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Abstract  

Significant amount of research efforts have been dedicated to the development of scaffolds for 

tissue engineering. Although, at present most of the studies are focused on non-load bearing 

scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, 

metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical 

properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, 

titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as 

implants in orthopedic and dental treatments. They are often used to replace and regenerate the 

damaged bones or to provide structural support for healing bone defects. Among the metal 

implants, magnesium (Mg) and a number of its alloys are effective because of; their mechanical 

properties close to those of human bone, their natural ionic content that has important functional 

roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. 

Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, 

and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys 

have been specially suggested as metallic scaffolds for bone tissue engineering. With further 

optimization of the fabrication techniques, porous Mg is expected to make a promising hard 

substitute scaffold. The present review covers research conducted on the fabrication techniques, 

surface modifications, properties and biological characteristics of Mg alloys. Furthermore, the 

potential applications, challenges and future trends of Mg scaffolds are discussed in detail. 

Keywords: Magnesium; Porous Scaffolds, Biodegradation, Bone, Cartilage 
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1. Introduction  

There are wide variety of biocompatible materials used for different orthopaedic applications.  

Among them, metallic biomaterials have been specifically utilized to produce an assortment of 

orthopaedic implants such as the head of the femoral component of a total hip joint replacement 

(THJR), the tibial tray in a total knee joint replacement (TKJR), the stem of the total shoulder 

joint replacement, and the spinal fusion cage [1, 2]. Biodegradable metals are a relatively new 

class of biodegradable materials that degrade slowly in the body with a suitable host reaction 

elicited by the released degradation products. The biodegradable metal should disappear entirely 

upon fulfilling the mission of supporting the tissue regeneration leaving no implant residues; 

hence, no further surgical operation is needed for the implant removal [3]. 

Appropriate biocompatibility, low in vivo corrosion rate and high strength are the main 

parameters for the selection of a metal for the mentioned applications [4]. The principal issue of 

metallic implants is their loosening due to bone resorption caused by stress shielding, weak 

interfacial bonding between the implant and the bone, and the lack of biological anchorage for 

the growing tissue [2]. To address these issues, there has been much effort on the development 

and characterization of metal implants with microstructures and properties close to those of 

trabecular bone. Accordingly, these materials are called open-cell porous metals, metallic foams, 

metallic scaffolds, or cellular metals with three-dimensional interconnected pores. The pore sizes 

are typically between 200 and 500 µm with total porosity of 50–75% [5].  

The stability of an implant is mainly dependent on both its mechanical strength and its fixation 

ability to the host tissue. In the past, such stability was mostly achieved by means of pins, screws 

and bone cements [6]. However, in recent experiments, researchers are attempting to improve the 

fixation by tissue engineering techniques [7]. For this purpose, the metal is made porous to 
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provide a scaffold for the bone tissue to grow into and through the pores thus making a suitable 

bond to the metallic implant [8]. Present tissue engineering approaches are focused on the 

development of porous scaffolds made of different biomaterials with the aim of replacing and 

restoring the pathologically altered tissues by transplantation of the cells [9, 10]. Such scaffolds 

for engineering of hard tissues need suitable mechanical integrity [11]. A porous 3D material 

provides the required pathways for cells to grow, proliferate, and differentiate, while the 

architecture defines the final structure of the newly formed bone [12-15]. It is worth mentioning 

that the spontaneous renewal of the bone is restricted to only small defects. The treatment of 

large bone segments caused by tumors, trauma, implant failure, or osteitis is far more 

challenging to be addressed. An ideal bone tissue engineering scaffold must be biocompatible, 

osteoconductive, and biodegradable, with a high mechanical strength to fulfil the necessary load-

bearing functions [8]. Also, it must have interconnected porous networks allowing cell 

migration, vascularization and nutrient delivery [16]. The challenge to achieve the 

abovementioned properties in existent scaffolds, has made bone tissue engineering a very 

popular research field in the last decade in regards to the material selections and production 

techniques [13, 17]. Although, porosity is necessary for scaffolds, it considerably reduces the 

scaffold’s strength which is vital, in particular, for large bone defects [18, 19]. The trade-off 

between the mechanical strength and the porosity is one of the main challenges in designing 

tissue engineered bone scaffolds [6]. At present, various types of biomaterials have been 

employed for this aim, which are synthetic or naturally-derived. 

2. Advantages and disadvantages of the porous magnesium-based scaffold compared to 

other scaffolds 
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Early 1970s was the starting date for investigations on porous biomaterials such as ceramic [20], 

polymeric [21], and metallic materials [22], which identified several promising selections for 

porous implants that would allow bone in-growth. Although ceramics have shown outstanding 

corrosion properties, their inherent brittleness makes them difficult to be used for load bearing 

applications [16]. Porous polymeric scaffolds cannot resist the high mechanical stresses present 

in bone replacement operations [16]. This has led researchers to study porous metals, based on 

orthopaedic metallic implants, due to their greater compressive strength, fracture toughness, and 

fatigue resistance, which are needed for load-bearing applications [6, 16]. Due to the excellent 

physical and mechanical properties of magnesium compared to other permanent (non-

degradable) metals, porous magnesium and Mg alloys became a good candidate to serve as a 

biodegradable scaffold for bone treatments [23, 24]. 

Among the metal implants, Mg and a number of its alloys are effective because of 1) their 

mechanical properties which are close to those of human bone, 2) their natural ionic content that 

has important functional roles in physiological systems, and 3) their in vivo biodegradation 

characteristics in body fluids. Some physical properties of the Mg alloys, such as high specific 

strength and elastic modulus, are closer to those of the natural human bone compared to other 

traditional metal implants [27, 28]. For example, compared to titanium alloys with the elastic 

modulus of 110–117 GPa, Mg alloys have lower modulus (41–45 GPa) leading to a decreased 

stress-shielding effect [29, 30]. Moreover, Mg alloys are 3–16 times stronger than biopolymers 

and, at the same time, they are more ductile compared to bioceramics, which can reduce the 

chance of the device fracturing throughout the implantation process. Moreover, compared to 

polymers, Mg alloys can encourage bone growth, which can help the implant to be properly 

fixed with the host bone to potentially allow full healing of bone defects after degradation [31, 
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32]. Mg is an essential ion in metabolism and its deficiency in the body may cause some 

pathological conditions. Due to such collective properties, Mg based alloys can be employed as 

biocompatible, bioactive, and biodegradable scaffolds for load-bearing biomedical applications 

[25, 26]. Such characteristics encourage employing biodegradable Mg and Mg alloys as 

lightweight metals for load bearing orthopaedic implants, which would remain in the body and 

keep mechanical stability over a time scale of 3-4 months, while the natural bone tissue heals 

[33, 34]. 

The main challenge for employing Mg and its alloys as an implant is its high corrosion rate 

resulting in the rapid release of degradation products in the body [35, 36]. The low corrosion 

resistance in physiological environments can have an adverse effect on the mechanical stability 

of the implant prior to bone healing [37]. Mg’s low corrosion resistance also leads to the rapid 

release of hydrogen gas and the formation of subcutaneous gas pockets close to the implant. 

These side products would collect around the implant and interrupt the tissue healing [38, 39]. In 

addition, due to the hydrogen release, a local alkalization occurs around the implant, which 

affects the pH-dependent physiological processes in the surrounding area of the implant [17]. 

The need for relatively low corrosion resistance property, makes it necessary to take relevant 

measures to control its high corrosion rate [40]. This review aims to bring together recent studies 

on Mg and Mg alloys scaffolds with regards to production techniques, surface modifications, 

general properties, potential applications and future trends. If Mg scaffolds with the proper 

mechanical and corrosion properties can be successfully applied in bone defect treatments, a 

second operation process for the implant removal will be avoided; which in turn will aid the bone 

healing,  minimize the trauma to the patients, and decrease the medical costs [41]. 
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2. Design and production methods 

2.1. Titanium wire space holder  

A novel technique for the production of magnesium scaffolds using titanium wires as space 

holder has been recently developed by Jiang et. al. [42]. This technique includes three steps: (a) 

An entangled three-dimensional shape is made of titanium wire [43], (b) the prepared titanium 

pattern is utilized as a space holder to generate a titanium/magnesium hybrid system by 

infiltrating the magnesium cast, and (c) the titanium space holder is dissolved from the hybrid 

system by hydrofluoric acid (HF) etching at room temperature [42]. With this approach, it is 

feasible to formulate porous magnesium scaffolds with adjustable pore size and structure [42]. 

Figure 1 schematically demonstrates the abovementioned stages[42]. Similar to the shape and 

dimension of titanium wires, the pores in the magnesium scaffold consist of channels with pipe-

like structures with diameter of approximately 270 ȝm. The results of mechanical tests has 

shown that the produced magnesium scaffolds with porosities of 54.2%, 51% and 43.2% had 

elastic modulus of 0.5, 0.6 and 1.0 GPa, and compressive yield strengths of 4.3, 4.6 and 6.2 MPa, 

respectively. Such results are comparable to the mechanical properties of natural bone, and thus 

offer potential applications in the treatment of bone defects [42].  

 

2.2. Negative salt pattern molding 
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Kirkland et al. [44] have developed a new multistep technique with the aim of production of an 

ordered open cell porous Mg scaffold with controllable porosity and microstructure by a rapid 

prototyping and casting method. For this purpose, as a supersaturated paste, salt particles were 

made with high purity (99.5%). Computer-aided design (CAD) models were then engineered as a 

positive pattern by 3D printing of an acrylic polymer infiltrated in a specific salt slurry. Entire 

elimination of the polymer by combustion in air using a burnout cycle led to formation of a 

negative salt pattern which was then infiltrated with melted Mg. Following Mg solidification, the 

salt was dissolved by washing in NaOH solution. Similar to the macroscopic shapes of the CAD 

models, a porous Mg scaffold with ordered pores was formed after removal of the salt template 

by solvent washing. A schematic picture of the entire process is illustrated in figure 2 [44]. This 

research indicates that successful manufacture of topologically ordered porous salt patterns 

facilitated the negative replication of the ordered three-dimensional configuration utilizing pure 

Mg [44]. 

An in vivo study was also carried out on open porous Mg scaffolds which had been produced by 

a negative salt pattern molding process on biodegradable AZ91D alloy [45]. In this study, a 

negative template was prepared by pouring the moistened NaCl particles into a core box. The salt 

template was then infiltrated by Mg melt in a die casting system and the salt particles were then 

washed out by the NaOH solution. This technique resulted in a scaffold with 72-76% porosity 

and a pore size distribution of 10–1000 µm [45]. The produced Mg scaffold was implanted into 

the right knee and an autologous bone graft from the left patellar groove was implanted into the 

left knee as a control group. Mg scaffolds were significantly corroded after 3 months, and most 

of the implanted Mg alloy was degraded. These findings confirms that even rapid corroding Mg 

scaffold has reliable biocompatibility with a desirable inflammatory host response in vivo [45]. 
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2.3. Powder metallurgy 

Porous Mg scaffolds can be prepared using a powder metallurgy process by mixing the Mg 

powder and space holder agents. Normally, a two-step heat treatment is required in order to burn 

out the space holder agents as well as a sintering process on the pressed powder. Seyedraoufi et 

al. [46] produced a Mg-Zn alloy scaffold  by blending and pressing Mg, 4wt% Zn and 6wt% Zn 

powders with carbamide (CO(NH2)2, 15%, 25% and 35% volume contents) with the particle size 

of 200–400 µm. The blended powders were pressed at 100 MPa pressure followed by a two-step 

heat treatment. The first step was adjusted to remove the carbamide particles by heating up to 

250 °C for 4 h. The second step involved the sintering process, by heating up to 500, 550, 565 

and 580 °C for 2 h. This study found a relationship between the mechanical properties and the 

porosity content. The compressive strength and Young’s modulus of the Mg-Zn scaffolds 

decreased with increment in porosities at all sintering temperatures. Moreover, the temperature 

of 550 °C was introduced as the optimum condition for the sintering process since the highest 

compressive strength and Young’s modulus well obtained at this temperature. The results of this 

study confirmed that the produced Mg–Zn scaffolds with 21–36% porosity could have superior 

mechanical properties comparable with that of cancellous bone [46]. 

An example of an open porous magnesium scaffold with interconnected pore microstructure 

produced by powder metallurgy for orthopedic applications is shown in figure 3,  reproduced 

from the work of Yazdimamaghani  et al. [47]. 
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The main disadvantage of Mg alloys is their low corrosion resistance. The presence of porosity  

adversely affects the corrosion resistance by enhancing the surface area exposed to the corrosive 

media [48]. In order to control the degradability of Mg scaffolds produced by powder metallurgy 

method, a multilayer polymeric matrix composed of polycaprolactone (PCL) and gelatin (Gel) 

reinforced with bioactive glass (BaG) particles has been coated on the surface of Mg scaffolds by 

freeze drying process [49]. In this study, Mg powder was mixed with carbonate hydrogen 

ammonium particles as the space holder agent with volume content of 35% and particle size of 

approximately 150–300 µm. The mixed powders were then pressed at a pressure of 400 MPa. 

Similar to other powder metallurgy techniques for production of Mg scaffolds, the burning out 

process was carried out at 175 °C followed by a 600 °C heat treatment for sintering. When the 

samples were immersed in a simulated body fluid for bioactivity tests, the Mg scaffold coated 

with PCL-BaG presented the best conditions for the deposition of biominerals. Both uncoated 

and Mg scaffold coated with the PCL-BaG entirely corroded after 3 and 7 days. However, 

approximately 87% of Mg scaffold coated with multilayer PCL-BaG/Gel-BaG coating remained 

intact after 14 days of immersion in A simulated body fluid (SBF) [49]. 

 

2.4. Hydrogen injection 

In hydrogen injection method, Mg melt is poured in a crucible under vacuum, and high pressure 

hydrogen is introduced into the chamber [50]. As demonstrated in figure 4, the melt is 

superheated in anticipation that the dissolved hydrogen reaches its saturation, and then it is 

solidified into a water-cooled copper mould. Accordingly, the melt is solidified upwards uni-

directionally and straight pores are formed by supersaturated hydrogen during solidification. 
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Changing the cooling part position would change the direction of pore growth [50]. Biological 

characterization on this type of Mg scaffolds by Gu et al. [51] indicated an acceptable corrosion 

rate and biocompatibility. However, there are some concerns about the absence of interconnected 

pores in the scaffolds made by this method of production. 

2.5. Laser perforation 

Laser perforation technique has been used to produce designed porous Mg scaffolds [11] since 

Mg has been known as a machinable metal. Porous Mg scaffolds can be developed by laser 

perforation system by means of a programmable multifunctional laser processing machine on the 

casted Mg ingots. The advantage of this method is the simplicity to control the structure, size and 

shape of pores. Normally, interconnected and homogeneous pores with round and honeycomb-

like structure can be formed by this technique [11]. Geng et al.  [11] produced a Mg scaffold 

with interconnected pores and honeycomb-like configuration. The optimum parameters in this 

study were the pulse frequency of 1-10 Hz, width of 0.3 ms, and the effective output of 100 W. 

Aligned long cylindrical pores with diameter of about 0.5 mm were manufactured within the Mg 

scaffold. The results confirmed a suitable behavior in mechanical properties due to the fewer 

flaws and voids resulting from the control of the fabrication technique [11]. Table 1 summarizes 

the techniques for producing porous Mg-based scaffolds. 

 

3. Biomedical coatings on magnesium scaffolds  

As aforementioned above, the main disadvantage of magnesium and magnesium alloy based 

scaffolds is their high corrosion rate, due to the high electrochemical activity of magnesium 

metal. Corrosion of magnesium alloy is rapid and inhomogeneous, as it can be localized 
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corrosion. The formation of hydrogen gas cavity due to the faster corrosion rate in comparison to 

the absorption rate is often observed in Mg scaffolds. In addition, an alkaline pH shift adjacent to 

the magnesium implant would result in damage to the host tissue. This has led to limiting the 

potential medical application of magnesium as implant, stents, and bone screws. Corrosion and 

degradation can drastically reduce the ultimate strength and fatigue life of implants. Increasing 

the surface area by introducing porosity generally increases the corrosion rates and accelerates 

the mechanical failure of the implant. To address the long-term safety of porous scaffolds, 

alloying and surface modification of magnesium scaffolds can be useful approaches. Altering the 

microstructure and composition by alloying, and surface modification of the scaffolds prior to 

the implantation, are conducted by a variety of materials and methods [16, 52, 53]. Surface 

modifying the scaffolds increases the corrosion resistance. The surface modification can be 

applied by two different processing techniques of conversion coatings or deposited coatings [27]. 

Conversion coatings are in situ chemical or electrochemical interactions of the magnesium 

scaffolds with the environment which leads to the formation of an inorganic ceramic-like coating 

on the surface. Deposited coatings are mostly organic coatings applied by different methods such 

as spraying, painting, spin coating, dip coating, or immersion. Materials used for coating should 

have specific characteristics such as good corrosion protection, biocompatibility, 

osseointegration, bioactivity, and controlled biodegradability. Hornberger et al. have 

comprehensively reviewed the different coating methods [27].  

Calcium phosphates (CaPs) with similar composition of the bone mineral component possess 

several beneficial properties such as excellent bioactivity and osteoconductivity for bone-graft 

applications [54]. Promoting new bone formation and developing strong interfacial bonding 
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between CaPs biomaterials and the host bone tissue makes this material an appropriate choice for 

surface modification of magnesium scaffolds.   

Hydroxyapatite [Ca10(PO4)6(OH)2, HA], one of different phases of the calcium phosphates 

(CaPs), has been investigated extensively. Surface modification by hydroxyapatite coating is an 

effective method for enhancing the corrosion resistance of magnesium scaffolds. Although 

hydroxyapatite has exceptional biocompatibility, bioactivity properties, and similar chemical and 

structural nature as bone, it suffers from high brittleness and low strength which limits its 

application in load bearing conditions [55]. Therefore, utilizing biodegradable magnesium 

scaffolds with appropriate mechanics, coated with hydroxyapatite to enhance corrosion 

resistance, and to enhance bone forming ability can be a promising scaffold for bone tissue 

engineering in load bearing applications [56]. Different techniques such as sputtering 

process, electrophoretic deposition, sol–gel process, and biomimetic deposits can be used to coat 

metallic surfaces by hydroxyapatite. However, due to the poor heat resistance of magnesium, 

none of these techniques can be used efficiently for hydroxyapatite coating of magnesium 

scaffolds since a high temperature treatment will be required to densify the coating [56]. 

Therefore, one of the promising options to surface modify magnesium scaffolds is using 

electrochemical deposition which includes low deposition temperature and is capable of creating 

uniform coatings with controlled thickness and chemical composition [56-58].  

Hydroxyapatite crystal structure size and morphology can also be manipulated by electrolyte 

concentration and electrochemical potential. Recently, researchers found that the morphology of 

hydroxyapatite coating can affect its osteoconductivity and biocompatibility. Healing process of 

bone defects can be accelerated by loose hydroxyapatite coating which allows easier infiltration 

and ingrowth of new bone tissue. [57-59].  
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One of the main concerns of using magnesium scaffolds is the amount of Mg ions and hydrogen 

gas released by its corrosion. Incorporating Zn element in contents of less than 3% can improve 

the corrosion resistance [60] and the mechanical properties of magnesium scaffolds [56, 61]. 

Seyedraoufi et al. [59] investigated and optimized different parameters of pulse electrodeposition 

such as peak current density, temperature, and duty cycle to surface modify porous Mg-2wt.% 

Zn scaffolds with nano hydroxyapatite (Ca10(PO4)6(OH)2) coating upon post-treatment in alkali 

solutions. Porous Mg-2Zn (wt.%) scaffolds were prepared using a powder metallurgy process. 

Under optimized pulse electrodeposition of 1 hour, 40 mA cm-2 peak current density, 85 ºC 

temperature, and 0.1 duty cycle, followed by post-treatment in alkali solutions, uniform nano 

hydroxyapatite coatings were generated on the scaffolds. As shown in figure 5, perpendicularly 

needle-like hydroxyapatite crystals with 2-3 µm length with less than 100 nm in diameter were 

created on the surface of the scaffolds. Loose needle-like hydroxyapatite crystals highly 

resemble the inorganic apatite structure of natural bone [59]. 

Tricalcium phosphate [Ca3 (PO4)2, TCP] as coating material exhibits desirable biocompatibility 

and bioactivity. However, TCP shows poor mechanical strength and crack-growth propagation 

resistance. In contrary to HA which has poor rate of biodegradability, TCP is biodegradable. 

TCP has three polymorphs and among them, ȕ-TCP with hexagonal crystal structure and R3CH 

space group has a slow-degrading rate [62]. In addition, ȕ-TCP shows desired 

osteoimmunomodulatory properties which activates the immune response leading to accelerated 

bone healing process. Favorable osteoimmunomodulatory properties adjust the balance between 

osteogenesis and osteoclastogenesis which improve bone regeneration.  Chen et al. prepared [63] 

magnesium scaffolds with the laser perforation technique and coated them with ȕ-TCP, in an 

attempt to exploit the advantages of ȕ-TCP coating such as osteoconductivity, biocompatibility, 
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high chemical stability, slower degradation rate compared to magnesium, and 

osteoimmunomodulatory [63]. In this study, the importance of ȕ-TCP coating in immune cells 

and bone cells response was emphasized, and the role of immune cells in adjusting osteogenesis 

and osteoclastogenesis balance was investigated. Osteoimmunomodulatory property of ȕ-TCP 

coating demonstrated the activated M2 phenotype of macrophage and release of bone 

morphogenetic protein 2 (BMP2). Subsequently,  osteogenic differentiation of bone marrow 

stromal cells was observed due to the presence of  BMP2 [63, 64]. Activated macrophages 

secrete BMP2 and transforming growth factor b (TGF-b). It has been shown that the discharging 

macrophages result in the inhibition of in vivo bone formation [65-68]. Thereby, magnesium 

scaffolds coated with ȕ-TCP showed desired osteogenesis over osteoclastogenesis, due to the 

upregulation of osteoinductive molecules secreted by macrophages in contact with ȕ-TCP 

coating [63].  

In a similar study, Geng et al. manufactured [69] interconnected porous magnesium scaffolds 

utilizing laser perforation technique and coated the samples with ȕ-TCP [69]. In vitro 

biodegradation mechanism of surface modified scaffolds was evaluated and the osteosarcoma 

cell (UMR106) attachment and proliferation were studied. Figure 6a shows a macrograph of a 

fabricated porous magnesium scaffold with cylindrical aligned pores with 48% porosity before 

surface modification. Figure 6b is a SEM image of the ȕ-TCP coated scaffolds obtained by 

chemical process of immersion in the mixture of Ca(NO3)
2 and Na2HPO4.12H2O after alkali-heat 

pretreatment.  

Comparing the pH change of uncoated magnesium scaffold with coated scaffolds incubated in 

cell culture medium indicates that the pH of the ȕ-TCP coated scaffolds was similar to the pH of 

the control group, while the uncoated scaffolds have significantly increased pH value. This result 
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confirms the barrier property of ȕ-TCP which increases the corrosion resistance of the scaffold 

and decreases the magnesium ion release, and control the pH of the medium [69]. In addition, ȕ-

TCP coating acts as reservoir of calcium and phosphate ions around the scaffolds and triggers the 

bone growth. It has been reported that the local supersaturation of the body fluid with calcium 

and phosphate ions enhances the growth of bone [70, 71].  

Degradation of ȕ-TCP coating on the magnesium scaffold is coincident with the regrowth of new 

calcium and phosphate coating on the surface. This effect occurs by two simultaneous 

mechanisms namely increased nucleation and increase of pH values. First, degradation of ȕ-TCP 

increase the magnesium ions release, which in turn leads to an elevated calcium concentration 

that is desired for nucleation and growth of the Ca-P compound on the magnesium scaffold [69, 

72-74]. Concurrently, enhanced ionic activity of apatite at higher pH, due to the degradation of 

magnesium, can increase the apatite nucleation and formation of new Ca-P coating [75]. 

In an attempt to decrease the degradation rate and to increase the possible application potential of 

magnesium scaffolds in the field of tissue engineering, further biomedical coating studies have 

investigated various biodegradable materials such as polycaprolactone (PCL) [47, 76], 

polycaprolactone-bioactive glass (PCL-BaG) [40], and gelatin-bioactive glass/polycaprolactone-

bioactive glass (Gel-BaG/PCL-BaG) coatings [49]. The results showed drastic enhanced 

corrosion resistance and compressive strength during the immersion in physiological saline 

solution (PSS). The open porous magnesium scaffolds were manufactured by a powder 

metallurgy technique. While the uncoated scaffolds degraded completely and lost 100% weight 

after 72 h, coated scaffolds with 3% w/v and 6% w/v PCL showed 36% and 23% weight loss, 

respectively. In addition, 41% and 83% improvement in compressive strength, and 24% and 

100% enhancement in the elastic modulus have been observed, respectively, in 3% w/v and 6% 
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w/v PCL coated magnesium scaffolds [47, 76]. In addition, incorporating bioactive glass (BaG) 

into the coating layer led to improved bioactivity and mechanical integrity compared to the 

uncoated scaffold. Formation of an apatite layer on surface modified scaffolds was observed 

after immersion in SBF, which should stimulate biological bone ingrowth and prevent micro-

cracks and pore channels propagation [40]. In the next step, utilizing a freeze drying process, 

gelatin (Gel)-bioactive glass (BaG) porous layer was added on top of the PCL-BaG layer of the 

porous magnesium scaffolds. As shown in the SEM images of figure 7, porous structure of 

magnesium scaffolds, PCL-BaG inner layer coating, and Gel-BaG outer layer are distinguishable 

from each other. While the Mg scaffold/PCL-BaG/Gel-BaG coating almost remained intact after 

14 days in SBF, the non-coated Mg scaffold was fully degraded after 3 days and Mg 

scaffold/PCL-BaG was fully degraded after 7 days.  In conclusion, the Mg scaffold with PCL-

BaG/Gel-BaG coating showed better bioactivity, higher mechanical integrity and corrosion 

resistance compared to other scaffolds [49]. 

 

4. General properties and evaluations techniques  

4.1. Mechanical properties  

An appropriate mechanical strength and stability is required for scaffolds being used in 

musculoskeletal tissue engineering. Among all possible candidates, magnesium alloys attract 

considerable attention due to their desirable mechanical and biodegradation properties. During 

the last decades, researchers have shown increasing interest towards magnesium as a potential 

biodegradable material for bone and cartilage tissue engineering [29, 40]. In terms of mechanical 

properties, magnesium alloys show better characteristics than biodegradable polymers such as 
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polyglycolic acid (PGA) or polylactic acid (PLA). Furthermore, degradation and 

biomineralization of bioactive materials on the surface on the magnesium scaffolds promote 

osteoblastic activity and ingrowth of the new tissue [35, 45]. 

Cancellous bone is an interconnected porous structure with porosity varying within the range of 

30% to 95%. It is well known that inclusion of porosity into the implants to make the scaffolds, 

can increase the similarity to the bone structure and enhance the ingrowth of new tissue, 

however, it can also compromise the mechanical properties. Scaffolds must have adequate 

strength and stiffness to tolerate the physiological loads. The main concern about the use of 

metallic implants, such as magnesium alloys, is the mismatch of Young’s moduli of the implants 

and the adjacent bone tissue. This inconsistency between mechanical properties results in the 

inadequate loading of the bone that leads to  bone stress shielding, can subsequently cause bone 

resorption, implant loosening, formation of cracks within the implant, and implant migration [77-

80]. Thus, implants should have appropriate strength and stiffness matching those of bone tissue. 

By changing the material of the implant, one can achieve optimal elastic moduli close to the 

bone to prevent stress shielding. When stress shielding is reduced by changing the material, 

stiffness mismatch can still exist. In order to overcome the stiffness mismatch, researchers have 

made porous implants (scaffolds).  Porous materials have reduced stiffness mismatches and 

increased the tissue scaffold interaction by bone ingrowth which helps in the fixation of implants 

in their place [16]. However, it is noteworthy to mention that the scaffold suffers from drastic 

decreases in fatigue strength.    

It has been observed that the production method of porous magnesium can affect the mechanical 

behavior and the collapsing mechanism of the sample. A short elastic deformation in the initial 

stages of the stress-strain curves of compressive loading has been observed in specimens 
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produced by the mechanical perforation method [81] and by melt casting [42]. This behavior 

indicates the bulk deformation of scaffolds under the compression load, however, porous 

magnesium specimens produced by metal foaming method [82] and powder sintering method 

[48] show local collapse of pores with shortened elastic deformation. Following the linear elastic 

deformation ending at the yield strength, normally magnesium samples exhibit a long plateau of 

constant stress [82].  

Changing the pore size, pore shape, porosity, and pore distribution can affect the mechanical 

properties [48, 83, 84]. Increasing porosity results in the decrease of compression strength, yield 

strength, and Young’s modulus [48, 83, 84]. The mechanical properties of porous magnesium 

prepared by the green compacts method using carbamide particles as the space holder and under 

100 MP uniaxial pressure were studied to demonstrate the dependence of mechanical properties 

on pore size and porosity [48]. Scaffolds with pore size of 70–400 µm and porosity of 35–55% 

were prepared. Compressive strength tests showed a decrease in compressive strength and 

Young’s modulus with increase in porosity and pore size. Scaffolds with 35% porosity and pore 

size of 250 µm demonstrated 1.8 GPa of Young’s modulus and 17 MPa peak stress, and 

scaffolds with pore size of 73 µm and porosity of 45% showed 1.3 GPa of Young’s modulus and 

16 MPa peak stress. Considering the mechanical properties of cancellous bone with compressive 

strength and Young’s modulus of 0.2–80 MPa and 0.01–2 GPa [85],  mechanical properties of 

porous magnesium fall in the range of cancellous bone which makes this material a suitable 

option for hard tissue regenerative scaffolds . 

 

4.2. Bio-corrosion behavior 
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In contrast to inert materials such as PLA, the increase in bone formation and decrease in healing 

time observed with magnesium implants indicates the potential osteoconductivity and bioactivity 

of magnesium [29, 35]. The Osteoconductivity of magnesium is induced by the precipitation of 

calcium phosphate on the surface of the implants in an in vitro environment due to corrosion [86, 

87]. Biomimetic calcium phosphate coatings enhance osteoblast response, impart 

osteoconductive capacity, and reduce the healing time for bone defects. Moreover, enhanced cell 

attachment and ingrowth due to calcium phosphate precipitation can lead to reduced corrosion 

rate [29].  

Exposing pure magnesium to air will result in the formation of a gray oxide film of magnesium 

hydroxide on the surface. Recent studies [31, 34, 49, 88-95] proposed the formation of 

magnesium hydroxide and release of hydrogen bubbles in the electrolytic physiological 

environment upon degradation of magnesium, through the oxidation and reduction reactions 

which are summarize in the following reactions: 

 

Oxidation reaction: ௗ ௘ ௘MgĺMg2 ++2e−  

Reduction reaction:ௗ௘௘2H2O+2e−ĺH2(g)+2OH−  

Combination reaction: Mg2 ++2OH−ĺ  Mg(OH)2  

 

Magnesium hydroxide is not highly soluble in water.  The reaction between magnesium 

hydroxide and chlorine ions from the tissue fluid or any simulated biological fluids leads to 

production of highly water soluble magnesium chloride. The release of hydroxide ion from 

magnesium hydroxide upon reaction with chlorine ions results in the local enhancement of the 

pH value near the host tissue. The presence of calcium and phosphate ions in the tissue fluid 
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triggers the production of MgxCay(PO4)z(OH)n compounds, such as calcium phosphate and/or 

calcium magnesium phosphate by the interaction between Mg2+, Ca2+, and PO4
3−. These complex 

bioactive mineral products form a deposition layer on the surface of magnesium scaffolds and 

inhibit further corrosion and increase of pH value. It has been shown that degradation, and 

consequently deposition of the bioactive passive layers containing calcium, promotes osteoblast 

growth [96, 97]. 

 

4.3. Cell/scaffold interactions 

For newly designed materials, cytotoxicity tests including extract based assays, direct contact, 

and indirect contact for investigating the cell-scaffold interaction, are conducted by applying 

International Organization for Standardization (ISO) standards 10993-5 and 10993:12. Although 

direct contact cell cytotoxicity methods may introduce additional information, extract based 

assays are the most common ones [98]. These cytotoxicity testing standards are developed for 

non-degradable materials, thus applying them on the degradable magnesium scaffolds may not 

be suitable. Upon immersion of pure magnesium inside the extraction medium, visible gas 

evolution is detectable. Strong degradation locally increases the pH value which is evident by 

tuning normally red medium to colorless medium by the deprotonization of the phenol red. 

Rapid degradation of magnesium scaffolds in aqueous environment and cell culture media 

produces highly concentrated extracts with magnesium, strong hydrogen production, very high 

osmolalities and pH-values.  

Osmotic shock by this harsh environment can be lethal to the cells in vitro and makes the in vitro 

cell culture evaluation nearly impossible for magnesium scaffolds with ISO standards. Active 

transport processes in in vivo environments regulate most of these fluctuations. Therefore, most 
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research groups bypass the in vitro tests for magnesium scaffolds and directly perform in vivo 

animal tests, which may be problematic from an ethical point of view. In order to address these 

issues one can use an in vitro bioreactor with dynamic flow system to simulate the human body 

situation. However, bioreactors are not always available and the need for in vitro experiments for 

magnesium scaffolds can be addressed by establishment of reliable test systems. Fischer et al. 

[99] proposed that in vitro cytotoxicity tests  for magnesium materials must be done under 

physiological conditions corresponds to in cell culture medium containing 10% fetal bovine 

serum. A physiological condition is a CO2 level of 5%, an O2 level of 20%, temperature of 

37 °C, and relative humidity of 95%. As proposed, 10 times more extraction medium should be 

used comparing to the recommended volume by the ISO standards (EN ISO standards 10993:5 

and 10993:12 suggest specimen weight to extraction medium to be 0.2 g/mL) to have reliable 

results for cytotoxicity [99]. Dilution of the pure extracts decreases the osmolality and high 

magnesium concentration to avoid cell cycle arrest or apoptosis. It is noteworthy to remember 

that a high dilution may eliminate most toxic ionic content from the extracts and prevent real 

cytotoxicity evaluation. On the other hand, cytotoxicity studies on biodegradable magnesium 

scaffolds by the tetrazolium-salt-based assays such as MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl-2H-tetrazolium bromide) and XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-

((phenylamino)carbonyl)-2H-tetrazolium hydroxide) are prone to  experimental errors. Corroded 

magnesium can interact with tetrazolium salts and convert it to formazan, causing misleading 

results in static in vitro assays.  Therefore, using these assays should be conducted with high 

level of caution. It is suggested [100] to use luminescence-based (BrdU) cytotoxicity assays 

which do not have any interference with the corroding magnesium. 
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In vitro studies of biodegradable open porous magnesium scaffolds confirmed the different 

response of human osteoblast cells (HOB) and fibroblastic cell line (L929) to osmotic and ionic 

changes. HOB showed better survival in higher osmotic solutions but exhibited lower 

proliferation rate comparing to L929 cells in high osmotic extracts [101]. This behavior may be 

explained by the cell-type-dependent proliferation to cell volume. Cell proliferation can be 

altered by osmotic swelling or shrinkage. Osmotic swollen cells exhibit more cell proliferation 

compared to osmotic shrunk cells.  Osmotic shrunk cells demonstrate inhibited or delayed cell 

proliferation in hyperosmotic solutions [102]. 

 Zhang et al. Showed extracellular magnesium ions have regulatory effects on intracellular free 

ionized calcium ([Ca2+] i) [103]. Magnesium ions can affect the [Ca2+] i and K+ channels. It was 

confirmed that [Mg2+]o regulates the level of [Ca2+] i and modulate cell shapes and metabolism of 

cultured vascular smooth muscle cells to control vascular contractile activities. It is known that  

[Ca2+] i concentration can critically change the cell cycle, and K+ and Cl- channels can influence 

cell proliferation and cell cycle progression [101-104]. By having these facts in mind and 

considering the release of magnesium ions upon corrosion of the scaffold, one can correlate the 

effect of excess magnesium ion inside the extracts and the cell cycle arrest or apoptosis.  

Selective interaction of magnesium ions with each type of cell culture media extracts can change 

the behavior of the magnesium ions, resulting in distinct cytotoxicity responses for different cell 

types. For instance, corrosion of magnesium scaffolds in RPMI-1640 +10% FBS and DMEM 

+10% FBS showed similar degradation rate under the same cell culture conditions. However, 

significant differences in magnesium ion concentrations in two extracts were observed [101]. 

Both original cell culture media, namely RPMI-1640 +10% FBS and DMEM +10% FBS, have 

similar magnesium ion concentration and protein content.  The difference in magnesium ion 
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concentration between two media can be explained by the higher concentration of L-glutamine 

amino acids in DMEM, which can create complexes with magnesium [101].  

 

4.4. In vivo assessments 

The host tissue interaction with scaffolds, the fate of the biodegradable scaffolds, the ingrowth of 

newly formed tissue, in addition to neoangiogenesis, and inflammatory response, are important 

aspects of tissue engineering which should be considered for each scaffold designed for a 

specific application. 

Three distinct phases have been recognized for the host tissue interaction with biodegradable 

scaffolds. The first phase occurs within the first two weeks of implanting the scaffolds and it is 

mainly characterized by the initiation and development of an inflammatory host response. This 

response is basically independent of the degradation rate of the scaffolds. This early phase 

response is indicated by the presence of plasma cells, lymphocytes, polymorphonuclear 

leukocytes, and monocytes. The second phase is detected by the predominance of monocytes and 

their differentiation to phenotype of macrophages, fibrous tissue encapsulation of the implants 

and neo-angiogenesis. The length of the second phase is determined by the rate of 

biodegradation of the implanted scaffolds. Increase in the degradation time would increase the 

length of the second phase. In addition, the presence of the foreign body giant cells at the surface 

of the scaffolds is evident in the second phase by fusion or joining the macrophages 

together. The third phase starts following the last steps of the degradation of the scaffold when 

the scaffold loses its integrity and mechanical properties. The formation of a fibrous capsule is 

accelerated in the third phase. In this step, the scaffolds totally lose their mechanical properties 
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and the newly formed tissue replaces the scaffold. The scaffolds breakdown into particles, which 

undergo macrophage phagocytosis [105].  

As mentioned above, magnesium is naturally found in bone and it is the fourth most abundant 

cation in the human body [106]. Witte et al. studied the behavior of host tissue response to open 

porous magnesium alloy AZ91D scaffolds during 3 and 6 months of implantation. Figure 8 

shows the experimental design and porous scaffold prepared by casting in a negative salt pattern 

molding.  

Although 2 weeks after the implantation gaseous bubbles were observed nearby the rabbit knees, 

all these bubbles disappeared within 1 week. No adverse events such as body weight loss, 

abnormal behavior, inflammation, damage to neighboring tissues, enhanced cell infiltrate into 

scaffold site, osteolysis, and sterile sinuses were detected. Chloracetatesterase histochemistry 

was used for detecting neutrophile granulocytes, which represent the initial stage in 

inflammatory response, and no significant inflammatory processes were observed for magnesium 

scaffolds. Healing happens in 3 consequent stages of formation of fibrous capsule, angiogenesis, 

and bone formation.   Fibrous capsule formation, which was accompanied with newly formed 

blood vessels, and later bone formation and ingrowth into the degraded scaffolds were detected 

in Mg and Mg alloy scaffolds.  New bone formation at the interface of magnesium scaffolds due 

to osteoconductive properties advocates the fibrosis elimination and complete replacement with 

new bone tissue in later stages of the healing process [45]. Biomineralized bone volume detected 

by von Kossa stain in the vicinity of the degrading magnesium scaffolds revealed significantly 

higher density of bone growth comparing to the control side. This is suggested to be due to the 

increased osteoblastic and osteoclastic activities in the proximity of the degrading magnesium 

scaffold which resulted in formation of more mature bone structure. Compared to the control 
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site, reduced trabecular separation and higher trabecular number were observed, indicating 

formation of a more mature bone with a superior mechanical properties and osseointegration 

process [107, 108]. 

Liu et al. [89] studied the in vivo biodegradability and osteogenicity of porous magnesium 

scaffolds by implantation inside the femoral condyle of male New Zealand white rabbits [89]. 

Porous magnesium scaffolds were prepared by machining the extruded pure magnesium bars and 

surface modified by microarc oxidation technology. Histological examination on the heart, 

kidney, spleen, and liver exhibited normal morphology, confirming good biocompatibility of the 

both porous magnesium scaffold and control scaffolds. However, significant differences in 

degradation and new bone formation between magnesium scaffolds and control scaffolds were 

detected. This has been confirmed by micro-CT scans of 3 months post-operation scaffolds 

(figure 9). [89]. 

It is noteworthy to mention that in the X-ray images of the magnesium scaffold, bubbles 

appeared around the implanted scaffolds after 2 weeks due to the degradation of magnesium and 

formation of hydrogen gas. Although surface modifications was used to reduce the degradation 

rate and to decrease hydrogen generation, formation of mild swelling in rabbits knees starting 

from 2 weeks and persisting for 2 months, indicated inadequate thickness of magnesium oxide 

and surface treatment [89]. However, these findings show that even fast degrading magnesium 

scaffolds demonstrate good biocompatibility, suitable inflammatory response, and bone 

regeneration, which makes open porous magnesium scaffolds good candidates for bone and 

cartilage tissue engineering [45]. 

 

5. Applications 
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5.1. Bone 

One of the most important advantages of the biodegradable magnesium scaffolds over 

conventional permanent metal scaffolds is total in vivo corrosion of the scaffolds and elimination 

of the additional surgery step of scaffolds removal. This will help to reduce the health risks,  

costs, and improve the patient compliance [47, 99, 101]. 

In long term applications such as bone implants, the magnesium scaffold must have slow rate of 

degradation to allow cell proliferation and ingrowth. Increased surface area in porous scaffolds 

leads to an increase in the corrosion rate. To control the degradation rate in such application, 

magnesium alloys are prepared. Incorporating yttrium to magnesium can increase the corrosion 

resistance. It is well known that yttrium element stimulates the grain refinement, increases 

cytocompatibility, and reduces the corrosion rate of magnesium [109-111]. Bobe et al. added 4 

wt.% yttrium to magnesium and made open porous scaffolds by liquid phase sintering technique 

using magnesium short fibers [101]. As shown in the figure 10a, fibers with a diameter of 100-

250 µm and a length of 4–8 mm under argon atmosphere were manufactured utilizing crucible 

melt extraction technique. Deposition of fibers on a tantalum substrate with an MgO sieve, with 

further liquid phase sintering, and subsequently additional heat treatment produced a bulk porous 

material which was finally cut into cylindrical porous scaffolds as shown in figure 10d. Light 

microscopy determined 58 to 63% porosity for the scaffolds. Mechanical analysis of the prepared 

scaffolds showed Young’s modulus within the range of human cancellous bone, and 

compression strength exceeding that of human cancellous bone.   

In vivo implantation of open porous scaffolds in femoral condyle of female rabbits demonstrated 

no severe clinical signs of gas cavities or inflammation. In general, rabbits showed normal 

foreign body giant reaction towards the implanted scaffolds with no pathological changes in the 
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histology of the internal organs including lung, liver, pancreas, kidney, heart, spleen, and 

intestine or any blood abnormalities. In addition, no signs of necrotic tissue or fibrous 

encapsulation were found at 6 weeks or at 12 weeks after implantation. Moreover, osteoblasts 

and osteoclast cells remodeling bone around and inside the scaffold were observed at 6 and 12 

weeks respectively. However no signs of gas cavities were detected clinically. Postoperative 

microtomographs (figure 11) showed some entrapped gas cavities after 6 weeks around the 

implanted scaffolds. These gas cavities demolished within 12 weeks. Slow in vivo scaffold 

degradation and almost intact scaffolds after 6 weeks were detected by microtomography. Figure 

11b shows evidence of new bone formation adjacent to the scaffolds. Slow in vivo scaffold 

degradation proceeds to 12 weeks and at this time only 7% volume of the scaffold remained.  

 

5.2. Cartilage 

Hyaline articular cartilage tissue lacks the sufficient regenerative potential due to absence of 

blood vessels in their structure. Therefore, all required nutrition agents and growth factors are 

being transferred by diffusion from the bone marrow and remote blood vessels. Cartilage 

nutrition is supported by the subchondral bone plate, thus any damages such as osteochondral 

defects can prevent regenerating cartilage. In such cases, using a biodegradable scaffold as the 

subchondral bone plate can enhance the cartilage healing process [112-114]. Ideal scaffolds in 

subchondral bone plate tissue engineering should provide adequate mechanical stability, 

appropriate pore size, sufficient porosity, and optimized programmed degradation. Gradual 

degradation provides more space for ingrowth of new tissue and blood vessels [47, 115-117].  

The degradation profile of scaffolds for cartilage repair should warrant two months of suitable 

mechanical integrity, and afterwards rapid degradation to allow the infusion of nutrition and 
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reparative cells towards the healing site. Magnesium scaffolds were studied as the subchondral 

bone plate to induce cartilage repair [118]. Magnesium alloy (AZ91) with 75% porosity showed 

rapid degradation at twelve weeks postoperatively. Although no signs of negative influence were 

detected at the adjacent cartilage tissue, no adequate subchondral bone plate regeneration was 

observed. Furthermore, histological studies showed no significant cartilage regeneration above 

the degraded magnesium scaffold. Similar results have also been observed using autografted 

cancellous bone as the replacement of the subchondral bone plate [118]. This finding is 

surprising since the autograft is believed to be the best and first option for regenerative tissue 

engineering due to its immunocompatibility. Application of autografts is mainly limited by 

inadequate availability, and donor bone site morbidity [119, 120]. Comparison studies using 

autografted cancellous bone  and magnesium scaffold for osteochondral defects confirm the 

necessity for the unconstrained access to nutrition and reparative cells from the bone marrow 

[118, 120]. Therefore, the designed scaffolds should satisfy the need for local blood circulation 

and bone marrow accessibility. On the other hand, in the untreated osteocartilage defect with the 

highest accessibility to bone marrow cavity, no reproduction of subchondral bone in the central 

part was observed [118]. Magnesium scaffolds with optimal porosity should provide appropriate 

mechanical support [47, 48], osteoinductive properties, excellent biocompatibility [121], 

biodegradability and bioresorbability [122]. Thus, such scaffolds can be designed to be suitable 

candidates for subchondral bone plate replacement. 

 

6. Conclusion and future work 

Porous scaffolds for biomedical applications such as orthopedic reconstructive surgery continue 

to attract research attention, which is confirmed by the ever-increasing number of publications on 
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this subject. Metallic biomaterials have great potential as the basic materials to develop such 

scaffolds, especially for load-bearing applications due to their high mechanical properties 

compared to biodegradable polymeric materials. Recently introduced Magnesium and its alloys 

appear to have the potential to be suitable biodegradable metallic materials with similar 

mechanical properties as those of bone. Mg and Mg alloys have shown encouraging results when 

used as tissue engineering scaffolds. This review summarized the common methods for 

fabricating porous Mg-based scaffolds. It also explored some of the surface modification 

methods, biological performance, and applications of Mg-based scaffolds. While a considerable 

number of studies encourages the use of magnesium alloys in bioactive and biodegradable 

implants for load bearing orthopedic applications, a great deal of research is still essential to fully 

assess the in vivo long-term capability of such scaffolds. The possibility of magnesium being 

employed as a reliable metallic scaffold calls for persistent research and study on in vitro 

osteoblast cell attachment, proliferation, differentiation to an osteoblast phenotype, formation of 

a bone matrix, studies of bone apposition, tissue regeneration, and finally in vivo bone healing 

including introduction of angiogenesis. In fact, the application of biodegradable metallic 

scaffolds for tissue engineering purposes is just at the beginning. Controlling the degradation rate 

of magnesium in body fluids can be the first step to advance the field, which may be achieved 

through the use of alloying elements, casting and forming techniques, composite fabrication 

and/or surface coatings. The possible cytotoxicity of the modified systems will also require 

further verification. A great deal of research is still needed to develop superior, straightforward, 

and more cost-effective modification methods to facilitate the full use of the biodegradability, 

mechanical strength, and improved bio-functional properties of Mg alloys. In addition, rapid 

prototype methods could be considered to produce porous scaffolds with properties purposely 
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tailored for the cell regeneration and the tissue in-growth. Future research directions include 

understanding the effect of porosity on the corrosion and mechanical properties, the cell 

regeneration and tissue healing in the porous structure, developing procedures for manufacturing 

suitable porous Mg scaffolds, and finally control over the degradation rate of the scaffolds. 

Furthermore, integrating Mg scaffolds with biopolymers, bioactive ceramics and drugs 

represents a new promising path to investigate. 
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Figure Captions  

Fig.1. Schematic design of the titanium wire space holder method for the production of porous 
magnesium scaffold (reproduced with permission of (42)) 

Fig. 2. Schematic picture of the negative salt pattern molding process: (a) polymeric template produced 
by rapid prototyping, (b) infiltration of produced porous polymer with salt paste, (c) Burning the polymer 
template and sintering of salt template, (d) casting of Mg melt into the produced salt template, and (e) 
final porous Mg scaffold following salt removal (reproduced with permission of (45)) 

Fig. 3. The cross section of Magnesium scaffold produced by powder metallurgy (reproduced with 
permission of (48)) 

Fig. 4. Schematic representation of the hydrogen injection technique through the Mg melt (reprinted with 
permission of (51)) 

Fig. 5. SEM micrographs in the different magnifications of perpendicularly needle-like hydroxyapatite 
(reprinted with permission of (60)) 

Fig.6. (a) Porous magnesium scaffold prepared by laser perforation technique before coating. (b) SEM 
micrograph of the ȕ-TCP coated scaffolds (reproduced with permission of (71)) 

Fig.7. (a,b) low and high SEM magnification of magnesium scaffold. (c,d)  top and cross-sectional view 
of magnesium scaffold coated by PCL-BaG layer. (e, f) cross-sectional view of magnesium scaffold 
coated with PCL-BaG inner layer and outer layer of Gel-BaG.  (g) Inside and (h) top view of coated 
scaffold (reprinted with permission of (50)) 

Fig.8. (a) Magnesium alloy AZ91D cylindrical porous scaffold. Red rectangle in the middle picture shows 
the scaffold insertion place into right knees.  (b) A special pestle used for boreholes insertion. Left knees 
were used as controls.  Blue circle shows the autologous bone grafted from the left patellar grooves. The 
empty patellar defect works as a control for natural defect remedial. (c,d) Longitudinal sections of 
safranin-O stained for magnesium scaffold site and the autologous patellar grooves bone site show the 
development of the wound healing six months postoperatively. Black arrows show the leftovers of the 
cartilaginous surface of the reverse implant. (e) Transversal section of safranin-O stained patellar defect. 
Scale bar ¼ 2000 µm (a), 500 µm (c, d, e) (reprinted with permission of (46)) 

Fig.9. Micro-CT image of (a) magnesium scaffold and (b) hydroxyapatite scaffold as control group.  The 
new bone tissue in-growth is shown in green color (reprinted with permission of (91)). 

Fig.10. (a) Melt extraction procedure to manufacture short fibers. (b) Deposition of Mg alloy fibers onto a 
moving substrate with an MgO barrier, then sintered and cut by laser jet method. (c) SEM cross sections 
of fibers demonstrates the sinter bonds (bar = 20 µm). (d) Cylindrical scaffolds before in vitro or in vivo 
tests (bar = 1000 µm). (e) SEM image of scaffold surface (bar = 200 µm) (reprinted with permission of 
(103)) 

Fig.11. (a) Tomograms of scaffolds before the implantation show open inter-connected porous structure 
with no residual materials. (b) At 6 weeks, newly formed bone marked by white dots, and gas cavities 
showed by white star.  (c) 12 weeks no gas cavity is detectable. (White arrow heads indicates metallic 
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implant and black arrow heads show corroded parts)  (Scale bar = 1 mm) (reprinted with permission of 
(103)) 
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Production methods Advantages Disadvantages References 

Titanium wire space holder 
-Adjustable pore size and structure 

-Pipe-like pore structure  

-The use of hydrofluoric acid for 
etching off the titanium wires  

(42) 

Negative salt pattern molding 
-Controllable porosity and microstructure 

-Topologically ordered porosities 
-Casting equipment (44, 46) 

Powder metallurgy 
-Interconnected pores 

-Easy technique  

-Lack of acceptable mechanical 
integrity and corrosion resistance  

(47-50) 

Hydrogen injection -Upwards unidirectional and straight pores -Casting equipment (51, 52) 

Laser perforation 

-Simple to control the structure, size and shape 
of pores 

-Interconnected and homogeneous pores with 
round and honeycomb-like structure 

-Programmable multifunctional laser 
processing machine 

(27) 

Table 1: Summary of the Mg scaffold production methods, their advantages and disadvantages 
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Highlights 

 There has been much effort on the development and characterization of metal implants  
 A porous 3D material provides the required pathways for cells to grow, proliferate, and 

differentiate 
 Porous magnesium and Mg alloys are good candidates to serve as a biodegradable 

scaffold for bone treatments 
 This review aims to bring together recent studies on Mg and Mg alloys scaffolds with 

regards to production techniques, surface modifications, general properties, potential 
applications and future trends 


