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Discussion on the paper “Should we sample a time

series more frequently?: decision support via multirate

spectrum estimation”

Marina I. Knight

Department of Mathematics, University of York

Matthew A. Nunes

Department of Mathematics and Statistics, Lancaster University

We congratulate the authors for a stimulating paper which challenges current statistical think-

ing and practice to consider time series sampled at different sampling rates– unfortunately, an

often overlooked question. This work has the potential to help with principled decision-making

in a range of scientific areas and, in this respect, we also commend the release of the regspec

software accompanying the article to aid practitioners.

Whilst the examples in the paper focus on arguably ‘well-behaved’, stationary processes

with short-memory, one could also consider the benefits of the proposed methodology in more

complex settings. Specifically, consider processes with different spectral characteristics, such as

spikes or exponential decay, present for long memory time series such as fractionally integrated

processes or fractional Gaussian noise (see for example Beran et al. (2013)). In such contexts,

the focus is often on the estimation of long-range dependence intensity in the series, quantified

through a single quantity; the Hurst exponent H . Although several long-memory estimation tech-

niques exist, both in the time and in the frequency domains, we are not aware of any that could

indeed handle combining information captured through the process sampling at more than just

one sampling rate.

Interestingly, this work could pave the way to achieving just that: more reliable long-memory

estimation by means of corroborating information from subsampled series. As is intuitive, pro-

cess sub-sampling results in poorer Hurst exponent estimation, for both time- and spectral domain-

based methods. Classical spectral estimation techniques such as Lomb-Scargle or LSSA estima-

tion (Vanı́ček, 1971; Lomb, 1976; Scargle, 1982) have been shown to be unreliable for long-

memory processes, and particularly so if the series has been subsampled (Broersen et al., 2000;

Broersen, 2007). We conjecture that the by-product of this work, i.e. the spectral estimate that

incorporates all process information, could be conducive to a new, more reliable long-memory

estimator constructed in the frequency domain.

An example of the proposed methodology on a long-memory process is shown in Figure 15.

While only illustrative, this example shows that the regspec correction seems promising here

also. Could the authors comment on the wider influence of their work on estimation of secondary

quantities often derived from such spectra, e.g. the Hurst exponent, and the potential of any the-
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Figure 1: Spectral estimation of a frac-

tional Gaussian noise series of length

n = 1024, with Hurst exponent H =

0.8: (i) spectral estimate using original

series; (ii) distortion of the spectral es-

timate induced by dyadic subsampling;

(iii) spectral estimate corrected using the

first 30 unit-sampled observations via

regspec.

oretical development in this direction?

We would also like to hear the authors’ insights on the possibility of extending the work

to the analysis of multivariate (multirate) series for, for example, cross-spectral or polyspectral

estimation.
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