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Abstract. [Co(0.6 nm)/ZnO(x nm)]60 (x= 0.4nm, 3nm)  films were deposited on glass 
substrates then annealed in a vacuum. The magnetisation of the films increased with annealing 
but not the magnitude of the magneto-optical signals. The dielectric functions Im İxy for the 
films were calculated using the MCD spectra. A Maxwell Garnett theory of a metallic Co/ZnO 
mixture is presented. The extent to which this explains the MCD spectra taken on the films is 
discussed. 

1.  Introduction 
Magnetically doped semiconductors are one of the most actively studied areas of magnetism. It is not 
always known the extent to which the observed magnetism is due to ferromagnetic nanoparticles that 
give an apparent ferromagnetic signal below their blocking temperature.  For samples of ZnO doped 
with cobalt the nanoparticles of interest are metallic cobalt [1]. Magneto-optics is a very powerful 
technique to investigate this problem as the analysis of the optical response of a composite medium, 
the Maxwell Garnett theory (MG), is well established and known to be accurate for a wide range of 
concentrations [2]. It was recently suggested that the Magnetic Circular Dichroism (MCD) of a film of 
ZnO:Co containing some metallic cobalt was proportional to the magnetisation from the metallic 
inclusions [3].   

In this paper we investigate the effects of nanoparticles on the magnetic and optical properties of 
Co/ZnO multilayer thin films [4] because this is a system that may be studied both with and without 
demonstrable cobalt metal nanoparticles.  After deposition such samples have most of the Co 
deposited in the lattice and show magnetic field dependent variable range hopping conductivity [4].  
The magnetisation and coercive field of the samples increases dramatically after annealing and 
nanoparticles of cobalt are detected [5].    

The magneto-optics of cobalt nanoparticles have been extensively studied in other oxides, MgO,  
Al2O3 and ZrO2, all in the visible region 1.5<E<4.5eV [6,7]. We investigate here the extent to which 
MG theory also works for our system.   Deviations from the MG theory will occur if the ZnO lattice 
has become magnetic hence this analysis will enable us to determine the extent to which this is so. An 
interesting difference between the previous studies and our investigation of cobalt in ZnO is the 
relative positions of the oxide band gaps. In ZnO this is at E~3.4eV which is in the range that is 



 
 
 
 
 
 

studied and hence both the intrinsic magneto-optic effects due to a polarised lattice and the extrinsic 
effects from the nanoparticles may be studied together.  All the other oxides have band gaps further in 
the ultra violet. 

2.  Samples and experimental methods. 
Co/ZnO multilayer films were grown on glass substrates by magnetron sputtering from a Co target and 
a ZnO target at room temperature. Current-regulated DC power and RF power were applied to the Co 
target and ZnO target, respectively. The sputtering chamber pressure was reduced to 8.0×10-5 Pa 
before deposition. The sputtering was undergone in an Ar atmosphere at a pressure of 0.8 Pa. After 
deposition, the samples were annealed in vacuum conditions under a pressure of 2.0×10-4 Pa 
at 400 °C for 120 min. The as-deposited structure was [Co(0.6 nm)/ZnO(x nm)]60 (x= 0.4, 3), i.e. 
sixty repetitions of a 0.6nm Co layer followed by either a 0.4nm ZnO layer or a 3nm ZnO layer. These 
samples are referred to as the 0.4nm and 3nm samples from now on. 

Magneto-optical measurements were made at room temperature using a method that enabled the 
simultaneous measurement of the Faraday rotation and ellipticity [8, 9]. The method uses a pair of 
polarisers and a photoelastic modulator. A Xenon lamp and monochromator were used to vary the 
photon energy between 1.6eV and 3.9eV.  

3.  Theoretical modelling of the magneto-optical signals 
A magneto-optic signal arises when there is unequal absorption of left and right circularly polarised 
light.  The MCD measures this directly, while the Faraday rotation is present at a given frequency if 
there is unequal absorption at other frequencies.  Both these effects can be ascribed to the off-diagonal 
terms in the dielectric constant, which for an isotropic medium magnetised in thêz direction, may be 
defined as [10], 
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Using the definition above and xy xxε ε<< the refractive indices for left and right circularly polarised 

light are found,  
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where xxn ε= . All the quantities in the above equation will be complex for a film that absorbs light.  

The MCD, η, and Faraday rotation, θ, are given for a film of thickness, L, at frequency ω in terms of 
n± by, 
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These equations are solved for xyε  where we assumed that n for ZnO was real below the band gap [9]. 

The MG equation for the effective value of İxy is given in terms of the dielectric functions for bulk 

Co, Co
xxε , Co

xyε , the dielectric function of ZnO, ZnO
xxε , shape factors Lx (=1/3 equal to for spherical 

particles) and the fraction, f, of the sample that is metallic cobalt. 
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We use the dielectric functions for cobalt, Co
xxε , Co

xyε , as fitted by Drude theory [10] and ZnO
xxε  from the 

refractive index of ZnO [11]. 



 
 
 
 
 
 

In figure 1 we show a plot of the effective dielectric function eff
xyεIm for Lx =0.33 and f=0.3 for 

different values of the relaxation time, τ.  Previous work had found that the data on Co nanoparticles 
could be fitted by reducing the value of τ to ~0.2(eV)-1.  We see that reducing τ reduces and flattens 

the plot of the dielectric functions but does not change the energy, Xω , at which ( ) 0Im =ωε eff
xy . This 

may be shown to occur at ( )
2

2
2

1 pX aan

a ωω
+−

=  where a= Lx(1−f) , n is the refractive index of ZnO 

and ωp=9.74eV, the plasma frequency for Co.  
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Figure 1. Effective dielectric functions eff
xyεIm calculated in MG theory for Lx=0.33 and f=0.3 and 

different, Ĳ and the variation of Xω with Lx(1−f) . 

4.  Experimental results and discussion 
In figure 2, we present room temperature magnetisation loops and Imxyε calculated from MCD 

spectra before and after annealing. The MG theory, which works well for Co nanoparticles in other 
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Figure 2. Room temperature hysteresis loops of the as-deposited and annealed samples of (a) 0.4nm 
sample and (b) 3nm sample. Im İxy calculated from magneto-optic spectra of (c) 0.4nm sample and (d) 

3nm sample 

 



 
 
 
 
 
 

oxides [6] is not fitting this data. Theory predicts that the magnitude of Im İxy is directly proportional 
to the fraction of metallic Co. This is not observed. The magnetization increases after the anneal,  
however there is not a corresponding increase in the value of Im İxy. We see a substantial signal in both 
samples before annealing when the magnetic and structural data indicate that metallic Co is absent in 
measurable concentrations. A clear X-ray signature of metallic Co is present in the 0.4nm sample after 
the anneal [5] and yet the magnitude of Im İxy has decreased for all energies below 3eV. For the 3nm 
film, the ZnO wurtzite structure is preserved and provided a barrier to large Co cluster formation 
during the annealing [5]. In both cases annealing resulted in the multilayer structure changing to a 
granular structure with either inclusions of Co inclusions in ZnO or ZnO inclusions in Co. 

Furthermore, the theory predicts a significantly lower value of ȦX than is observed. If the Co 
nanoparticles are oblate rather than spherical this will reduce the value of Lx and hence further reduce 
the predicted ȦX. We note that increasing the fraction of Co nanoparticles also reduces the predicted 
ȦX. Interestingly, this crossing energy is around the band gap for zinc oxide, Eg~3.4eV. A (negative) 
MCD signal around 3eV from a magnetic ZnO lattice would increase the energy at which Im İxy=0. 
The magneto-optic spectra observed here can only be fitted by a model that also includes a 
contribution from the Co dispersed in the ZnO lattice as was observed previously [12].  
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