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 
Abstract—This paper proposes a novel self-learning control 

scheme for interior permanent magnet synchronous machine 
(IPMSM) drives to achieve maximum torque per ampere (MTPA) 
operation in constant torque region and voltage constraint 
maximum torque per ampere (VCMTPA) operation in field 
weakening region. The proposed self-learning control scheme 
(SLC) is based on the newly reported virtual signal injection aided 
direct flux vector control. However, other searching based 
optimal control schemes in the flux-torque (f-t) reference frame 
are also possible. Initially the reference flux amplitudes for MTPA 
operations are tracked by virtual signal injection and the data are 
used by the proposed self-learning control scheme to train the 
reference flux map online. After training, the proposed control 
scheme generates the optimal reference flux amplitude with fast 
dynamic response. The proposed control scheme can achieve 
MTPA or VCMTPA control fast and accurately without accurate 
prior knowledge of machine parameters and can adapt to 
machine parameter changes during operation. The proposed 
control scheme is verified by experiments under various operation 
conditions on a prototype 10 kW IPMSM drive.  
 

Index Terms—Maximum torque per Ampere (MTPA) 
operation, Permanent magnet synchronous machine (IPMSM), 
Self-learning control, Signal injection. 

I. INTRODUCTION 

nterior permanent magnet synchronous machines (IPMSM) 
have many attractive advantages such as high efficiency, 

high power/torque density, high reliability and good 
field-weakening performance [1]. In order to control IPMSM 
operating at the optimal efficiency points, the maximum torque 
per ampere (MTPA) control [2]–[4] and voltage constrained 
maximum torque per ampere (VCMTPA) control [5] are 
proposed in constant torque and field weakening regions, 
respectively. In literature, to control the IPMSM, either field 
oriented control in the rotor synchronous (d-q) frame [3], [6] or 
direct torque control or direct flux vector control [7] in the flux 
linkage synchronous (f-t) frame [8]–[10] are proposed. 
Compared with the d-q frame based control, the f-t frame based 
control can regulate the stator flux amplitude directly and can 
manage motor voltage in field weakening region without 
look-up tables of current or flux references. Therefore, the f-t 
frame based control scheme can easily cope with voltage 
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saturation and have better performance in field weakening 
region [11].  

Currently, MTPA operations for f-t frame based control 
schemes are mainly achieved by controlling the reference flux 
amplitude. The optimal reference flux amplitude can be 
generated through mathematical model [12] or pre-defined 
look-up tables which are obtained from experiments or 
numerical machine model [13]. However, the f-t frame based 
MTPA control schemes are affected not only by the errors in 
the reference flux amplitude due to the machine parameter 
uncertainty and nonlinearity [6], but also by the flux observer 
errors in the flux control loop [14]. Thus, compared with d-q 
frame based MTPA control schemes, f-t frame based control 
schemes are vulnerable to flux errors in the reference and 
observer [5].  

In order to reduce the dependency on motor parameters for 
MTPA operations with the f-t frame based control of IPMSM 
drives, a search algorithm was, therefore, proposed in [15]. 
Although this scheme does not depend on the knowledge of 
machine parameters, its accuracy was affected by voltage and 
current harmonics and load torque disturbance. In [16], a signal 
injection based MTPA point tracking scheme was proposed 
based on the principle of extremum seeking control (ESC) [17], 
[18]. The MTPA tracking is based on the fact that the rate of 
change of current amplitude with respect to injected reference 
flux perturbation at MTPA points is zero. Instead of injecting 
sinusoidal signal at fixed frequency [18]–[20], this control 
method injects a random signal into the reference flux 
amplitude to avoid the residual torque harmonic at the injected 
signal frequency. However, as a result of the injected signal, 
this method causes additional copper/iron loss and additional 
torque ripple. Moreover, the errors in flux observer may also 
deteriorate the MTPA control quality.   

To address the problems associate with the f-t frame based 
control methods described previously, a novel concept that 
utilizes d-q frame based searching techniques to compensate 
the MTPA control errors of the f-t frame based control schemes 
was proposed in [14]. This control scheme utilizes the virtual 
signal injection to track the MTPA points in the f-t frame and is 
robust to flux observer error and motor parameters inaccuracy 
in tracking MTPA points. Since this control scheme does not 
inject real signals into the motor drive, it will not cause 
additional iron loss and copper loss. However, this control 
scheme also suffers from the slow converging rate and poor 
dynamic performance.  

In order to improve the converging rate and dynamic 
performance, a self-learning control scheme based on virtual 
signal injection was proposed in the d-q frame [21]. Since the 
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virtual signal injection can track the MTPA points accurately, 
this control scheme uses the tracked MTPA points to establish 
the relationship between the optimal d-axis current and torque 
command through on-line training.  After training, the control 
scheme generates the optimal reference d-axis current with fast 
response. However, in the field weakening region, the optimal 
d-axis current is dependent on both torque and rotor speed. 
Therefore, this control scheme will no longer be effective in the 
field weakening region.  

In this paper, self-learning control for IPMSM drives is 
proposed based on virtual signal injection based direct flux 
vector control in the f-t frame. The proposed control scheme 
achieves MTPA operation through on-line learning in constant 
torque region and directly limits stator flux amplitude for 
VCMTPA operation in field weakening.  In this way, the 
proposed control scheme not only has the advantages of virtual 
signal injection aided direct flux vector control such as 
insensitive to machine parameter inaccuracy, robust to current 
and voltage harmonics, high accuracy in tracking the MTPA 
and VCMTPA points, and no additional iron and copper losses, 
but also has fast dynamic responses in both constant torque and 
field weakening regions and can adapt to machine parameter 
changes automatically.  

II. PRINCIPLE OF PROPOSED CONTROL SCHEME 

A. Mathematical Model of IPMSM in f-t Frame 

The relationship between the flux linkage synchronous (f-t) 
reference frame and the classic (d-q) frame is illustrated in Fig. 
1. In the f-t frame, the f-axis is aligned with the stator flux 
vector while the t-axis leads the f-axis by 90 degrees. The 
angular displacements of the f-axis with respected to the d-axis 
and the stationary Į-axis are ߜ and ߠ௘ ൅ ௘ߠ  respectively, where ,ߜ  is the angular displacement between the d-axis and the 
Į-axis. 

 
Fig. 1.  Į-ȕ reference frame, f-t reference frame and d-q reference frame. 

 

For the f-t frame based control scheme, the flux amplitude 
can be controlled or limited directly. The mathematical model 
of an IPMSM in the f-t frame can be expressed in (1) to (6). ݒ௙ 
and ݒ௧ are the f- and t-axis voltages, ௙݅, ݅ ௧ are the f- and t-axis 
currents, R is the stator phase resistance, ௘ܶ  is the 
electromagnetic torque, p is the number of pole pairs, ߖ௦ is the 
stator flux amplitude and ߱௠ is the rotor angular speed. ܫ௟௜௠ 
and ݒ௟௜௠  are the maximum current amplitude and voltage 
amplitude, respectively. The direct flux vector control scheme 
[14] can be achieved by controlling the ݅௧  and ߖ௦  under the 
condition that the stator flux vector is estimated by a flux 
observer. 

௙ݒ ൌ ܴ ௙݅ ൅ ݐ௦݀ߖ݀ ௧ݒ (1)  ൌ ܴ݅௧ ൅ ௠߱݌௦ሺߖ ൅ ݐ݀ߜ݀ ሻ (2) 

௘ܶ ൌ ͵ʹ ௟௜௠ଶܫ௦݅௧ (3) ටߖ݌ െ ௙ଶܫ ൒ ݅௧ (4) ͵ʹ ௟௜௠ଶܫ௦ටߖ݌ െ ௙ଶܫ ൒ ௘ܶ (5) ͳ߱݌௠ ቈටݒ௟௜௠ଶ െ ൫ܴ ௙݅൯ଶ െ ܴ݅௧቉ ൒  ௦ (6)ߖ

B. Relationship Between Optimal Stator Flux Amplitude and 
Torque  

For a given torque command, in constant torque region, there 
is a unique optimal stator flux amplitude for the MTPA 
operation [14]. The relationship between torque command and 
the optimal stator flux for MTPA operation is shown in Fig. 2. 
If a sufficient number of MTPA points are tracked online, other 
points on the curve can be approximated by interpolations 
among these tracked points. The proposed self-learning control 
scheme is based on this simple but effective concept. 

 
Fig. 2.  Relationship between torque command and the optimal stator flux for 
MTPA operation based on machine parameters in Table I.  The point d is the 
optimal flux amplitude corresponding to ௘ܶכ and the point d’ is the interpolated 
flux amplitude based on points c and e, which will be detailed in Section III.  
 

When the motor drive is operating in the field weakening 
region, the stator voltage is constrained by the maximum 
voltage. Fig. 3 shows the variations of torque and voltage 
amplitudes with stator flux amplitude for a given current 
amplitude when the required voltage for the MTPA operation is 
larger than the voltage limit. The derivative of torque with 
respect to the current angle, ߲ ௘ܶ Τߚ߲ , is also shown in Fig. 3. 
The current angle, ߚ, is the angle between the q-axis and the 
current vector as shown in Fig. 1. As the flux amplitude 
increases towards the MTPA point, the resultant torque and 
voltage amplitude, ݒ௔כ , will increase. Therefore, the voltage 
constrained maximum torque per ampere (VCMTPA) 
operation point is the point at which the voltage amplitude is 
equal to the voltage limit [5]. At the VCMTPA point, the 
maximum torque at the intersection is achieved for the given 
current amplitude and voltage limit. 
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Fig. 3.  Torque and voltage amplitude variations with flux amplitude for given 
current amplitude. 
 

According to (6), the maximum flux amplitude under the 
voltage constraint is parameter-independent except for the 
phase resistance. However, the voltage drop across the 
resistance is relatively small compared with the voltage limit. 
Therefore, by assuming the nominal value of the phase 
resistance at a representative temperature, the optimal flux 
amplitude for VCMTPA operations can be obtained by (6) 
directly.  

III.  IMPLEMENTATION OF THE PROPOSED SELF-LEARNING 

CONTROL SCHEME 

The proposed self-learning control scheme is based on 
virtual signal injection aided direct flux vector control, albeit 

other searching based optimal control schemes in the f-t frame 
is also possible. The virtual signal injection aided direct flux 
vector control combines the direct flux vector control scheme 
[7] and the virtual signal injection compensation [14]. The 
direct flux vector control can limit the current amplitude in the 
f-t frame and easily cope with the voltage limit, and hence has 
better performance in the field weakening region [7]. Moreover, 
the virtual signal injection compensation is parameter 
insensitive and robust to flux observer error [14]. Therefore, the 
virtual signal injection aided direct flux vector control 
inherently has the advantages of both the direct flux vector 
control and virtual signal injection compensation. 

A. Direct Flux Vector Control 

The schematic of the direct flux vector control scheme is 
shown in part I of Fig. 4 and more details can be found in [7], 
[22], [23]. The reference flux amplitude, ߖௌ௅஼ , is generated 
from the proposed self-learning control scheme which will be 
described in part C of this section. The output of the 
self-learning control scheme is limited by (6) to ensure the 
IPMSM drive operates within the voltage limit. The reference 
torque is limited by (5). The t-axis current is calculated by (3) 
and limited by (4) to ensure the IPMSM drive operates within 
the current limit. As proposed in [7], the stator flux linkage is 
directly regulated by the f-axis voltage and the t-axis current is 
regulated by the t-axis voltage through two PI controllers. The 
flux observer in this paper is the conventional flux observer 
described in [14] and [24]. However, other observers are also 
applicable. 

 
Fig. 4.  Schematic of the proposed control scheme. 
 

B. Virtual Signal Injection Compensation Unit 

In order to generate optimal reference flux amplitude before 
the self-learning controller is trained, the self-learning control 
output, ߖௌ௅஼ , is conditioned by the virtual signal injection 
compensation as shown in Part II of Fig. 4. The details of the 

compensation unit are shown in Fig. 5. The inputs of the virtual 
signal injection compensation unit are the d- and q-axis 
reference voltage (ݒௗכ ǡ  the measured d- and q-axis currents ,(כ௤ݒ
(݅ௗ, ݅௤), the measured rotor speed (߱௠) and the voltage error 
  .given in (7) (௘௥௥௢௥ݒ)
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௘௥௥௢௥ݒ ൌ ௟௜௠ݒ െ  (7) כ௔ݒ
where ݒ௔כ is the amplitude of the generated reference voltage 
and ݒ௟௜௠  is the maximum achievable voltage amplitude. The 
output of the virtual signal injection compensation unit is the 
reference flux amplitude error compensation term (ߖ߂௦). ȟ ௘ܶכ 
and ߝ in Fig. 5 are the change in the reference torque and a 
pre-defined threshold, respectively, which will be discussed in 
part C of this section. 

 
Fig. 5.  Details of the virtual signal injection compensation unit. 
 

As described in [5], [6], a high frequency signal, οߚ , is 
injected into the current angle through the mathematical 
expressions in (8) to (10) where ߱ ௛ is the angular frequency of 
the injected signal. In order to minimize the influences of the 
fundamental component and other harmonics on the output of 
the virtual signal injection, the frequency of the injected signal 
should be as high as possible but the maximum frequency is 
limited by the sample rate of the controller. In this study, the 
injected signal frequency is 1 kHz. οߚ ൌ ሻ (8) ݅ௗ௛ݐሺ߱௛݊݅ݏܣ ൌ െܫ௔݊݅ݏ ሺߚ ൅ οߚሻ (9) ݅௤௛ ൌ ߚ௔cosሺܫ ൅ οߚሻ (10) 

The resultant torque with high frequency component, ௘ܶ௛, can 
be calculated by (11) [6]. It is worth noting that ܶ௘௛ is obtained 
from the mathematical calculations and no real signal is 
injected into the motor current angle, therefore, this method is 
termed as virtual signal injection. 

௘ܶ௛ሺߚ ൅ οߚሻ ൌ ͵ʹ ቈሺݒ௤כ െ ܴ݅௤ሻ߱௠ ൅ ൫ݒ௤כ െ ܴ݅ௗ൯݅௤߱௠ ݅ௗ௛቉ ݅௤௛ (11) 

Based on Taylor's series expansion, the left hand side of (11) 
can be expressed as (12).  

௘ܶ௛ሺߚ ൅ οߚሻ ൌ ௘ܶ௛ሺߚሻ ൅ ߲ ௘ܶ௛߲ߚ ܣ  ሻݐሺ߱௛݊݅ݏ
 

൅ ͳʹ ߚ߲߲ ቆ߲ ௘ܶ௛߲ߚ ቇ ଶܣ ଶሺ݊݅ݏ ߱௛ݐሻ ൅  (12) ڮ

As shown in Fig. 5, the 1st, 3rd and other higher order terms in 
(12) are removed by the band-pass filter (BPF) whose center 
frequency is equal to ߱௛ . The output of the BPF is further 
multiplied by ݊݅ݏሺ߱௛ݐሻ and the result will contain a constant 
component which is proportional to ߲ ௘ܶ Τߚ߲  as shown in (13). ݉ ߲ ௘߲ܶߚ ܣ ሻݐଶሺ߱௛݊݅ݏ ൌ ͳʹ ܣ݉ ߲ ௘߲ܶߚ െ ߲ ௘߲ܶߚ ܣ݉  ሻ (13)ݐሺʹ߱௛ݏ݋ܿ

The low-pass filter (LPF) in Fig. 5 will eliminate the high 
frequency term in (13) and its output, SPO, will be proportional 
to ߲ ௘ܶ Τߚ߲ . This signal is used by the PI controller in Fig. 5 to 
adjust the reference flux compensation term, οߖ௦ , until ߲ ௘ܶ Τߚ߲ ൌ Ͳ, i.e., the MTPA point is tracked. Since ߲ ௘ܶ Τߚ߲  
should be equal to zero at the MTPA point, SPO signal can be 
defined as a MTPA quality indicator. Since (11) is based on the 
command voltages and measured currents in the d-q reference 
frame, the flux observer error will not affect the accuracy of the 
MTPA tracking performance. Indeed, the error between the 
optimal flux amplitude and the reference flux amplitude will be 
compensated by the output of the virtual signal injection 
compensation unit, οߖ௦, shown in Fig. 5. The details about the 
effects of flux observer error on the virtual signal injection were 
discussed in [14].  

In field weakening region, the voltage limit will be reached 
before ߲ ௘ܶ Τߚ߲ ൌ Ͳ. Thus, the virtual signal injection should be 
suspended in the field weakening region and the stator flux 
amplitude should be limited by (6). However, due to voltage 
drop in the inverter, phase resistance deviation from the 
nominal value and flux observer error, the voltage saturation 
may still occur. To avoid the voltage saturation, the voltage 
error, ݒ௘௥௥௢௥, is fed to the PI controller instead of SPO to reduce οߖ௦  when ݒ௘௥௥௢௥  is negative, i.e., when the amplitude of the 
inverter reference voltage is greater than the voltage limit.   

The sign of ݒ௘௥௥௢௥ determines whether SPO or ݒ௘௥௥௢௥   is fed 
to the PI controller. If ݒ௘௥௥௢௥   ı0, the drive voltage amplitude is 
below the voltage limit, the signal SPO will be fed to the 
integrator controller in Fig. 5 to adjust οߖ௦  until the MTPA 
point is reached or the voltage amplitude equals to ݒ௟௜௠, i.e., the 
VCMTPA point shown in Fig. 3 is reached. If ݒ௘௥௥௢௥ ௘௥௥௢௥ݒ ,0>    
will be fed to the integrator controller and οߖ௦ will decrease 
until ݒ௘௥௥௢௥  =0, i.e., the VCMTPA point is realized. Therefore, 
the virtual signal injection aided direct torque control can 
always guarantee that the motor is operating on the MTPA or 
VCMTPA point.  

C. Self-learning Controller 

In order to generate accurate optimal reference flux 
amplitudes for MTPA and VCMTPA control with fast response, 
the proposed self-learning control scheme utilizes curve fitting 
to approximate the relationship between reference torque and 
optimal flux amplitude in constant torque region and utilizes (6) 
to limit flux amplitude in field weakening region. The details of 
the proposed control scheme will be illustrated below.  

1) In constant torque region 

As shown in Fig. 4, the inputs of the self-learning controller 
include the voltage error, ݒ௘௥௥௢௥ , the reference stator flux 
amplitude, ߖ௦כ , the limited reference torque, ௘ܶכ  and the 
maximum reference torque of MTPA operation for a given 
speed, ௟ܶ௜௠כ . The outputs of the self-learning controller is 
denoted as ߖௌ௅஼ . Any error in ߖௌ௅஼  due to curve fitting or 
imperfect learning will be compensated by οߖ௦ to generate an 
accurate flux amplitude reference ߖ௦כ for MTPA or VCMTPA 
operation as described previously. Fig. 2 shows the relationship 
between optimal flux amplitude and corresponding reference 
torque in constant torque region. If a sufficient number of 
MTPA points, e.g., a to g in Fig. 2, are recorded, other points on 
the curve can be approximated by interpolations among these 
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recorded points. These optimal flux amplitude and 
corresponding torque command are recorded in the two column 
vectors ȌsMTPA and TMTPA, respectively. In order to have an even 
distribution of the recorded MTPA points over the applicable 
torque range, the torque command range is divided into N 
sections and each section records one tracked MTPA point. For 
example, the torque command region in Fig. 2 is divided into 
seven sections. If a new pair of optimal flux amplitude and 
torque command for MTPA operation is tracked in section M, 
the Mth elements of ȌsMTPA and TMTPA will be substituted by the 
corresponding values of the newly tracked MTPA point. This 

process repeats during the self-learning operation. In this way 
the proposed control scheme can always adapt itself to machine 
parameter variations during operation.    

The schematic of the proposed self-learning control is shown 
in Fig. 4 and the flow chart of the self-learning control 
algorithm for MTPA operation is shown in Fig. 6. Two column 
vectors ȌsMTPA and TMTPA record the tracked stator flux 
amplitude, ߖ௦כ , and the corresponding torque reference, ௘ܶכ , 
respectively. ߤ is a pre-defined threshold to determine whether 
ȌsMTPA and TMTPA should be updated or not. 

 
Fig. 6.  Flow chart of self-learning control algorithm. 
 

Before training, ȌsMTPA and TMTPA may be assigned with 
nominal values or data for MTPA operation generated off-line. 
If a torque demand, ௘ܶכ, is located between two elements of 
TMTPA, e.g., ܶ ଵ and ܶ ଶ in Fig. 2, the corresponding MTPA point 
d can be approximated by d’ through (14). The error between ߖௌ௅஼  and ߖ௦כcan be compensated by ߖ߂௦. ߖௌ௅஼ ൌ ௘ܶכ െ ଶܶଵܶ െ ଶܶ ሺߖଵ െ ଶሻߖ ൅  ଶ (14)ߖ

If  ௘ܶכ is larger than any recorded torque reference in TMTPA, 
the output of the proposed self-learning control scheme will be 
equal to the element in શ௦ெ்௉஺  which corresponds to the 
reference flux amplitude associated with the maximum torque 
reference in TMTPA, i.e., Max ሺ܂ெ்௉஺ሻ. The error between ߖௌ௅஼   

and optimal ߖ௦כ can also be compensated by οߖ௦.  
The output of the integrator in Fig. 5 will have an 

accumulative value of οߖ௦  that compensates the optimal 
reference flux error for a given torque. When the absolute value 
of the torque step, ȟ ௘ܶכ, is larger than a pre-defined threshold, İ, 
the integrator will be reset. This is to ensure the integrator can 
adjust itself more quickly against the new torque reference. 
Meanwhile, ߖௌ௅஼  will update according to the new reference 
torque based on the data recorded in TMTPA and ȌsMTPA at the 

same time when the integrator is reset. When the torque step is 
smaller than the threshold, because the corresponding change in 
the reference flux amplitude should be small too, ߖௌ௅஼ will not 
update and the small error will be compensated by the virtual 
signal injection in short time. In both conditions TMTPA and 
ȌsMTPA will be updated continuously by the reference torque 
and resultant reference flux amplitude. 

When a torque step is larger than the threshold İ, SPO signal 
will be masked for a small period of time, e.g., 3 times of the 
t-axis current loop time constant. After SPO is masked, virtual 
signal injection will drive the resultant reference flux amplitude 
toward the MTPA point, while TMTPA and ȌsMTPA will be 
updated continuously by the reference torque and resultant 
reference flux amplitude. Due to virtual signal injection tends 
to drive the reference flux amplitude towards the MTPA points, 
the newly recorded reference flux amplitude in ȌsMTPA should 
be closer to the actual MTPA point than the one which is 
previously recorded in ȌsMTPA. Therefore, the accuracy of the 
SLC output will continuously increase. Moreover, a more 
accurate SLC output will also accelerate the convergent speed 
of the reference flux amplitude to the actual MTPA point. 
Therefore, although the reference flux amplitudes recorded in 
ȌsMTPA may initially have large errors, they will eventually 
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approximate the ideal MTPA flux amplitudes. Consequently, 
the proposed SLC can be trained on-line, and the training of the 
SLC will not affect the MTPA operation. 

2) In field weakening region 

Since the flux amplitude for the field weakening control is 
not only dependent on reference torque but also on speed, 
therefore, the curve fitting based self-learning is not effective in 
the field weakening region. Thus, the online training of the 
self-learning control scheme should be suspended in the field 
weakening region when ݒ௘௥௥௢௥  is smaller than a pre-defined 
threshold ȝ or if the motor speed and reference torque exceed a 
pre-defined region, i.e., when ௘ܶכ ൒ ௟ܶ௜௠כ , where ܶ ௟௜௠כ  is the 
maximum torque at a given speed as shown in Fig. 4. In order to 
achieve accurate VCMTPA operation in the field weakening 
region with fast response, the reference flux amplitude is 
limited by (6) directly and it is independent of machine 
parameters except for stator resistant R. The error between the 
flux amplitude generated from (6) and the optimal flux 
amplitude for VCMTPA operation is also compensated by οߖ௦. 

IV.  SIMULATION RESULTS 

Simulations of the self-learning control for both MTPA 
operation and VCMTPA operation have been performed based 
on a high-fidelity IPMSM model which accounts all non-linear 
effects and high order spatial harmonics as described in [25]. 
The machine specifications are listed in Table I. The motor is 
controlled in torque control mode in simulations. The 
applicable reference torque range of the machine is divided into 
35 sections, i.e., N=35. The threshold, ȝ, to suspend the online 
training of the self-learning control scheme is set to 2V. The 
threshold of torque step, İ, is set to 2 N∙m. Before training, 
TMTPA is set to a zero vector and all elements in ȌsMTPA are set to 
the nominal value of 0.1Wb.  

TABLE I 
IPMSM PARAMETERS 

Number of pole-pairs 3 
Phase resistance 51.2 mȍ 

Continuous/Maximum current 58.5/118 A 
Peak power at base speed 10 kW 
DC link voltage 120 V 
Base/maximum speed 1350/4500 r/min 
Continuous/peak torque 35.5/70 Nm 
Peak power at maximum speed 7 kW 

  

A. Reference Torque Fast Changes 

Simulations were performed for the operating conditions 
when reference torque changed rapidly. As shown in Fig. 7, the 
reference torque steps between 20 N∙m and 40 N∙m in every 
second (ȟ ௘ܶכ ൐  Before the proposed control scheme is fully .(ߝ
trained, i.e., t<6 s, οߖ௦ compensates the error of ߖௌ௅஼ and the 
corresponding reference torque and reference flux amplitude 
are recorded in ܂ெ்௉஺ and શெ்௉஺, respectively. At each torque 
step, the integrator is reset meanwhile the SLC output is 
updated based on the data recorded in ܂ெ்௉஺  and શெ்௉஺ , 
simultaneously. As it can be seen in Fig. 7, the accuracy of the 
SLC output continuously increases and the SLC outputs 
eventually equal to the optimal values. After training, i.e., when 
t > 6 s, the proposed control scheme can instantly generate an 

accurate optimal reference flux amplitude for a given torque 
demand. 

 
Fig. 7.  Responses of torque and stator flux amplitude to rapid reference torque 
changes. 
 

B. Reference Torque Step Smaller Than the Threshold 

Fig. 8 shows the simulation results when the reference torque 
step is smaller than the threshold, ߝ. As shown in Fig. 8, when 
t<35 s, the proposed control scheme is not trained, the reference 
torque slowly increased with a 2 N∙m/s gradient. Under this 
condition, the integrator in Fig. 8 will not be reset and ߖௌ௅஼ will 
not update. The reference flux amplitude is generated from the 
combination of  ߖௌ௅஼ and οߖ௦. However, the proposed control 
scheme is still under training during the process. When t>35 s, 
the SLC generates the optimal reference flux amplitude directly 
with fast response. 

 
Fig. 8.  Responses of reference flux amplitude and SLC outputs when reference 
torque changes slowly. 
 

C. Automatic Adaptation to Machine Parameter Change  

The adaptation of the proposed SLC to significant PM flux 
change is also investigated by simulation. As shown in Fig. 9, at 
t=70 s, the permanent magnet (PM) flux linkage in the machine 
model is reduced to 80 percent of its original value while the 
parameter in the flux observer is not changed. This may 
represent the combined effect of temperature increase and 
partial demagnetization of the machine. The change in the PM 
flux linkage causes the new MTPA points to deviate from the 
original MTPA points and the differences are compensated by 
the virtual signal injection. Meanwhile ܂ெ்௉஺ and શ௦ெ்௉஺ are 
updated according to newly tracked MTPA points continuously. 
It can be seen from Fig. 9 that in the first cycle after the 
parameter change when 70s t 105s, the reference flux 
amplitude is obtained from the sum of the SLC output and οߖ௦ 
and changes slowly in response to the torque changes while the 
overshoots of the reference flux amplitude can also be observed. 
During this period, the proposed SLC is trained by the newly 
tracked MTPA reference flux amplitude.  
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In the second cycle after the machine parameter change when 
t >105s, the proposed SLC has adapted itself to the new 
machine parameter and the outputs of the SLC quickly 
converge the new MTPA reference flux amplitudes. The 
training of the SLC does not affect MTPA operations of the 
IPMSM drive, albeit the torque control error increases due to 
the inaccurate machine parameter in the flux observer. 
However, if the flux observer is machine parameter 
independent, such as voltage model based flux observer with 
ideal inverter voltage drop compensation, the torque error can 
be reduced.  

 
Fig. 9.  Responses of reference torque, reference flux amplitude and resultant 
torque before and after PM flux linkage change at 1000 r/min. 
 

D. Transition Between Constant Torque Region and Field 
Weakening Region 

The performances of the proposed control scheme, when 
operation conditions change between the constant torque region 
and field weakening region, were also simulated. As shown in 
Fig. 10, the reference torque varies between 9 N∙m and 68 N∙m 
in steps, periodically. When t <35s, the proposed control 
scheme has not been fully trained, the reference flux amplitude 
is generated from the combination of ߖௌ௅஼  and ߖ߂௦  and 
converge gradually to the MTPA points. Between t =35s and t 
=70s, the proposed control has been trained and the 
convergence of the reference flux amplitude to the optimal is 
significantly quick. At t =70s, the rotor speed changes in step 
from 1000 r/min to 3000 r/min and the drive enters in the field 
weakening region. Under this condition, the self-learning 
control is suspended and ܂ெ்௉஺ and શ࢙࡭ࡼࢀࡹ are not updated. 
The reference flux amplitude is directly limited by (6) and 
compensated by ߖ߂௦. The reference torque, the resultant torque 
and the reference flux amplitude are shown in Fig. 10. Since the 
maximum torque is limited by the peak torque profile in the 
field weakening region, thus the resultant torque is limited at 35 
N∙m between t = 95s and t = 105s when the speed is 3000 r/mim. 
At t=105 s, the speed decreases from 3000 r/min to 1000 r/min 
and the self-learning control is activated. The accurate 
reference flux amplitude is directly approximated by the SLC 
with almost no delay. It should be noted that the step changes in 
speed in the foregoing simulation are exaggerated to illustrate 
the robustness of the proposed control in response to rapid 
change of operating conditions between constant torque and 
field weakening regions. In reality, step change in speed is 
unlikely due to mechanical inertia and finite torque. It is also 
seen that the torque ripple increases significantly in the field 
weakening region. This is because the flux linkage in a real 
machine which is represented by the high fidelity model is a 
non-linear function of the currents and contains high order 

spatial harmonics as described in [25]. Consequently, the motor 
voltage is not sinusoidal and its interaction with the voltage 
limit gives rise to current distortion and hence significant 
increase in torque ripple at high speeds. The details of the cause 
of the large torque ripple are given in [25]. 

 
Fig. 10.  Responses of reference torque and resultant torque when speed steps 
between 1000 r/min and 3000 r/min. 
 

V. EXPERIMENTAL RESULT 

The proposed self-learning control scheme has been tested 
on a prototype IPMSM drive. The IPMSM whose 
specifications are listed in Table I was mounted on the test-rig 
as shown in Fig. 11. The IPMSM was controlled in torque 
control mode and loaded by a dynamometer. The resultant 
torque was measured by a high precision torque transducer. The 
values of ȝ, İ, N and the initial values of TMTPA, ȌsMTPA in the 
experiments are the same as those used in simulations. The 
proposed self-learning control is implemented in a DSP-FPGA 
based controller shown in Fig. 11 with a sampling frequency of 
8 kHz. 

 
Fig. 11.  IPMSM test-rig. 
 

A. Self-learning Performance 

The motor drive was first tested by increasing reference 
torque from 10 N∙m to 35 N∙m in steps of 5 N∙m at 1000 r/min. 
During this period, the self-learning control scheme was 
trained. After the training, the reference torque decreased from 
35 N∙m to 10 N∙m in steps of 5 N∙m to verify the performance 
of the proposed self-learning control scheme. During this 
period, the SLC output, ߖௌ௅஼ , of the proposed self-learning was 
generated from (14) based on data in ȌsMTPA and TMTPA recorded 
in training.   

Since the actual flux amplitude is difficult to measure, the 
measured d-axis current is utilized instead of flux amplitude to 
illustrate the self-learning performance of the proposed control 
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scheme. Fig. 12 illustrates the measured d-axis currents, the 
ideal MTPA d-axis currents, the measured torque when 
reference torque increases from 20 N∙m to 35 N∙m and 
decreases from 35 N∙m to 20 N∙m in steps of 5 N∙m.   

As shown in Fig. 12, when the reference torque steps from 20 
N∙m to 35 N∙m when t <100 s, the proposed self-learning 
control has not been fully trained and ߖௌ௅஼  is set to the flux 
amplitude associated with the maximum torque reference in 
TMTPA. The d-axis current slowly converges to the optimal 
d-axis current with the compensation of ȟߖ௦. However, after 
the proposed control scheme has been trained, i.e., when 
t >100s, the optimal reference flux amplitude is directly 
approximated by (14) and the small error of the approximation 
is compensated by ߖ߂௦ instantly. The speed of MTPA tracking 
response of the proposed control has been significantly 
increased. As a result, the d-axis current can reach the optimal 
value without much delay. 

 
Fig. 12.  Responses of resultant d-axis current and ideal MTPA d-axis current to 
reference torque changes. 
 

The resultant MTPA quality indicator SPO and the resultant 
d-axis current under the same operation conditions of Fig. 12 
are shown in Fig. 13. As can be seen from Fig. 13, before the 
proposed control scheme is trained, i.e., when t <100s, SPO is 
initially large after at each torque step and then converges to 
zero gradually. This is because of the large error between ߖௌ௅஼ 
and the optimal flux amplitude as well as the slow convergence 
of ȟߖ௦ through the integral action. However, after the proposed 
control scheme has been trained, SPO converges to zero much 
fast. The improvement in the d-axis current response due to the 
proposed self-learning control scheme can be clearly seen in 
Fig. 13. 

 
Fig. 13.  MTPA quality indicator SPO and resultant d-axis current. 
 

Fig. 14 shows the resultant d-axis current and reference 
torque when the torque command increases from 13 N∙m to 18 
N∙m after the tests described previously. As shown in Fig. 14, 
the resultant d-axis current can track the ideal MTPA d-axis 
currents accurately with fast response even though the 

proposed control scheme has not been trained at 18 N∙m torque 
command previously.  

 
Fig. 14.  MTPA d-axis current and response of resultant d-axis current to 
reference torque change from 13 N∙m to 18 N∙m. 
 

The measured torque and reference torque under the same 
operation conditions as Fig. 14 are compared in Fig. 15. The 
reference torque is filtered by a low-pass filter to limit the rate 
of change of torque. The measured torque follows the reference 
torque well. Since the torque is generated based on (3), the 
dynamic response of torque depends on the bandwidth of the 
t-axis current control loop. Therefore, the torque response of 
the self-learning control should be the same as the torque 
response of the conventional direct flux vector control 
proposed in [7] and [22]. 

 
Fig. 15.  Measured torque in response to reference torque change. 
 

B. Transition Between Constant Torque Region and Field 
Weakening Region  

Seamless transition from the constant torque region to field 
weakening region was also tested. In the field weakening 
region when ݒ௘௥௥௢௥  is smaller than the pre-defined threshold ߤ 
or ௘ܶכ ൒ ௟ܶ௜௠כ , ȌsMTPA and TMTPA updates will be suspended. ߖௌ௅஼  is still generated from the data recorded in ȌsMTPA and 
TMTPA according to (14), however, it will be limited by (6) in 
field weakening region. 

Fig. 16 illustrates the transition from the field weakening 
region to the constant torque region when the reference torque 
is 20 N∙m and the speed decreases from 1750 r/min to 1550 
r/min. When speed is 1750 r/min, the motor is running in the 
field weakening. Under this condition, the reference flux 
amplitude, ߖௌ௅஼, generated from (14) is limited by (6). As the 
speed decreases, the resultant d-axis current increases (its 
magnitude in the negative d-axis direction decreases). When 
the motor speed reaches 1640 r/min, the stator flux amplitude or 
measured d-axis becomes a constant with further reduction in 
speed. This implies the transition from the field weakening 
operation to the constant torque region takes place at 1640 
r/min and the smooth transition between field weakening 
region and constant torque region can be inferred. A similar test 
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was also performed when the motor speed was increased from 
the constant torque region to the field weakening region, and a 
smooth transition was also obtained.     

 
Fig. 16.  Speed and measured d-axis current during transition from 
field-weakening region to constant torque region. 
 

C. Performance of Proposed Control Scheme in Deep Field 
Weakening Region 

In the field weakening region, the fast dynamic response of 
the reference flux amplitude can be achieved by (6) directly 
instead of ߖௌ௅஼. The error of the reference flux amplitude due 
to inaccurately observed t- and f-axis currents or the inaccurate 
nominal stator resistance can be compensated by ȟߖ௦. Fig. 17 
shows the maximum voltage amplitude, the reference voltage 
amplitude and the measured d-axis current when the reference 
torque steps from 20 N∙m to 25 N∙m at 3000 r/min (more than 
two times the base speed). A fast responses of d-axis current 
can be observed from Fig. 17. Moreover, the reference voltage 
amplitude is essentially equal to the maximum voltage 
amplitude, which means that the motor operation is kept at the 
VCMTPA point. The small error between the reference voltage 
amplitude and the maximum voltage amplitude is due to the 
combined effect of the inverter voltage drop and the virtual 
signal injection which always tends to drive the reference 
voltage amplitude to go beyond the maximum voltage.  

 
Fig. 17.  Maximum voltage amplitude, reference voltage amplitude and 
measured d-axis current when torque reference steps from 20 N∙m to 25 N∙m at 
3000 r/min. 
 

The comparison between the reference torque and the 
measured torque when the reference torque increased from 20 
N∙m to 25 N∙m at 3000 r/min is shown in Fig. 18. The gap 
between the reference and measured torque is due to the flux 
observer inaccuracy and the frictional torque of the motor. The 
torque error can be mitigated by a more accurate flux observer 
or corrected by the speed feedback loop in a speed servo drive. 
For EV tractions, the feedback correction will be performed by 
a human driver. 

 
Fig. 18.  Comparison between reference torque and measured torque when 
reference torque increased from 20 N∙m to 25 N∙m at 3000 r/min. 
 

VI.  CONCLUSION 

A self-learning control for direct flux vector controlled 
IPMSM drives has been described. The online-learning is based 
on the virtual signal injection which tracks MTPA or VCMTPA 
points without prior knowledge of the machine parameters. It 
has been shown that after training, the proposed control 
generates optimal reference flux amplitudes for MTPA and 
VCMTPA control in constant torque and field weakening 
regions, respectively, without much delay. The proposed 
control scheme facilitates efficient operation of IPMSM drives 
and can adapt to machine parameter changes through 
self-learning. It has also been shown that the transition between 
the constant torque and field weakening operations is smooth 
and automatic. The performance of the proposed control 
scheme has been validated by simulations and experiments. 
The concept of the proposed self-learning control is also 
applicable to other search based optimal control schemes in the 
f-t reference frame to improve dynamic response. 
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