large rock fragments during which the sandstone 

sample configuration is changing due to the rearrangements of larger grains. Although, generally at 

this stage the permeability is increasing; however, in almost all the tests the permeability increase 

trend includes notable fluctuations. This is due to the fact that the large grains, in their pursuit of a 

stable reconfiguration under water flow, are forming a number of less stable intermediate 

arrangements. This can also be attributed to the crushing of corners and edges of large grains during 

their rearrangements that result in new and random fracture channels. At this phase the water flows 

are found to be slightly turbid, and almost no apparent migration of small particles out of the samples 

is observed. Furthermore, during this first stage all samples experience the maximum rate of porosity 

increase (see Fig. 8(b)). 

The second stage involves a water inrush phase through the sample, during which in a very short 

time the water flow velocity increases rapidly. During this phase, it is observed that, under the effect 

of increased flow velocity, major channels for flow and particle migration are forming inside the 

sample medium, and as a result maximum amounts of small particles are eroded out of the samples. 

The permeability increase at this stage, for all the tests, is found to be significant and rapid; however, 

there are still a number of abrupt fluctuations within their (generally increasing) trends.   

The third phase of permeability evolution involves continuous, but moderate, discharge of small 

particles out of the samples. During this stage, significantly fewer particles continue to migrate out of 

the samples through the flow channels that have been formed in the last stage. Also, as the pace of 
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particle migration is becoming particularly slower in this phase, that results in milder increase of 

permeability and porosity during this stage.  

The flow experiments are carried out until steady state flow condition is reached, i.e., the water 

flow rate stabilizes at outflow tank. At this final phase of the experiments, there are no more small 

particles migrating out of the samples, and the permeability and porosity values generally remain 

constant.  

It should be noted that in this study, given the designed experimental setup, the granular 

sandstone samples were not looked at as dual-domain systems investigating the separate effects of 

permeability variations within the 1) fragments and 2) fracture networks. Indeed, the porosity and 

permeability changes through individual sandstone lumps and fragments may contribute to the 

overall variations of hydraulic properties within sandstone samples, but investigating it would require 

a more sophisticated testing equipment considering that during the tests some large particles also 

break into smaller ones. Therefore, in this research the overall variations of the hydraulic properties 

within the domain, as a whole, under water inrush was studied. 

3.2. Factors affecting hydraulic properties variations 

3.2.1. Original porosity 

In general, at the same water pressure and particle size composition, the sample with higher 

original porosity obtains a higher permeability and porosity when the test is completed (see results 

for samples 1, 2 and 3 in Figs. 7 and 8(a)). Also, during the rearrangement of large fragments at the 

first phase of the tests it is observed that the higher the original porosity is, the bigger the rate of 

porosity change is (see Fig. 8(b)). Moreover, Fig. 7 shows that, from sample 1 to samples 2 and 3, as 

the original porosity of the sample increases the required time for the adjustment of large rock 

fragments decreases. In addition, it is observed that with the increase of original porosity, the 
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durations of water inrush stage (phase two), and moderate particle seepage stage (phase three) 

increase and decrease, respectively (see Fig. 7).  

3.2.2. Particle size composition 

As the results of tests on samples 4, 5 and 6 show (see Figs. 7 and 8(a)), generally, at the same 

original porosity and water pressure, the sample with higher percentage of small particles (particles 

smaller than 10mm in size), reaches higher permeability and porosity on the completion of the test. 

Also, based on the results it is evident that during the first phase of the tests, higher percentage of 

small particles in the sample would result in higher rate of porosity change (see Fig. 8(b)). This is 

because in a sample with significantly more small particles at the initial state (e.g., sample 6) there is 

a higher potential for particle discharge, and hence a rapid permeability and porosity change. 

Furthermore, comparing the results of tests over samples 4, 5 and 6 (see Fig. 7), it can be seen 

that as the amount of small particles in the samples increases, the adjustment of the large rock 

fragments (i.e., phase one) occurs more rapidly. Meanwhile, a clear increase in the duration of water 

inrush phase, during which substantial amount of small particles are washed away, has been 

witnessed. That coincides with an increased quantity of particles discharged out of the samples 

during phase two of permeability evolution, which could be expected given the increasing proportion 

of small particles in the original formation of samples. However, it is an interesting observation 

considering the lower original porosity and permeability in samples with higher amount of small 

particles. Subsequently, with the increase of small particles contribution in the original sample 

preparations (i.e., from sample 4 to 6) the duration of phase three, when steady seepage happens, is 

shortened.  

3.2.3. Water pressure 

The tests results for samples 7, 8 and 9, in Figs. 7 and 8, show that at the same original porosity 

and particle size composition, if the water flow pressure increases, the sample will obtain higher 
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values of permeability and porosity upon the completion of the tests. During the first phase of the 

tests when the particles are being rearranged, with higher applied water pressure, the rate of the 

porosity change will be higher. This is mainly because water flow with higher pressure has higher 

particle flushing ability. However, it could be observed from Figs. 7 and 8 that overall for a 4MPa 

increase of applied water flow pressure the durations of different phases (e.g., phases 1 and 2) have 

changed rather moderately.  

An overall observation from the tests is that the samples with higher original porosity and more 

small particles, that is under a higher flow pressure, will obtain higher permeability and porosity 

values under the water inrush. Also, the rate of porosity increase is found to be significantly higher 

during phase one of the tests when the large rock fragments are being rearranged. Moreover, the 

effect of all factors influencing hydraulic properties variations can be summed up in the migration of 

small particles. 

3.3. Predictive models for permeability and porosity evolution  

There are not many reported field measurements for permeability evolution of granular rocks deep 

under the ground, mainly due to their inaccessibility to carry out direct measurements. It is therefore 

common practice to predict porosity and permeability using limited experimental data. A number of 

models have been developed for calculating the hydraulic permeability  of an aggregated medium. 

In Table 2, the most commonly used models for the evaluation of permeability are summarized. 

Based on these models, the corresponding permeability evolution functions for 0j   (where 0  

and j  are the original permeability value and the permeability at time j , respectively) have been 

obtained (as listed in Table 2).  

As shown in Table 2, to use the predictive models it is necessary to determine the values of 

effective particle size  10e
j jd d , 20

jd  and mean particle size  50m
j jd d  of the samples. For all samples 
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of this work 0 2.5jd mm  and 100 20jd mm , at any time. Because the diameters of the washed away 

particles (with total collected mass of tjm ) at any time interval are within the range 2.5 mm<
tjmd <10 

mm, therefore the percentage for 2.5~10 mm size particles remaining within the sample at any time 

can be determined from 10 tj

s tj

m m
d

m m





, and subsequently the remaining percentage for 2.5~15 mm 

particles can be determined by 15 tj

s tj

m m
d

m m





. In these equations, 10m  represents the original mass for 

particles of size 2.5–5 mm and 5–10 mm before water flow, and 15m  represents the original mass for 

particles of size 2.5–5 mm, 5–10 mm and 10–15 mm before water flow. Therefore, we can determine 

the particle size distribution of each sample at any time during the test  0 100k
jd k   by: 

   
     
     

10 2.5
2.5 0

15 10
10

20 15
15 100

100

k
j

k
k d

d

k d
d d k d

d d

k d
d k

d

     



  
   




  
  



                                       (15) 

For example, for all samples the particle size distribution plots at the end of the test (after 160 

seconds) and the variations of  10e
j jd d  are shown in Figs. 9 and 10, respectively.  

Using the approach described above, the necessary data to use for the permeability evolution 

models (see Table 2) are obtained and used for the evaluation of their performances over the test data. 

As an example, Fig. 11 shows the predictions of permeability evolution over the test samples 

obtained from using Carman–Kozeny model. As an example, the data corresponding to the analysis 

of the permeability evolution for a sample test is summarized in Table 3. In order to compare the 

performances of the predictive models for permeability (or porosity) evolution, a simple statistical 

efficiency criterion, based on coefficient of determination factor R2, is used 
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2 2

1 12

2

1

( ) ( )

( )

n nm m p
j j jj j

n m
jj

R
  


 



 

 


                                                      (16) 

where n is the total number of test data; m
j  is the experimentally measured value, and p

j  is the 

model prediction associated with a test. The results of R2 values for different models and test samples 

are drawn in Fig. 12. 

As shown in Fig. 11, using a predictive model the calculated permeabilities are almost always 

higher than those obtained from the tests. This could indicate that during the tests perhaps not all of 

the fractures contributed in the flow, and parts of the fracture network were ineffective in the small 

particle migration. However, given the generally high values of R2 (Fig. 12), it appears that the 

application of effective porosity (fracture) in flow for the prediction of permeability variations can 

yield sufficiently accurate results.  

Comparing the model predictions for permeability variations of samples 1, 2 and 3 in Fig. 12, it 

is observed that for sample 1 the highest average R2 is achieved (i.e., 0.9837). This could be mainly 

because the sample with less original porosity, which means less inherent original fracture, would 

have less ineffective flow channels. Furthermore, from the same figure, comparing the model 

predictions over the test results from samples 4, 5 and 6, it is observed that the lowest average R2 

value is obtained for sample 6 (i.e., 0.9202). This indicates that the sample with fewer small particles, 

i.e., more large rock fragments hence farther fracture network, would have more ineffective fractures. 

A comparison of the prediction results corresponding to samples 7, 8 and 9 shows that the average 

value R2 for sample 9 is the least, which means higher water pressure causes more fractures in the 

sample. In summary, it is concluded that the accuracy of permeability (porosity) evolution models is 

higher for the sample with less original porosity, more small particles and subjected to lower water 

pressure.  

Furthermore, Fig. 12 shows that the average R2 value from Hazen equation is the lowest (i.e., 

0.9043) among the others. Its prediction performance using the data from sample 6 is the poorest 
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with an R2 value of 0.7557. Apart from the Hazen equation, the R2 values from other models are all 

larger than 0.93, indicating a high level of accuracy. The average R2 values from the application of 

Happel, Zamarin and Carman–Kozeny equations are greater than 0.98, which indicate remarkable 

prediction performance. Particularly in case of Carman–Kozeny equation, the predictions are very 

close to the measured permeabilities (with an R2 value of almost 0.99). 

4. Conclusions 

The fault fracture zones, which contain substantial amounts of granular rocks, can act as major water 

outburst channels. Therefore, the geological composition or type of rock composing the existing 

faults could be the crucial factor in determining the safety of coal mines with underlying aquifers. To 

study the mechanism of effect of mining on water inrush within faults that is caused by small particle 

migration, a rock testing system has been designed and constructed to conduct a series of tests for 

evaluating the hydraulic properties of granular sandstones. The permeability and porosity changes in 

granular rock samples under varying original porosity, particle size composition and water pressure 

were studied. 

According to the experimental observations, during the tests the permeability and porosity 

increased with time until they reached to a peak value. The overall permeability evolution during the 

tests could be divided into four different stages. In the first stage, the permeability increased 

gradually with almost no apparent migration of small particles, the water inflow was slightly turbid, 

and the porosity increase rates were at their maximum. In the second stage, the water inflow velocity 

increased rapidly in a very short time; furthermore, major channels for water flow and particle 

migration were formed resulting in the erosion of maximum amounts of small particles out of the 

samples. During the third phase, moderate amounts of small particles continued migrating out of the 

samples through the major flow channels which were formed in the previous stage; hence, the 

permeability and porosity increased only slowly in this phase. In the final stable water flow stage, 
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there were not any noticeable amount of small particles migrating out of the samples and therefore 

the permeability values became constant.  

The fluctuations of permeability-time relationship were mainly observed in the first two phases. 

This was deemed to be due to the crushing of corners and edges of the larger particles and their 

rearrangements that resulted in the development of new and temporary fracture channels within the 

samples. It can be concluded that when mining excavations are carried out, the redistribution of the 

stress field leads to the reactivation of faults that consequently result in the increase of permeability 

within the crushed zones of the existing faults. Hence, potential flow channels for water inrush are 

generated within the damaged zones of the faults. Furthermore, the erosion of small particles under 

high water pressure could tabulate different seepage mechanisms (e.g., pore flow, fissure flow and 

pipe flow), which in turn result in greater probability of groundwater inrush incidents. With higher 

original porosity, particle sizes and water flow pressures, the duration of the water inrush and stable 

seepage phases decreases more quickly. This is due to the fact that the higher those attributes are, the 

greater the influence of small particle migration will be on the variations of the hydraulic properties.  

A number of empirical equations (Table 2) for calculating the hydraulic permeability of an 

aggregated medium were used to model the porosity-permeability relationship evolution under the 

effect of small particle migration. The prediction of permeability (and porosity) evolutions indicated 

that not all of the fracture structures were effective channels for particle flow, and parts of the 

fracture network were not contributing in the particle migration. In summary, the sample with less 

original porosity, more small particles and under lower water pressure would have smaller fracture 

network and hence fewer ineffective flow channels. Therefore, under these conditions the accuracy 

of the predictive models for permeability (and porosity) evolution would be higher.  
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Figure and Table Captions List 

Fig. 1 Mining-induced small particle migration in faults above confined aquifer 

Fig. 2 Schematics of particle migration testing system 

Fig. 3 The detail components of the rock granules flow apparatus. (a) connection principle; (b) 

porous plate; (c) water flushing cap; (d) outflow regulator. Note: 1–loading plate; 2–overflow tank 

cover; 3–overflow tank; 4–outlet pipe; 5,12–bolts; 6–cylindrical sample container; 7–O-shaped 

rubber seal rings; 8 –pedestal; 9-porous metal disk; 10–filter pad; 11–sample; 13–water flushing cap; 

14–outflow regulator. 

Fig. 4 Picture of rock skeleton mixed with small rock particles from a fault 

Fig. 5 Sandstone test sample with particle of about 15–20 mm  

Fig. 6 Illustration of the different heights involved in calculating the permeability. Note: sh –height of 

granular sandstone sample; 1H – height of cylindrical tube/container; 2H –base plate thickness; 3H –

porous plate thickness; 4H – filtration pad thickness; 5H –flow piston thickness; 6H –height of the 

overflow tank head in the cylindrical tube, 7H –overflow tank height; 8H –height of the overflow 

tank head that exceeds the cylindrical tube. 

Fig. 7 The variations of permeability with time for different samples 

Fig. 8 The variations of (a) porosity, and (b) porosity increase rate with time for different samples 

Fig. 9 Particle size distribution for each sample at the end of the tests  

Fig. 10 The variations of  10e
j jd d  for each sample during the tests 
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Fig. 11 Measured and predicted values for permeability – porosity relationship using Carman–

Kozeny model 

Fig. 12 R2 values for model predictions of permeability evolution for different samples 

Table 1 Details of testing samples 

Table 2 Correlation of the permeability and porosity 

Table 3 Model prediction parameters used in Carman–Kozeny equation for sample 6 
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Table 1 Details of testing samples 

Sample 
No. 

Total mass 
(g) 

Sample 
height 
(mm) 

Original 
porosity 

Particle size 
weight ratio 

Mass contribution of each particle 
size range (g) 

Water 
pressure 
(MPa) 0–5 

mm 
5–10 
mm 

10–15 
mm 

15–20 
mm 

1 

1800 

110 0.288 
1:1:1:1 

450 450 450 450 

0.7 
2,5,8 120 0.348 450 450 450 450 

3 130 0.398 450 450 450 450 
4 

120 0.348 

1:1:2:2 300 300 600 600 
6 2:2:1:1 600 600 300 300 
7 

1:1:1:1 
450 450 450 450 0.3 

9 450 450 450 450 1 
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Table 2 Correlation of the permeability and porosity 

Correlation Permeability function j  0j   

Hazen (Vukovis and 
Soro 1992) 
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Kruger (Vukovis and 
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1996; Li and Logan, 

1997) 
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Table 3 Model prediction parameters used in Carman–Kozeny equation for sample 6 

Time j 0 20 40 60 80 100 120 140 160 

 50m
j jd d  8.125 8.297 8.437 8.477 8.491 8.499 8.508 8.508 8.508 

j  0.348 0.384 0.410 0.417 0.419 0.420 0.421 0.422 0.422 

j (measured)  27.554 40.797 49.188 55.735 59.073 61.875 62.673 62.774 62.774 

j  (predicted) 27.480 43.372 59.196 64.214 65.978 67.039 68.188 68.212 68.212 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8a 
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Figure 8b 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Highlights 

 The permeability evolution within granular sandstones under water inrush can be divided into 

four different phases. 

 Particle migration has an essential effect on permeability increase during water inrush. 

 Parts of the fracture network within the granular media are not effective for water and particle 

flow. 


