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Abstract 

Background – Heart block is associated with pulmonary hypertension and the aim of the study was to test 

the hypothesis that the heart block is the result of a change in the ion channel transcriptome of the 

atrioventricular node. 

Methods and Results – The most commonly used animal model of pulmonary hypertension, the 

monocrotaline-injected rat, was used. The functional consequences of monocrotaline injection were 

determined by echocardiography, ECG recording and electrophysiological experiments on the Langendorff-

perfused heart and isolated atrioventricular node. The ion channel transcriptome was measured by 

quantitative PCR, and biophysically-detailed computer modelling was used to explore the changes observed. 

Following monocrotaline injection: echocardiography revealed the pattern of pulmonary artery blood flow 

characteristic of pulmonary hypertension as well as right-sided hypertrophy and failure; the Langendorff-

perfused heart and isolated atrioventricular node revealed dysfunction of the atrioventricular node (e.g. 50% 

incidence of heart block in isolated AV node); and quantitative PCR revealed a widespread downregulation 

of ion channel and related genes in the atrioventricular node (e.g. >50% downregulation of Cav1.2/3 and 

HCN1/2/4 channels). Computer modelling predicted that the changes in the transcriptome if translated into 

protein and function would result in heart block. 

Conclusions – Pulmonary hypertension results in a derangement of the ion channel transcriptome in the 

atrioventricular node and this is the likely cause of atrioventricular node dysfunction in this disease. 

Key words: Pulmonary hypertension, Arrhythmias, Atrioventricular node, Heart block, Ion channels 

Introduction 

Pulmonary arterial hypertension (PHT) is a disease characterised by raised pulmonary vascular 

resistance. It has a poor prognosis typically resulting in progressive right ventricular failure and 

death. The incidence of arrhythmias in patients with PHT is high.
1-3

 All forms of supraventricular 

tachycardia are more common in PHT with studies suggesting an incidence of ~3%/year and a 

prevalence of supraventricular arrhythmia of ~12%.
3
 Atrial flutter, atrial fibrillation and 

atrioventricular (AV) nodal reentrant tachycardia are common.
3,4

 There is evidence of AV node 

dysfunction in PHT with a 14% incidence of first degree heart block, a mean PR interval of 180±50 

ms (mean±SD) and 2% of patients requiring a pacemaker for high degree heart block on initial 
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screening of PHT patients.
1
 This can be compared with an incidence of first degree heart block of 

2.1% and mean PR interval of 160±22 ms (mean±SD) for men and 153±22 ms (mean±SD) for 

women in the general population.
5
 Sleep apnoea causes PHT

6
 and is associated with heart block 

(heart block during sleep has been described in up to 10% of patients with obstructive sleep 

apnoea).
7
 Despite the evidence of a high burden of arrhythmias in patients with PHT, including 

dysfunction of the AV node, there is limited experimental data looking at the mechanisms of 

arrhythmia generation and the available data only concern arrhythmogenic mechanisms in the 

ventricle.
e.g.8

 There are several animal models of PHT, but the monocrotaline model is the best 

characterised and most widely used.
e.g.9

 Two studies using in vivo monitoring have demonstrated 

severe AV node dysfunction with heart block causing death in ~38% of monocrotaline-injected rats 

with PHT.
10,11

 In the present study, the monocrotaline-injected rat was chosen to study the 

mechanisms underlying AV node dysfunction in PHT (see Supplementary Material for further 

validation of the monocrotaline-injected rat model). We show that the dysfunction is associated 

with widespread remodelling of the ion channel transcriptome.  

Methods 

200 g male Wistar rats received an intraperitoneal injection of monocrotaline (60 mg/kg) or 

volume-matched 0.9% saline (3 ml/kg). Rats were weighed and their clinical condition assessed 

twice weekly in the first 18 days and daily thereafter. Rats were assessed using echocardiography 

and ECG recording on day 0 immediately prior to injection, day 21 and immediately prior to 

termination. M-mode recordings were taken in the parasternal short axis view allowing recording of 

left ventricle anterior and posterior wall thickness and the internal diameter of the left ventricle in 

both systole and diastole. Right ventricle wall thickness was measured from M-mode recordings in 

the parasternal long axis view. Continuous wave Doppler recordings through the pulmonary artery 

were used to assess the pulmonary velocity profile. Monocrotaline-injected rats were sacrificed by 

stunning and cervical dislocation on day 28 or earlier if there was evidence of clinical deterioration 

(reduced movement, increased respiratory rate, piloerection, weight loss of >10 g over two days). A 
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saline-injected rat was sacrificed within 24 h of sacrifice of a monocrotaline-injected rat. Heart and 

lungs were excised and weighed. Telemetric recordings of ECGs from conscious and unrestrained 

male Wistar rats were made as previously described by Benoist et al.
12

 The functioning of the AV 

node was measured in the Langendorff-perfused heart: the heart was mounted on a Langendorff 

column and retrogradely perfused with oxygenated Tyrode’s solution at a temperature of 36.5˚C. 

Extracellular electrodes were used to record a ‘pseudo-ECG’. RR, PR and QT intervals and QRS 

duration were measured. Pacing protocols were performed to measure atrial and ventricular 

effective refractory periods, AV node refractory periods and Wenckebach cycle length. Functioning 

of the AV node was also measured in the isolated AV node: a preparation was placed in a perfusion 

bath with oxygenated Tyrode’s solution at 36.5˚C. Extracellular electrodes were used to record 

signals in the atrium and at the His bundle. Pacing protocols were performed to measure AV node 

refractory periods and Wenckebach cycle length. From the isolated AV node, intracellular actions 

potentials were also recorded with sharp microelectrodes.  

Tissue was microdissected from different regions of the AV node: the AV node was 

sectioned at 50 µm in a cryostat. Sections 300 µm apart were stained with Masson’s trichrome and 

immunolabelled for HCN4 and Cx43 to identify AV node tissues. Guided by this, AV node tissues 

were dissected with a sharp needle from remaining sections (haematoxylin and eosin stained). Total 

RNA was extracted using the MirVana kit, residual genomic DNA removed using TurboDNAse, 

RNA in each sample measured using the Qubit system, RNA reverse transcribed to produce cDNA 

using SuperScript VILO Mastermix with random hexamers, cDNA preamplified, and expression of 

different cDNAs corresponding to different mRNAs quantified using the TaqMan low density array 

card system (Life Technologies, USA). Expression was normalised to the abundance of a pair of 

housekeeper genes, B2M and PKG1, selected from 16 potential housekeeper genes as the most 

stable. The limma statistical package as implemented by RealTime Statminer software 

(Integromics) was used to compare mRNA expression in the control and monocrotaline-injected 

rats as well as compare mRNA expression in the different parts of the AV node. Multiple 
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comparisons in large bodies of data, such as in microarray data analysis, pose statistical 

challenges.
13,14

 Typically, a correction is made when making multiple tests to avoid false-positive 

results (type I error),
13,14

 but reducing the type I error increases the chance of false-negative results 

(type II error).
13,14

  In relation to large data sets, Rothman
14

 has argued that a policy of not making 

corrections for multiple tests is preferable. For comparison of mRNA expression in the control and 

monocrotaline-injected rats, the uncorrected P value is given in Table S3. Even without the 

argument from Rothman,
14

 this can be justified, because each comparison is independent of the 

others (the conclusions of the present study do not depend on a group of differences being 

significant). Nevertheless, false discovery rate (FDR)-corrected P values are also given in Table S3 

- multiple test corrections of the classical type are not commonly used in the analysis of microarray 

data and instead the FDR has become a standard for multiple tests correction.
13

 In reporting both 

uncorrected and FDR-corrected P values from the limma test, we follow the example of earlier 

studies.
15,16

 In Figs. 4-7, however, for simplicity the asterisks relate only to the FDR-corrected P 

value; cases in which the FDR-corrected P value is less than 0.2 (i.e. 20%) are highlighted with 

asterisks. An FDR of 20% (as we have used previously
16

) is permissive and means that ~20% of the 

77 changes highlighted by asterisks, i.e. ~15,  are false-positives. However, precise uncorrected and 

FDR-corrected P values are reported in Table S3 and the reader can make their own choice of what 

is acceptable. Rothman
14

 states that “scientists should not be so reluctant to explore leads that may 

turn out to be wrong that they penalize themselves by missing possibly important findings”. For 

comparison of mRNA expression in the different parts of the AV node, we report only FDR-

corrected P values of <0.2 (using lower case letters) and <0.05 (using upper case letters) in Figs. 4-

7, corresponding to false discovery rates of 20% and 5%. In this case, expression in various tissues 

is being compared and a multiple test correction is appropriate and we do not report uncorrected P 

values.  

The potential consequences of the changes in transcripts were explored using a 

biophysically-detailed one-dimensional model (52.5 mm in length) consisting of segments of atrium 



 6 

(15 mm), AV node (12.5 mm), Purkinje fibre (20 mm) and ventricle (10 mm), each represented by a 

well-established model of the corresponding action potential. To simulate the functional effects of 

PHT, the conductance of each ionic current was scaled based on the change in the corresponding 

mRNA. The 1D cable equation was solved using the Forward-Time Central-Space scheme with a 

space step of 0.1 mm and time step of 0.005 ms. Finally, expression of protein was investigated 

using immunohistochemistry. See Supplementary Material for expanded methods.  

Results 

PHT and right-sided heart failure  

There was no significant difference in the body weight of control (saline-injected) and 

monocrotaline-injected rats on the day of injection (Table 1). During the following three weeks, the 

monocrotaline-injected rats gained significantly less weight such that they weighed 12% less than 

the control rats by the day of termination (Table 1). Despite the lower body weight, the 

monocrotaline-injected rats also had a 23% increase in heart weight and an 88% increase in lung 

weight compared to the control group (Table 1). The heart:body weight and lung:body weight ratios 

were significantly greater in the monocrotaline-injected rats on the day of termination suggestive of 

congestive heart failure (Table 1). Previous studies of the monocrotaline model using 

echocardiography have demonstrated a characteristic change in the pulmonary artery velocity 

profile from the typical rounded shape to a ‘spike and dome’ morphology with a reduced pulmonary 

artery acceleration time (PAAT) and an increased pulmonary artery deceleration (PAD) as 

pulmonary artery pressure increases.
17,18

 In the present study, PAAT and PAD were used as 

surrogate measures of pulmonary artery pressure. On the day of termination, echocardiography 

demonstrated a reduced PVAT and increased PAD in the monocrotaline-injected rats (Fig. 1B; 

Table 1). This is evidence of PHT and monocrotaline-injected rats will now be referred to as PHT 

rats. There was evidence of right-sided heart failure in the PHT rats: there was right ventricular 

dilatation (increased right ventricular internal dimension) and hypertrophy (increased right 

ventricular diastolic wall thickness) and a 36% reduction in right ventricular fractional shortening 

(Fig. 1A; Table 1). In contrast, in the left ventricle there was no evidence of hypertrophy and there 
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was a reduced left ventricular internal diameter in the PHT rats - this was presumably the result of 

the raised right ventricular pressure pushing the ventricular septum into the left ventricle (Fig. 1A; 

Table 1). On the day of termination, the ECG measured in vivo in the anaesthetised rat showed a 

98% increase in the QT interval, a 90% increase in the corrected QT interval (QTc interval) and a 

9% increase in the RR interval (equivalent to 9% decrease in heart rate) in the PHT rats (Table 1); 

these changes are typical of heart failure.
19

 Although no changes were seen in the PR interval 

(Table 1), the PR interval is determined by the position of the leading pacemaker site in the right 

atrium as well as the conduction velocity of the AV node. We have previously reported similar 

changes in the ECG measured in vivo in the conscious rat using telemetry.
12

 In the UK, the Animal 

(Scientific Procedures) Act 1986 requires that monocrotaline-injected rats are sacrificed before they 

reach end-stage heart failure. However, one conscious freely-moving rat implanted with a telemetry 

system died naturally 28 days after injection with monocrotaline and the ECG recording showed 

that it died of heart block (Fig. 1C). This is consistent with earlier reports.
10,11

  

Evidence from in vitro experiments of AV node dysfunction  

It is possible that the AV node is supported in vivo by neurohumoral influences and, therefore, 

experiments were conducted on isolated heart preparations. First, experiments were conducted on 

the isolated Langendorff-perfused heart from 10 control and 11 PHT rats. Consistent with the in 

vivo measurements, there was a 141% increase in the QT interval, a 138% increase in QTc interval 

and a 144% increase in the ventricular effective refractory period in the PHT rats (Table 2). There 

was also a 24% increase in the atrial effective refractory period, but this was not significant (Table 

2). Once again there was no change in the PR interval, but there was evidence of AV node 

dysfunction in the PHT rats: Fig. 2A shows typical AV node conduction curves from control and 

PHT rats – there was a significant increase in both the AV node effective and functional refractory 

periods (AVERP and AVFRP, respectively). The Wenckebach cycle length was increased (but not 

significantly) in the PHT rats. Although this increase was not significant, linear regression showed 

the Wenckebach cycle length to be significantly correlated with both the AVERP and AVFRP and 
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this suggests that PHT does tend to prolong the Wenckebach cycle length (Fig. 2B). Experiments 

were also conducted on an isolated right atrial preparation containing the AV node from 10 control 

and 11 PHT rats. Electrograms were recorded from above the His bundle and examples are shown 

in Fig. 2C – both atrial and His bundle electrograms were recorded at the recording site. There was 

normal AV node conduction in the control rat, but complete heart block in the PHT rat with 

dissociation of the atrial and His bundle electrograms (Fig. 2C). There was a 50% incidence of 

complete heart block in the PHT rats (6 of 12 PHT rats) compared to 0% in the control group (0 of 

10 control rats); the difference is statistically significant (Fisher’s exact test; P=0.015; Table 2). In 

the remaining 6 PHT rat preparations in which AV node conduction persisted, there were increases 

in the AH interval (interval between atrial and His bundle electrograms), the Wenckebach cycle 

length and the AVERP and AVFRP (at two drive train cycle lengths), although the increases did not 

reach significance (Table 2). Finally, using sharp microelectrodes, intracellular action potentials 

were recorded from isolated right atrial preparations from a further 5 control and 6 PHT rats, 

because this technique allows the well-known electrical heterogeneity of the AV node
20

 to be 

explored (Fig. 3). The preparations were paced from the region of the sinus node at 5 Hz. Normal 

AV node conduction was observed in 4 out of the 5 control preparations, whereas abnormal 

conduction was observed in 5 out of the 6 PHT preparations (Table S1). In PHT preparations, Fig. 

3B shows an example of complete conduction block in the compact node (the action potentials 

show no correspondence to the stimulation artefacts and are spontaneous) and Fig. 3C shows a case 

of decremental conduction in the penetrating bundle. Taken together these data show evidence of 

AV node dysfunction in the PHT rat. 

Remodelling of AV node 

To understand the mechanisms underlying AV node dysfunction in PHT, the expression of ion 

channels, connexins, intracellular Ca
2+

-handling proteins, ion pumps and exchangers and autonomic 

receptors was measured at the mRNA level using qPCR from 8 control and 8 PHT rats. Tissue was 

microdissected from four different regions of the AV node (transitional tissue, inferior nodal 
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extension, compact node and penetrating bundle – Fig. 4 inset21 and Fig. S1 in Supplementary 

Material) as well as nearby atrial and ventricular muscle and total RNA was extracted from the 

different samples. Figs. 4-7 show the expression of many of the mRNA targets and Figs. S3-S6 

show the expression of the remainder normalised to a housekeeper combination (B2M and PKG1). 

There are many significant differences in expression between different regions of the AV node, but 

for brevity are not discussed here. There are many significant differences in expression (generally 

downregulation) caused by PHT and these are considered below.  

Downregulation of inward current carrying ion channels 

In the AV node, inward current carrying ion channels play a role in diastolic depolarization, setting 

excitability and the upstroke and plateau of the action potential. HCN channels play an important 

role in pacemaking. HCN4 was the most abundant isoform and there was a trend of downregulation 

(significant in two regions) in the AV node in PHT (Fig. 4). Nav1.1 is a subsidiary Na
+
 channel 

involved in pacemaking and the action potential upstroke and again there was a trend of 

downregulation (significant in one region) in the AV node in PHT (Fig. 4). However, Nav1.5 and 

Navb1 are responsible for the principal Na
+
 channel in the heart and they were unaffected (Fig. 4). 

Nav1.8 is responsible for the late Na
+
 current;

22
 its expression in the AV node was unaffected in 

PHT, but interestingly its expression level was high in the penetrating bundle (Fig. S3). Cav1.2 and 

Cav1.3 are L-type Ca
2+

 channels and Cav3.1 and Cav3.2 are T-type Ca
2+

 channels and all are 

involved in pacemaking and the action potential upstroke. There was a trend for all the Ca
2+

 

channels to be downregulated (but only significant in some cases) in the AV node in PHT (Figs. 4 

and S4). However, there were no changes in three Ca
2+

 channel accessory subunits (Cava2d1, 

Cava2d2 and Cavb2; Fig. S4). CLC-3 is a volume-regulated Cl
-
 channel

23
 and it was significantly 

downregulated in the inferior nodal extension (Fig. S3). Another Cl
-
 channel, CLC-2, involved in 

pacemaking
23

 was unaffected (Fig. S3). The downregulation of these ion channel transcripts in the 

AV node in PHT could potentially compromise AV node conduction by affecting excitability and 

the action potential upstroke.  



 10 

Downregulation of outward current carrying ion channels 

Voltage-gated K
+
 channels play an important role in action potential repolarization. The voltage-

gated K
+
 channel subunits responsible for the transient outward K

+
 current (Kv1.4, Kv4.2, Kv4.3, 

KChIP2) and delayed rectifier K
+
 current (Kv1.2, Kv1.5, Kv2.1, ERG1, KvLQT1, minK) tended to 

be downregulated (significantly in some cases) in the AV node in PHT (Figs. 5 and S3). There were 

three significant decreases in inward rectifier K
+
 channels in the AV node in PHT: Kir3.1 (subunit 

of ACh-activated K
+
 channel) in the transitional tissue, Kir3.4 (another subunit of ACh-activated K

+
 

channel) in the inferior nodal extension and Kir6.2 (subunit of ATP-sensitive K
+
 channel) in the 

transitional tissue (Fig. 6). The twin pore K
+
 channel, TWIK1, was significantly downregulated in 

the inferior nodal extension in the AV node in PHT (Fig. 6). The downregulation of the K
+
 channels 

is expected to prolong the AV node action potential although such an effect would be countered by 

the downregulation of inward current carrying ion channels. 

Downregulation of intracellular Ca
2+

-handling molecules 

Intracellular Ca
2+

 plays an important role in pacemaking and conduction in the AV node.
24,25

 

Expression of many intracellular Ca
2+

-handling molecules was affected in PHT. There tended to be 

a downregulation of NCX1 (Na
+
-Ca

2+
 exchanger) in the AV node in PHT, but this was not 

significant (Fig. 7). There was a tendency for RyR2 (the Ca
2+

 release channel of the sarcoplasmic 

reticulum - SR) to be downregulated in most tissues in PHT and it was significantly downregulated 

in the inferior nodal extension (Fig. 7). Although expression of SERCA2 in the AV node was not 

affected in PHT, two regulators of SERCA2 (phospholamban and sarcolipin) were significantly 

downregulated in much of the AV node (Fig. 7). Two other Ca
2+

-handling molecules, calsequestrin 

2 and PMCA1, were unaffected (Figs. 7 and S3). The downregulation of RyR2 could potentially 

slow AV node conduction. 

Downregulation of other transcripts 

In PHT, there was a trend of downregulation of the a2 and a3 subunits of the Na
+
-K

+
 pump 

throughout the AV node (significantly in some cases; Fig. S5). However, the a1 and b1 subunits 
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were unchanged (Fig. S5). The Na
+
-H

+
 exchanger (NHE1) was significantly upregulated in the 

inferior nodal extension in PHT (Fig. S3). Connexins are responsible for electrical coupling 

between myocytes and therefore are an important determinant of conduction velocity of the action 

potential. No changes were seen in Cx40, Cx43 and Cx45 in any of the nodal tissues (Fig. 7). 

However, Cx30.2 has been suggested to play a key role in nodal tissues
26

 and it was significantly 

downregulated in both the transitional tissue and inferior nodal extension in PHT (Fig. 7). The AV 

node is controlled by the autonomic nervous system. Although there were no changes in the M2 

muscarinic and A1 adenosine receptors in the AV node in PHT, there were changes in adrenergic 

receptors: there was a significant downregulation in the a1a/1c adrenergic receptor in the inferior 

nodal extension and importantly there was a significant downregulation of the b1 receptor (the most 

important adrenergic receptor) in the inferior nodal extension (Fig. S6). There were no significant 

changes in two other adrenergic receptors (a1b and b2; Fig. S6). The downregulation of the b1 

adrenergic receptor could negatively impact AV node conduction. 

Remodelling predicts heart block 

The significant changes in transcripts in the AV node in PHT in the present study are summarised in 

Tables S2 and S3. Biophysically-detailed action potential models have been used to predict possible 

changes in electrical activity based on changes in ion channel transcripts – ionic conductances are 

scaled depending on changes in mRNA (Supplementary Material). This should be viewed as a form 

of bioinformatics. Based on a biophysically-detailed one-dimensional (1D) model of the conduction 

pathway from the atrium through the AV node and Purkinje fibres to the ventricle,
27

 Fig. 8 shows 

the predicted effects of PHT-induced ion channel remodelling; the assumed changes in ionic 

conductances (based on expression of corresponding mRNAs) are shown in Table S11. In control 

conditions, the action potential is predicted to conduct from the atrium to the ventricle (Fig. 8A) and 

the conduction velocity (Fig. 8B) and action potential waveform (Fig. 8C) in the different tissues 

are as expected. However in PHT, conduction is predicted to fail in the compact node (heart block; 

Fig. 8) consistent with Figs. 2 and 3. Of the changes in ion channels in PHT, the computer 
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modelling predicts that the downregulation of the L-type Ca
2+

 channels, Cav1.2 and Cav1.3, is the 

most important. The expected downregulation of ICa,L in the N region alone is sufficient to cause 

heart block (data not shown). 

Discussion 

This study is the first to demonstrate widespread downregulation of the ion channel transcriptome in 

the AV node in response to a disease process. Previously, AV node disease has been commonly 

attributed to idiopathic fibrosis and sclerosis.
e.g.28

 However, there are other recent data pointing to 

the importance of ion channels in normal AV conduction. A genome wide association study has 

demonstrated several loci that are associated with a prolonged PR interval, including genes for ion 

channels and developmental genes known to be important for the patterning of ion channels during 

embryogenesis.
29

 There is also a recognition that several disease-causing ion channel mutations that 

have been characterised as causing Brugada syndrome and long-QT syndrome are also associated 

with conduction system disturbances and heart block.
19

 In addition to these findings in patients, 

gene knockout studies in mice have pointed to the importance of several ion channels including 

voltage-dependent Ca
2+

 channels
e.g.30

 and HCN4
31

 in maintaining normal AV conduction.  

Dysfunction and remodelling of AV node in PHT 

There was evidence of dysfunction of the AV node in the PHT rats: in the Langendorff-perfused 

heart, there was evidence of an increase in the AVERP, AVFRP and Wenckebach cycle length and, 

in the isolated AV node, there was a 50% incidence of complete heart block (Fig. 3). In one case, in 

which a PHT rat died with a telemetry system fitted, it died of heart block (Fig. 1C) and this is 

consistent with earlier telemetric studies;
10,11

 for example, Chi et al.
11

 reported that ~38% of PHT 

(monocrotaline-injected) rats die of heart block. There was a widespread downregulation in the ion 

channel transcriptome in the AV node in PHT (Tables S2 and S3). AV node conduction will be 

potentially slowed by the downregulation of many of the transcripts and computer modelling 

confirmed that if the changes in mRNA are translated into changes in function they will result in 

heart block (Fig. 8). The potential role played by the downregulation of some transcripts will be 

briefly discussed.  
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Primary role for Ca
2+

 channels 

The upstroke and conduction of the action potential of the AV node is known to be dependent on L-

type Ca
2+

 channels. For example, knockout of either Cav1.2 and Cav1.3 has been reported to slow or 

block AV node conduction.
32,33

 A downregulation of Cav1.2 and Cav1.3 was observed in the AV 

node in PHT (Fig. 4) and the computer modelling predicts that the expected decrease in L-type Ca
2+

 

current alone is sufficient to cause heart block. We suggest that this is the primary cause of AV 

node dysfunction in PHT.  

The T-type Ca
2+

 channels, Cav3.1 and Cav3.2, also tended to decrease (Figs. 4 and S4) and 

knockout of Cav3.1 at least has been shown to slow AV node conduction.
30

 RyR2 was significantly 

downregulated in the AV node in PHT (Fig. 7). RyR2 is an important part of the Ca
2+

 clock. The 

‘Ca
2+

 clock’ as well as the ‘membrane clock’ (the principal component of which is the funny 

current, If) controls pacemaking in the sinus and AV nodes.
24

 However, there is also evidence that it 

controls AV node conduction: Saeed et al.
25

 have shown that incapacitating RyR2 and the Ca
2+

 

clock by application of ryanodine slows AV node conduction. The Ca
2+

 clock could control AV 

node conduction by affecting excitability and, therefore, the downregulation of RyR2 in PHT may 

be important. Further components of the Ca
2+

 clock tended to be downregulated in the AV node in 

PHT (Fig. 7), markedly in the case of phospholamban and sarcolipin; the consequences of these 

changes for AV node conduction are unknown. 

Role for downregulation of HCN4? 

Downregulation of the HCN4 channel in the AV node was observed in PHT (Fig. 4; see also Fig. 

S8). HCN channels and If (inward current during diastole that is responsible for phase 4 

depolarization) have mainly been considered in relation to sinus node pacemaking. Indeed an If 

blocking drug, ivabradine, is used clinically to reduce sinus rate. Initial studies on a small number 

of patients demonstrated no effects on the AV node and therefore subsequent larger studies have not 

investigated the effects of ivabradine on the AV node.
e.g.34

 However, there are several recent studies 

that suggest that If may play a significant role in AV node conduction. This study has demonstrated 
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high levels of HCN4 in the AV node (Fig. 4). There is also functional evidence that If plays a role in 

AV node conduction: although ivabradine was not shown to have an effect on the human AV node, 

another If blocking agent, zatebradine, has been shown to increase the AH interval, AVERP and 

Wenckebach cycle length in humans.
35

 Ivabradine has also been shown to slow the ventricular 

response to atrial fibrillation in dogs with the mechanism thought to be specific to If blockade 

within the AV node slowing conduction and not a direct effect of If blockade on the atrium.
36

 

Inducible cardiac specific knockout of HCN4 in mice is lethal because of the development of 

complete heart block.
31

 Saeed et al.
25

 have shown that in young rats If block significantly prolongs 

the AH interval, AVERP and Wenckebach cycle length. Downregulation of If could slow AV node 

conduction by decreasing excitability of the cell.
37

   

Role for other factors? 

A downregulation of various K
+
 channels was observed in the AV node in PHT (Figs. 5 and 6). 

This is not surprising, because in the ventricles a downregulation of K
+
 channels has been shown in 

a number of different disease models including PHT.
38

 In the ventricles, the downregulation leads to 

a prolongation of the action potential.
38

 In the present study, it has not been highlighted, but many 

K
+
 channels were downregulated in both the atrial and ventricular working myocardium (Figs. 5, 6 

and S3) and the functional experiments demonstrated an increased VERP and suggested an 

increased AERP, which is consistent with an increase in action potential duration. The 

downregulation of K
+
 channels in the AV node could explain the observed increase in AVERP, 

AVFRP and Wenckebach cycle length in PHT (Fig. 2). In the transitional tissue at least, the 

computer modelling predicts a prolongation of the AV node action potential in PHT (Fig. 8). Regan 

et al.
39

 observed that selective pharmacological block of ERG (IK,r) and KvLQT1 (IK,s) both cause a 

prolonged AH interval and AVERP in rats. Although ERG and KvLQT1 were unaffected by PHT 

(Fig. 5), this demonstrates that K
+
 channels are able to affect AV node conduction and 

refractoriness. Recently, Mesirca et al.
40

 reported that ablation of the ACh-activated K
+
 current 

(carried by Kir3.1 and Kir3.4) relieves the heart block in Cav1.3 knockout mice. In PHT, Kir3.1 and 
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Kir3.4 tended to be downregulated in PHT and this could be a compensatory mechanism. Changes 

in K
+
 channels could potentially alter the membrane potential during diastole and this would have 

indirect consequences, for example for the Na
+
 current. The only connexin that was significantly 

affected within the nodal tissue was Cx30.2, which was downregulated (Fig. 7). However, 

paradoxically, knockout of the very low conductance Cx30.2 leads to an increased conduction 

velocity across the AV node.
41

   

Cardiac sympatholysis 

Activation of the sympathetic nervous system and an increase in plasma norepinephrine levels is a 

feature of heart failure.
42

 In keeping with this, Leineweber et al.
43

 showed that, in the 

monocrotaline-injected rat, plasma norepinephrine levels are markedly increased. The activation of 

the sympathetic nervous system can support the failing heart (although it can also be detrimental to 

the heart and cause hypertrophy for example).
42

 In the present study, whereas AV node function 

was generally normal in vivo (Table 1), AV node function was worse in the Langendorff-perfused 

heart (AVERP and AVFRP were significantly longer; Table 2) and it was worse again in the 

isolated right atrial preparation (when conduction block was frequently observed; Figs. 2 and 3 and 

Tables 2 and S1). This is consistent with dysfunction of the AV node in PHT and in vivo the failing 

AV node being supported by the activation of the sympathetic nervous system.  

In heart failure, the elevated norepinephrine levels are known to result in downregulation of 

b-receptors as a result of desensitization.
42

 In the monocrotaline-injected rat, Leineweber et al.
43

 

showed that there is a downregulation of b-receptors at the protein level and a diminished 

responsiveness to b-stimulation. The data from the present study are consistent with this. In the rat, 

of the b1- and b2-receptors, the b1-receptor is the dominant isoform
43

 and the same is true in the 

present study at the mRNA level (Fig. S6). In the present study, there tended to be a downregulation 

of b-receptors in the PHT rats (although the downregulation was only significant in some regions; 

Fig. S6). Interestingly, in the present study, there was also a downregulation of a-receptors at the 

mRNA level in some regions (Fig. S6); Leineweber et al.
43

 also reported a downregulation. In a 
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pilot experiment, sympathetic nerve fibres in the AV node were immunolabelled using an antibody 

to neurofilament 150;
44

 dense innervation was observed, but there was no marked change in PHT 

(Fig. S7). The consequences of these changes can only be speculated on. The downregulation of b-

receptors in PHT could contribute to failure of the AV node in vivo (because activation of the 

sympathetic nervous system would no longer be able to support the failing AV node). 

Clinical implications 

Heart block is a common condition in both PHT and the general population and is the indication for 

over half of implanted pacemakers.
45

 AV node disease has typically been attributed to fibrosis, but 

this study shows that this is not necessarily the case. This study shows that in PHT it is more likely 

to be the result of remodelling of the ion channel transcriptome. In this respect, the AV node is no 

different from the rest of the heart – in heart disease, there is a well-known remodelling of the ion 

channel transcriptome in the sinus node and working myocardium. Recognition of the causes of AV 

node disease is the first step to developing new treatments.  

Further discussion of the findings can be found in the Supplementary Material.  
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Table 1. Body, heart and lung weights at day 0, day 21 and day of sacrifice and echocardiography 

and ECG parameters on day of sacrifice. Data are presented as mean±SEM. Differences between 

monocrotaline-injected and control rats assessed by Student’s t-test; *significantly different from 

control data. LV, left ventricle; PAAD, pulmonary artery acceleration time; PAD, pulmonary artery 

deceleration; PVmax, maximum pulmonary artery velocity; RV, right ventricle. 

 Control rats PHT rats P value 

Body, heart and lung weights 

Body weight at day 0 (g; n=8/8) 208±9 208±5 0.9897 

Body weight at day 21 (g; n=8/8) 299±13 277±7 0.1573 

Body weight on day of termination (g; n=8/8) 308±15 270±8* 0.0446 

Heart weight (g; n=6/8) 1.6±0.1 1.9± 0.1* 0.0239 

Heart:body weight ratio (n=6/8) 0.0050±0.0004 0.0070±0.0003* 0.0010 

Lung weight (g; n=8/8) 1.4±0.1 2.7±0.2* <0.0001 

Lung:body weight ratio (n=8/8) 0.0050±0.0003 0.0100±0.0009* 0.0001 

Echocardiography parameters 

LV septal wall thickness, diastole (cm; n=8/8) 0.15±0.01 0.18±0.01 0.1978 

LV internal diameter, diastole (cm; n=8/8) 0.71±0.03 0.44±0.05* 0.0002 

LV posterior wall, diastole thickness (cm; n=8/8) 0.18±0.01 0.20±0.01 0.3874 

LV septal wall thickness, systole (cm; n=8/8) 0.26±0.02 0.30±0.02 0.1275 

LV internal diameter, systole (cm; n=8/8) 0.36±0.03 0.17±0.03* 0.0004 

LV posterior wall, systole thickness (cm; n=8/8) 0.27±0.01 0.29±0.02 0.3719 

PAAT (ms; n=8/8) 33.0±3.6 14.3±0.6* 0.0001 

PAD (m/s; n=8/8) 14.9±1.7 33.6±3.5* 0.0003 

PVmax (m/s; n=8/8) 1.09±0.05 0.70±0.05* <0.0001 

RV wall thickness, diastole (cm; n=8/8) 0.09±0.01 0.14±0.01* <0.0001 

RV internal dimension, diastole (cm; n=8/8) 0.27±0.02 0.38±0.05 0.0598 

RV wall thickness, systole (cm; n=8/8) 0.13±0.01 0.16±0.01* 0.0375 

RV internal dimension, systole (cm; n=8/8) 0.12±0.02 0.25±0.04* 0.0065 

RV fractional shortening (%; n=8/8) 54.4±4.9 34.4±5.1* 0.0131 

ECG parameters 

RR interval (ms; n=27/28) 145±2 158±2* <0.0001 

PR interval (ms; n=27/28) 46.1±0.7 45.8±0.7 0.7269 

QRS duration (ms; n=27/28) 15.5±0.5 14.7±0.4 0.2309 

QT interval (ms; n=27/27) 52±2 103±3* <0.0001 

QTc interval (ms; n=27/27) 136.7±4.1 259.3±6.9* <0.0001 
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Table 2. Electrical properties of Langendorff-perfused heart and isolated AV node preparation from 

control and PHT rats. Data are presented as mean±SEM. Differences between PHT and control rats 

assessed by Student’s t-test; Fisher’s exact test was used to compare incidences of complete heart 

block; *significantly different from control data. AERP, atrial effective refractory period; AVERP, 

AV node effective refractory period; AVFRP, AV node functional refractory period; VERP, 

ventricular effective refractory period. 

 

 Control rats PHT rats P value 

Isolated Langendorff-perfused heart    

RR interval (ms; n=9/11) 237±8 244±14 0.6556 

PR interval (ms; n=9/11) 43±2 44±2 0.6922 

QT interval (ms; n=9/11) 56±5 135±10* <0.0001 

QTc interval (ms; n=9/11) 116±10 275±18* <0.0001 

QRS duration (ms; n=9/11) 13±1 16±3 0.3813 

AERP (ms; n=9/9) 34±2 43±5 0.1508 

Wenckebach cycle length (ms; n=10/11) 111±3 117±3 0.1640 

AVERP (ms; n=10/10) 88±1 94±3* 0.0364 

AVFRP (ms; n=10/10) 115±2 122±2* 0.0122 

VERP (ms; n=6/4) 40±3 98±11* 0.0003 

Isolated right atrium-AV node preparation    

RR interval (ms; n=9/11) 216±10 212±7 0.7143 

AH interval (ms; n=10/6) 41±5 53±6 0.1579 

Wenckebach cycle length (ms; n=9/5) 129±7 139±11 0.4932 

AVERP (200 ms cycle length; n=5/4) 110±13 114±13 0.8113 

AVERP (150 ms cycle length; n=6/2) 95±4 102±15 0.5008 

AVFRP (200 ms cycle length; n=2/4) 133±1 138±11 0.7759 

AVFRP (150 ms cycle length; n=7/2) 117±5 127±6 0.3517 

Incidence of complete heart block (%; n=10/12) 0% 50%* 0.015 
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Figure legends 

Fig. 1. A and B, echocardiography images (on day 23 following monocrotaline injection) showing 

development of PHT. A, parasternal short axis view from control (Ai) and monocrotaline-injected (Aii) rats. 

The left and right ventricles (LV and RV) are identified by dotted lines (not possible to identify right 

ventricle in control rat). B, pulmonary velocity profile from control (Bi) and monocrotaline-injected (Bii) 

rats. Measurement of pulmonary artery acceleration time (PAAT) and pulmonary artery deceleration (PAD) 

shown. C, death of rat with PHT caused by complete heart block 28 days following monocrotaline injection. 

ECGs recorded by telemetry at different times during final 21 min shown. Ratio of atrial to ventricular beats 

shown in blue. ECGs shown on different time bases (1 s time marks shown). Y-axis shows 0.2 mV 

increments. CHB, complete heart block. 

 

Fig. 2. Impaired AV node conduction in PHT rats. All data collected on day of termination. A (left), mean 

(+SEM) Wenckebach cycle length (WCL), AVERP and AVFRP in control (black bars) and PHT (red bars) 

rats (n=10). Recordings made from Langendorff-perfused heart. *P<0.05 (Student’s t test). A (right), typical 

AV node conduction curves from control and PHT rats showing measurement of AVERP and AVFRP. B, 

significant correlation between AVERP and AVFRP and Wenckebach cycle length. Each point corresponds 

to different rat, control (black) or PHT (red). Data are fit by linear regression (AVERP, R
2
=0.63, P<0.001; 

AVFRP, R
2
=0.71, P<0.0001). C, demonstration of complete heart block in PHT rat. Extracellular potential 

recordings from region of His bundle of control (top trace) and PHT (bottom trace) rats shown. Recordings 

made from isolated AV node. Atrial (labelled A and marked with green arrow) as well as His bundle 

(labelled H and marked with red arrow) signals recorded. 

 

Fig. 3. Heart block in PHT rats explored further. A, example of AV node preparation used for intracellular 

action potential recording. Tissue was paced at 5 Hz at level of sinus node. B, intracellular action potentials 

recorded from compact node showing normal 1:1 conduction in control preparation and complete heart block 

(as well as ectopic action potentials) in PHT preparation. Sharp deflections, stimulation artefacts. C, 

intracellular action potentials recorded along AV conduction axis (transitional tissue, inferior nodal 

extension/compact node and penetrating bundle) showing normal conduction in control preparation and 

decremental conduction in penetrating bundle in PHT preparation. 
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Fig. 4. Expression of mRNA for ion channels carrying inward current. In this and similar figures: expression 

shown in atrial muscle (A; A),  transitional tissue (B; TT), inferior nodal extension (C; INE), compact node 

(D; CN), penetrating bundle (E; PB) and ventricular muscle (F; V) from control (black bars) and PHT (red 

bars) rats; means (+SEM) shown (n=6-8); bars and asterisks indicate significant differences between control 

and PHT rats as assessed by the limma test (FDR-corrected P<0.2, i.e. 20%); and, for the control tissues 

only, letters indicate a significant difference from the appropriately lettered region (lower case letters, FDR-

corrected P<0.2, i.e. 20%; upper case letters, FDR-corrected P<0.05, i.e. 5%). Inset, schematic diagram of 

AV node (from Greener et al.
21

). CFB, central fibrous body; CS, coronary sinus; IVC, inferior vena cava; 

FO, fossa ovalis; TV, tricuspid valve.  

 

Fig. 5. Expression of mRNA for voltage-gated K
+
 channels. 

 

Fig. 6. Expression of mRNA for inward rectifier K
+
 channels.  

 

Fig. 7. Expression of mRNA for Ca
2+

-handling molecules and connexins.  

 

Fig. 8. Remodelling of AV node predicts heart block in PHT. A, simulated conduction along AV conduction 

axis under control conditions (top) and in PHT (bottom). Propagation of five consecutive action potentials 

shown. Membrane potential (colour coded) is shown as a function of time and distance. B, computed 

conduction velocity (CV) along AV conduction axis under control conditions and in PHT. C, computed 

action potential profiles along AV conduction axis under control conditions and in PHT. 
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SUPPLEMENTAL MATERIAL 

Supplemental Methods 

All procedures were carried out in accordance with the UK Animals Scientific Procedures Act (1986). Male 

Wistar rats (weight 200 g; Charles River, UK) were arbitrarily assigned to either a control or monocrotaline 

group. On day 0 the monocrotaline group received monocrotaline (Sigma-Aldrich Ltd, UK) 60 mg/kg by 

intraperitoneal injection and the control group received a volume matched 0.9% saline intraperitoneal 

injection (3 ml/kg). Monocrotaline was dissolved in 1 M hydrochloric acid and then made up to a 

concentration of 20 mg/ml with 0.9% saline, the pH corrected to 7.4 using 4 M NaOH. The animals were 

weighed and their clinical condition was assessed twice weekly in the first 18 days, and daily thereafter. The 

control and monocrotaline-injected animals were paired. Animals were sacrificed on the day that the 

following pre-specified endpoints were met, namely evidence of clinical deterioration with reduced 

movement, increased respiratory rate, piloerection and weight loss of >10 g over two days. The paired 

animal was sacrificed within 24 h. Animals that did not meet these criteria were electively sacrificed on day 

28. The animals were sacrificed by stunning and cervical dislocation; the heart and lungs were excised and 

weighed. 

In vivo ECG and echocardiography 

Echocardiography and ECG recording was carried out under general anaesthesia with 2% isoflurane. 

Echocardiography images were acquired on an ACUSON Sequoia (Acuson Universal Diagnostics Solution, 

USA) with a 15 MHz 15L8 transducer. All images were stored on optical media disks for subsequent offline 

analysis. M-mode recordings were taken in the parasternal short axis view allowing recording of left 

ventricle anterior and posterior wall thickness and the internal diameter of the left ventricle in both systole 

and diastole. Right ventricle wall thickness was measured from M-mode recordings in the parasternal long 

axis view. Continuous wave Doppler recordings through the pulmonary artery were used to assess the 

pulmonary velocity profile. The maximum pulmonary velocity, time from the onset of pulmonary outflow to 

maximal flow (PAAT) and the rate of deceleration of pulmonary flow (PAD) were measured. ECG 

electrodes were inserted subcutaneously with the negative electrode in the right forepaw, the positive 

electrode in the left forepaw and the ground electrode in the right hindpaw. The electrodes were connected to 

a Bioamp and Powerlab analog to digital converter (AD Instruments, New Zealand). Signals were recorded 

using LabChart (AD Instruments, New Zealand) and analysed offline. Echocardiography and ECG recording 

was carried out on day 0 immediately prior to injection, day 21 and immediately prior to termination. 

Telemetry 

Telemetric recordings of ECGs from conscious and unrestrained male Wistar rats were made as part of an 

on-going study at the University of Leeds with UK Home Office and local ethical approval. For data 

included in this publication, animal source, monocrotaline treatment and experimental end points were the 

same as those described above with the additional voluntary ingestion of 2 ml/day blackcurrant juice placebo 

in the ongoing study. Implantation of recording devices and ECG acquisition were as previously described 

by Benoist et al.
1
 Data were analysed using Chart 7 software (AD Instruments, New Zealand). Twenty-one 

days after injection of monocrotaline, ECGs were recorded 24 h per day.   

Langendorff experiments 

The heart was mounted on a Langendorff column and retrogradely perfused with oxygenated Tyrode’s 

solution at a temperature of 36.5˚C with a fixed flow rate of 0.11 ml/g/min. Tyrode’s solution contained: 

NaCl, 120 mM; CaCl2, 1.2 mM; KCl, 4 mM; MgSO4, 1.3 mM; NaH2PO4, 1.2 mM; NaHC03, 25.2 mM; 

glucose, 5.8 or 11 mM. The solution was equilibrated with 95%O2 and 5% CO2. Widely spaced extracellular 

electrodes were placed on the right atrium and left ventricle. The electrodes were connected via a headstage 

(NL100AK, Digitimer, UK) to an amplifier (NL104A, Digitimer, UK). The signal was then filtered between 

50-500 Hz (NL125/6, Digitimer, UK). The amplified and filtered signal was then converted to a digital 

signal using a data acquisition unit (Micro 1401, Cambridge Electronic Design, UK) and recorded and 

analysed using Spike 2 software (Cambridge Electronic Design, UK). The electrodes record a ‘pseudo-ECG’ 

from the Langendorff-perfused heart which is equivalent to the in vivo ECG. The recording from 19-20 min 

(i.e. immediately prior to stimulation) was exported and analysed using LabChart software. This allowed an 

averaged ECG of the last 100 beats before stimulation to be inspected. The RR, PR and QT intervals and the 

QRS duration were measured. Pacing protocols were performed to measure atrial and ventricular effective 

refractory periods, atrioventricular (AV) node effective and functional refractory periods (AVERP and 

AVFRP, respectively) and Wenckebach cycle length. The pacing protocol for AVERP and AVFRP involved 

pacing the atrium with a drive train of 8 beats with a 180 ms coupling interval with an extra-stimulus with a 

progressively shortening coupling interval until failure of conduction between the atrium and ventricles was 

seen. The pacing protocol for Wenckebach cycle length used burst pacing of the atrium for 30 s at a fixed 
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cycle length with a sequentially shortening cycle length until Wenckebach conduction was seen between the 

atrium and the ventricle.  

Isolated AV node experiments 

The heart was excised from the thorax and retrogradely perfused with oxygenated Tyrode’s solution chilled 

to 4˚C. The heart underwent dissection in a dissection chamber whilst being constantly superfused with 

oxygenated Tyrode’s solution. The AV node preparation was placed in a perfusion bath with recirculated 

Tyrode’s solution at a flow rate of 50 ml/min and temperature of 36.5°C. Custom made bipolar electrodes 

with an interelectrode spacing of 0.2 mm were used to record signals in the atrium and at the His bundle. 

Signals were amplified and filtered as per the Langendorff experiments. The preparation was stimulated with 

pacing protocols to determine AVERP, AVFRP and Wenckebach cycle length. The pacing protocol for 

AVERP and AVFRP involved pacing the atrium with a drive train of 15 beats with a coupling interval of 

150 or 200 ms with an extra-stimulus with a progressively shortening coupling interval until failure of 

conduction between the atrium and ventricles was seen. The pacing protocol for determination of the 

Wenckebach cycle length used burst pacing of the atrium for 30 s at a fixed cycle length with a sequentially 

shortening cycle length until Wenckebach conduction was seen between the atrium and the His bundle. 

Intracellular action potential recordings 

Isolated AV node preparations were stimulated at 5 Hz at the level of the sinus node using 2 ms, 2´ 

threshold, constant voltage rectangular pulses. Intracellular action potentials were recorded using sharp 

microelectrodes (20 to 40 MΩ resistances) filled with 3 M KCl as described previously by Atkinson et al.
2
 

Briefly, data acquired at 0.005 ms intervals using WinEDR V3.3.6 software (Dr J. Dempster, University of 

Strathclyde, Glasgow, UK) were passed through a 10 kHz low-pass Bessel filter, amplified 10 times (Axon 

Instruments GeneClamp 500) and digitised (Axon Instruments Digidata 1440A) for storage on a computer 

for later analysis. 

AV node microdissection and reverse transcription quantitative polymerase chain reaction (qPCR) 

Hearts were excised and the AV node dissection was carried out in the same way as for the isolated AV node 

experiments. The AV node was sectioned at 50 µm in a cryostat. Sections 300 µm apart were 

immunolabelled for HCN4 and Cx43 and stained with Masson’s trichrome (Fig. S1). The immunolabelling 

and staining allowed six regions in and around the AV node to be identified: atrial septal myocardium, 

transitional tissue, inferior nodal extension, compact node, penetrating bundle and ventricular septal 

myocardium. A haematoxylin and eosin stain was performed on the remaining tissues and the six different 

regions were identified using a Nikon SMZ800 dissecting microscope (Nikon, Japan) with x63 magnification 

and were dissected with a sharp needle (Fig. S1). mRNA was extracted using the MirVana kit (Life 

Technologies, USA) and was treated with TurboDNAse (Life Technologies) to remove any residual genomic 

DNA. The concentration of mRNA in each sample was measured using the Qubit system (Life Technologies) 

and the samples were diluted so that 16 ng of total mRNA were used for reverse transcription. SuperScript 

VILO Mastermix (Life Technologies) with random hexamers was used to reverse transcribe the samples to 

cDNA. Prior to quantification, the cDNA underwent a preamplification process (Life Technologies); see 

below. The cDNA was quantified using the TaqMan low density array card system (TLDA; Life 

Technologies) using predesigned primer sequences with a hydrolysis probe detection system. Data were 

analysed using a combination of ExpressionSuite (Life Techonolgies) and RealTime Statminer (Integromics, 

S.L., USA) software. Samples that had failed to amplify for all or most targets were omitted. Where 

individual targets had not amplified in a sample where the majority of targets had amplified well, the 

undetermined values were replaced with a Ct value of 40 to represent an assumed very low abundance of the 

target within that sample. Expression was normalised to the abundance of a pair of housekeeper genes, B2M 

and PKG1, selected from 16 potential housekeeper genes as the most stable.  

Preamplification 

Because the tissues making up the AV node are small, the amount of RNA could be small (16 ng; less than 

the recommended minimum of 30 ng for Taqman low-density array cards) and therefore a preamplification 

step was performed after the RNA had been reverse transcribed to produce cDNA.
3,4

 Preamplification of the 

cDNA was carried out using PCR and the combination of the specific primer sets for the genes of interest. 

The process of preamplification has been shown to increase the sensitivity of qPCR in several tissues,
3,4

 but 

has not previously been used with heart tissue. To validate preamplification, 25 atrial and ventricular 

samples were used: 6 atrial and 7 ventricular samples from control rats and 6 atrial and 6 ventricular samples 

from monocrotaline-injected rats. Atrial and ventricular samples were used because relatively large amounts 

of RNA were isolated. From the samples, two cDNA dilutions were prepared from each: one with an 

effective initial total RNA of 16 ng (which was preamplified) and another with an effective initial total RNA 

of 160 ng (which was not preamplified). qPCR using Taqman low-density array cards was then used to 
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measure the expression of the 95 transcripts of interest in the samples using both dilutions. Expression was 

normalised to the abundance of the housekeeper genes, B2M and PKG1 (ΔCt=Ct housekeeper–Ct target). If 

preamplification is effective, the ΔCt value for a target transcript should be the same for the unamplified and 

preamplified samples. Fig. S2 shows the relationship between the ΔCt values from the unamplified and 

preamplified samples for all transcripts and all tissue samples. The ΔCt values for the unamplified and 

preamplified samples are significantly correlated (P<0.0001) with an R
2

 value of 0.61. The correlation is 

excellent for abundantly expressed transcripts (ΔCt<0; transcript of interest more abundant than 

housekeeper). However, there is deviation from a 1:1 relationship for poorly expressed transcripts (ΔCt>0; 

transcript of interest less abundant than housekeeper). It is likely that low concentrations of cDNA for targets 

in the unamplified samples were at the limit of detection of qPCR and therefore inaccurate quantification of 

these targets in the unamplified samples caused deviation from the 1:1 relationship. These findings support 

the validity of the preamplification methodology and show the need for preamplification with the low 

concentrations of mRNA in the microdissected tissue samples from the AV node. 

Immunohistochemistry 

Whole hearts were cryosectioned, the different regions of the cardiac conduction system including the AV 

node identified by histology and neurofilament 150 and HCN4 immunolabelled as described previously.
5-7

 

Computer modelling 

mRNA is an important determinant of protein (and therefore function), although not the only determinant (it 

can account for ~40% of variation
8-10

). In the cardiac conduction system, we have usually (but not always) 

seen a correlation between mRNA and protein.
e.g.11

 We and others have successfully used biophysically-

detailed action potential models to predict potential changes in electrical activity based on changes in mRNA 

expression for ion channels etc.
11-16

 We scale the conductance for a particular ionic current based on the 

change in the corresponding mRNA. This is not a method of generating definitive biophysically-detailed 

action potential models, but instead is a form of bioinformatics to explore the possible consequences of 

changes in transcripts and we have used this approach in the present study. A one-dimensional (1D) strand 

model of cardiac tissue was constructed in order to simulate the functional effects of pulmonary hypertension 

(PHT) on action potential conduction. The 1D model is 52.5 mm in length and consists of segments of 

atrium (15 mm), AV node (12.5 mm), Purkinje fibre (20 mm) and ventricle (10 mm). The segments were 

simulated by well-established models of the action potential of an atrial cell,
17

 AV node cells,
18

 Purkinje cell 

and left ventricular cell
19

 of the rabbit heart (action potential models are not available for other species). 

Details of the dimensions and coupling conductances of the 1D strand model are summarised in Table S4. 

For simplicity, we chose to only consider the fast pathway (the normal pathway) through the AV node. For 

initiation of cardiac excitation, a series of supra-threshold stimuli were applied at the beginning of the strand 

of atrium; each stimulus evoked an action potential that propagated from the atrium to the AV node, and then 

to the Purkinje fibres and ventricular muscle. The PHT condition was simulated based on regional changes in 

mRNA expression, which we assumed to reflect changes in the corresponding ion channel current density as 

we and others have done previously.
11-16

 The ratio of an ionic conductance in PHT to the same ionic 

conductance in control, !"#$
% , was calculated as follows: 
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where gion is the single channel conductance (values used listed in Table S5) and dion is the density (or 

expression) of the relevant ion channel. In many cases, more than one ion channel contributes to an ionic 

conductance and the ionic conductance was calculated by summing the contribution of the different ion 

channels. Details of the calculations are shown in Tables S6-S10. The changes made to simulate PHT are 

summarised in Table S11. The 1D cable equation was solved using the Forward-Time Central-Space scheme 

with a space step of 0.1 mm and time step of 0.005 ms. 

Supplemental Discussion 

Validation of the monocrotaline model 

There are several animal models of PHT and the monocrotaline model is the best characterised and most 

widely used.
20,21

 Monocrotaline is a pyrrolizidine alkaloid, extracted from the plant Crotalaria spectabilis, 

and a single injection has been shown to generate severe pulmonary arterial hypertension in several species, 

notably the rat.
e.g.22,23

 Experiments using the monocrotaline model have given positive results from drug 

therapies including ERAs, sildenafil, statins and b-blockers that have gone on to become the mainstay of 

therapy for patients with pulmonary arterial hypertension.
24-28

 The monocrotaline model has been used to 

investigate arrhythmias in the working myocardium.
1,16,29

 Although the monocrotaline model is widely used 
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there remain some concerns over its representativeness as a model of PHT.
30

 Histological examination of the 

lungs of monocrotaline-injected rats shows medial thickening and muscular hypertrophy, but not the 

characteristic plexiform lesions that are seen in patients with PHT.
30

 There is also concern regarding the 

possibility that monocrotaline may have a direct effect on the heart and therefore any changes seen in cardiac 

function may be attributable to a direct effect of monocrotaline and not PHT. One study demonstrated 

inflammation in the right ventricular free wall, interventricular septum and posterior left ventricular wall in 

response to monocrotaline injection with some evidence of inflammation in the posterior left ventricle wall 

prior to the development of PHT. The authors argue that this demonstrates a direct toxic effect of 

monocrotaline on the heart.
31

 In contrast to this, another study using both in vivo single-photon emission 

computed tomography imaging and ex vivo histological and PCR techniques demonstrated that inflammation 

was largely confined to the right ventricle and interventricular septum. The authors argue that inflammation 

is part of the pathogenesis of right heart failure secondary to PHT rather than a direct monocrotaline effect.
32

 

Support for this view comes from the finding of right ventricular inflammation in a rat model of pulmonary 

embolism and PHT.
33

 The conflicting findings regarding left ventricular involvement in the monocrotaline 

model may in part be explained by which areas of the left ventricle were studied; the study reporting 

inflammation in the left ventricle looked at the posterior wall which is in close proximity to the septum and 

posterior attachment of the right ventricle.
31

 There are several arguments that support the use of the 

monocrotaline model to investigate the effects of PHT. The success of several pharmacological therapies 

showing beneficial effects on respiratory physiology and cardiac function in both the monocrotaline model 

and in humans would not be expected if the deleterious effects on cardiac function seen in the monocrotaline 

model were purely due to a direct toxic effect of monocrotaline.
24-26,34 

In our study, we are interested in the 

effects of PHT on the heart and therefore concerns regarding the lack of plexiform lesions in the 

monocrotaline model are less relevant given the known increases in right heart pressures with the 

monocrotaline model. The monocrotaline model is technically simple (with a single subcutaneous injection 

developing a severe PHT phenotype in 3-4 weeks), well characterised and has previously been used to 

investigate arrhythmias in the working myocardium. 

Site of conduction block 

The experimental data in Fig. 3 and Table S1 shows that heart block most often occurs in the compact node 

in PHT. However, whereas many significant changes in ion channel expression were observed in the inferior 

nodal extension, fewer were observed in the compact node (Table S3). However, the same trend of 

downregulation of L-type Ca
2+

 channels was observed in the compact node as in the inferior nodal extension 

(Fig. 4). The computer model, which was based on the measured changes in ion channel expression, 

predicted block in the compact node (Fig. 8). There is therefore a reasonable correlation between observation 

and prediction. 

Limitations of the study 

In vivo the AV node dysfunction was generally relatively modest (Table 1). As argued above, in part this is 

because AV node function may be supported in vivo by an increase in sympathetic tone. However, in 

addition, the animal legislation in the UK does not permit animals reaching end stage heart failure. In this 

study, gene expression has been measured at the mRNA level. Determination of protein expression is 

difficult. For example, many ion channel antibodies are poor and the specialised tissues of the heart of small 

mammals are too small for Western blot. However, in a pilot experiment we confirmed that there is a 

downregulation of HCN4 protein in the AV node in PHT (Fig. S8) consistent with the downregulation of 

HCN4 mRNA (Fig. 4). 
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Table S1. Normal and abnormal electrical conduction through the isolated AV node from control and 

PHT rats. 

!

Conduction phenotype Incidence 

 Control PHT 

Normal 1:1 conduction through AV node 4/5 1/6 

Conduction block in compact node (e.g. Fig. 3B) 1/5 3/6 

Decremental conduction in penetrating bundle and 

likely complete block (Fig. 3C) 

0/5 1/6 

Decremental conduction in the penetrating bundle 0/5 1/6 

!

!
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Table S2. Expression of all transcripts. Expression of a transcript is given as a percentage of the expression of the same transcript in the control atrial sample. 

Significant differences (FDR<0.2) between the control and PHT groups are marked with arrows. A red highlighted arrow indicates significant downregulation in the 

PHT group and a green highlighted arrow indicates significant upregulation in the PHT group. MCT, monocrotaline.  

 

 Atrium Transitional 

tissue 

Inferior nodal 

extension 

Compact node Penetrating 

bundle 

Ventricle 

 Control MCT Control MCT Control MCT Control MCT Control MCT Control MCT 

Inward currents 

NaV1.1 100  61 ↓ 90 40 ↓ 49 16 67 33 20 23 53 78 

NaV1.5 100 169 45 75 11 17 9 21 33 57 167 103 

NaV1.8 100 47 16 18 9 88 4 40 687 347 3 7 ↑ 

NaVβ1 100 111 70 91 27 44 43 46 22 32 112 121 

CaV1.2 100 46 ↓ 146 84 93 48 ↓ 80 36 90 54 62 101 ↑ 

CaV1.3 100 16 17 0 45 0 ↓ 36 16 52 3 16 7 

CaV3.1 100 38 41 8 39 9 45 46 30 5 14 10 

CaV3.2 100 45 14 1 22 2 27 12 18 19 43 34 ↓ 

CaVa2d1 100 77 21 15 18 5 9 8 7 15 71 45 

CaV2d2 100 83 18 3 31 4 48 79 111 9 58 30 ↓ 

CaVb2 100 113 42 34 15 18 23 36 17 29 87 128 

HCN1 100 147 234 213 426 239 426 372 143 235 1 7 ↑ 

HCN2 100 80 32 17 27 16 20 25 18 114 1299 385 ↓ 

HCN4 100 39 ↓ 487 154 800 143 ↓ 1162 343 ↓ 2428 853 78 119 

CLC-2 100 71 98 77 58 30 69 69 69 91 86 82 

CLC-3 100 79 87 72 182 71 ↓ 117 106 133 143 55 156 ↑ 
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Table S2 (continued). 

!

 Atrium Transitional 

tissue 

Inferior nodal 

extension 

Compact node Penetrating 

bundle 

Ventricle 

 Control MCT Control MCT Control MCT Control MCT Control MCT Control MCT 

Outward currents 

Kv1.2 100 9 ↓ 17 1 9 0 ↓ 3 2 15 2 20 7 

Kv1.4 100 36 ↓ 35 11 8 3 12 10 9 7 25 26 

Kv1.5 100 74 158 109 179 51 ↓ 192 156 136 92 57 48 

Kv2.1 100 56 ↓ 65 38 33 20 35 30 28 30 143 84 ↓ 

Kv4.2 100 14 ↓ 13 1 10 2 ↓ 1 1 1 9 97 38 ↓ 

Kv4.3 100 49 ↓ 61 39 45 22 ↓  38 25 31 14 37 15 ↓ 

ERG1 100 39 ↓ 38 8 13 5 13 13 14 14 54 32 ↓ 

KVLQT1 100 83 35 14 16 14 26 17 20 24 109 84 

Kir2.1 100 48 ↓ 76 41 20 21 27 24 74 80 149 159 

Kir2.2 100 33 19 3 19 1 11 4 5 7 43 22 ↓ 

Kir2.4 100 117 20 0 24 2 ↓ 24 2 23 26 357 72 ↓ 

Kir3.1 100 26 ↓ 36 6 ↓ 8 3 7 3 5 2 18 7 ↓ 

Kir3.4 100 58 ↓ 117 70 59 31 ↓ 86 51 32 24 10 19 ↑ 

Kir6.1 100 72 ↓ 69 71 83 74 48 65 46 96 96 108 

Kir6.2 100 36 ↓ 51 12 ↓ 25 4 21 19 16 19 208 84 ↓ 

SUR1 100 60 24 9 11 4 10 10 3 15 120 41 ↓ 

SUR2 100 51 ↓ 72 47 57 39 40 28 71 58 82 72 

KChIP2 100 24 ↓ 59 37 ↓ 121 11 ↓ 21 4 ↓ 39 23 270 170 ↓ 

minK 100 1060 104 96 98 8 ↓ 240 124 154 77 354 694 

TWIK1 100 93 27 3 41 2 ↓ 13 12 86 32 14 17 

TASK1 100 70 37 26 15 7 10 18 9 24 90 54 ↓ 
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Table S2 (continued). 

 

 Atrium Transitional 

tissue 

Inferior nodal 

extension 

Compact node Penetrating 

bundle 

Ventricle 

 Control MCT Control MCT Control MCT Control MCT Control MCT Control MCT 

Intracellular Ca2+ cycling 

RyR2 100 43 ↓ 20 3 9 1 ↓ 20 8 8 14 87 63 

RyR3 100 85 49 54 14 16 18 21 9 21 42 48 

NCX1 100 73 36 18 30 8 48 34 56 22 65 52 

SERCA2a 100 56 69 38 46 19 35 31 12 13 30 81 

Phospholamban 100 25 ↓ 88 29 ↓ 93 18 ↓ 92 34 ↓ 98 61 70 123 

PMCA1 100 103 71 69 84 58 77 68 80 82 91 69 

Calsequestrin 2 100 87 55 39 29 20 48 38 25 20 83 65 

Sarcolipin 100 28 ↓ 89 31 ↓ 56 16 ↓ 38 16 2 1 0 0 

Connexins 

Cx30.2 100 47 1743 1 ↓ 3249 20 ↓ 3012 1415 1374 65 55 35 

Cx43 100 50 17 14 5 2 3 4 2 18 86 56 

Cx40 100 170 41 40 43 25 35 36 622 337 188 287 

Cx45 100 99 125 113 127 104 158 132 311 247 55 111↑ 

Ion channel transporters 

Na+/K+ ATPase α1 subunit 100 71 114 94 66 60 107 85 82 93 34 51↑ 

Na+/K+ ATPase α2 subunit 100 40 ↓ 90 56 103 37 ↓ 81 54 113 82 174 102 ↓ 

Na+/K+ ATPase α3 subunit 100 129 184 99 896 97 ↓ 1078 283 ↓ 405 97 210 34 ↓ 

Na+/K+ ATPase β1 subunit 100 146 30 56 16 25 22 41 21 18 68 44 ↓ 

Na+/H+ transporter 100 88 76 72 45 69 ↑ 104 81 78 65 53 54 
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Table S2 (continued). 

 Atrium Transitional 

tissue 

Inferior nodal 

extension 

Compact node Penetrating 

bundle 

Ventricle 

 Control MCT Control MCT Control MCT Control MCT Control MCT Control MCT 

Autonomic regulators 

α1a/1c adrenergic receptor,  100 58 ↓ 34 22 29 8 ↓ 33 27 27 48 121 119 

α1b adrenergic receptor,  100 34 23 0 24 0 22 14 17 52 370 144 ↓ 

β1 adrenergic receptor 100 62 103 82 88 46 ↓ 85 77 68 42 80 61 

β2 adrenergic receptor 100 58 ↓ 121 81 99 75 95 93 63 95 81 85 

M2 muscarinic receptor  100 48 ↓ 23 12 14 4 13 18 5 9 25 30 

A1 adenosine receptor 100 116 21 20 36 12 16 59 8 15 40 34 

!

!
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Table S3. Summary of transcripts significantly (FDR<0.2) altered in the different regions of the AV node in PHT. Red downward arrow, downregulation in 

PHT; green upward arrow, upregulation. P value from limma test and FDR-corrected P value given.  

 

 

Atrial muscle P value 
Adjusted 
P value 

Transitional 
tissue 

P value 
Adjusted 
P value 

Inferior nodal extension P value 
Adjusted 
P value 

HCN4 ↓ <0.01 0.03 Nav1.1 ↓ 0.01 0.10 HCN4 ↓ <0.01 <0.01 

Nav1.1 ↓ 0.05 0.17 KChIP2 ↓ 0.02 0.14 Cav1.2 ↓ 0.06 0.18 

Cav1.2 ↓ 0.01 0.04 Kir3.1 ↓ 0.01 0.10 Cav1.3 ↓ <0.01 <0.01 

Kv1.4 ↓ <0.01 0.04 Kir6.2 ↓ <0.01 0.06 CLC-3 ↓ 0.06 0.18 

Kv4.2 ↓ 0.02 0.07 Phospholamban ↓ <0.01 0.03 Kv4.2 ↓ 0.06 0.19 

Kv4.3 ↓ 0.01 0.04 Sarcolipin ↓ <0.01 0.04 Kv4.3 ↓ 0.05 0.18 

KChIP2 ↓ <0.01 0.02 Cx30.2 ↓ 0.01 0.10 KChIP2 ↓ <0.01 <0.01 

Kv1.2 ↓ <0.01 0.04    Kv1.2 ↓ 0.04 0.17 

Kv2.1 ↓ 0.05 0.17    Kv1.5 ↓ <0.01 <0.01 

ERG1 ↓ 0.06 0.17    minK ↓ 0.02 0.10 

Kir2.1 ↓ 0.01 0.04    Kir2.4 ↓ 0.01 0.04 

Kir3.1 ↓ 0.01 0.04    Kir3.4 ↓ 0.01 0.08 

Kir3.4 ↓ 0.04 0.14    TWIK1 ↓ <0.01 <0.01 

Kir6.1 ↓  0.06 0.19    RyR2 ↓ <0.01 0.02 

Kir6.2 ↓ 0.01 0.04    Phospholamban ↓ <0.01 <0.01 

SUR2 ↓ 0.01 0.04    Sarcolipin ↓ <0.01 0.02 

RyR2 ↓ 0.02 0.07    Cx30.2 ↓ <0.01 <0.01 

Phospholamban ↓ <0.01 0.01    Na
+
/K

+
 ATPase α2 subunit ↓ <0.01 0.02 

Sarcolipin ↓ <0.01 0.01    Na
+
/K

+
 ATPase α3 subunit ↓ <0.01 <0.01 

Na
+
/K

+
 ATPase α2 subunit ↓ <0.01 0.03    Na

+
/H

+
 transporter ↑ 0.07 0.20 

M2 muscarinic receptor ↓ 0.05 0.17    1a/1c adrenergic receptor ↓ 0.02 0.09 

1a/1c adrenergic receptor ↓ 0.03 0.11    β1 adrenergic receptor ↓ 0.06 0.18 

β2 adrenergic receptor ↓ 0.01 0.05       
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Table S3 (continued). 

 

 

Compact node P value 
Adjusted 
P value 

Ventricular muscle P value 
Adjusted 
P value 

HCN4 ↓ <0.01 0.03 HCN1 ↑ 0.02 0.16 

KChIP2 ↓ <0.01 0.03 HCN2 ↓ 0.01 0.04 

Phospholamban ↓ 0.01 0.08 Nav1.8 ↑ 0.02 0.08 

Na
+
/K

+
 ATPase α3 subunit ↓ 0.01 0.08 Cav1.2 ↑ 0.08 0.20 

   Cav3.2 ↓ 0.07 0.17 

   Cavα2d2 ↓ 0.02 0.08 

   CLC-3 ↑ <0.01 0.02 

   Kv4.2 ↓ 0.06 0.16 

   Kv4.3 ↓ 0.01 0.06 

   KChIP2 ↓ 0.02 0.08 

   Kv2.1 ↓ 0.05 0.15 

   ERG1 ↓ 0.07 0.18 

   Kir2.2 ↓ 0.08 0.19 

   Kir2.4 ↓ <0.01 0.04 

   Kir3.1 ↓ <0.01 0.02 

   Kir3.4 ↓ 0.02 0.08 

   Kir6.2 ↓ 0.01 0.07 

   SUR1 ↓ 0.01 0.04 

   TASK1 ↓ 0.03 0.10 

   Cx45 ↑ 0.06 0.17 

   Na
+
/K

+
 ATPase α1 subunit ↑ 0.03 0.10 

   Na
+
/K

+
 ATPase α2 subunit ↓ 0.01 0.07 

   Na
+
/K

+
 ATPase α3 subunit ↓ <0.01 0.01 

   Na
+
/K

+
 ATPase β1 subunit ↓ 0.04 0.11 

   α1b adrenergic  receptor ↓ 0.01 0.05 
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Table S4. Summary of cell models used in 1D strand, strand dimensions and intercellular 

conductances. 

 

Cell model Number of 

cells 

Length 

(mm) 

Conductance 

(nS) 

Atrium17 150 15.0 1000 

Atrio-nodal18 50 5.0 500 

Nodal18 25 2.5 290 

Nodal-His18 50 5.0 500 

Purkinje 

fibre19 

200 20.0 3000 

Left 

ventricle19 

100 10.0 1150 
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Table S5. Single channel conductances used in calculations.  

Channel 

Single 

channel 

conductance 

!f  

HCN1 13.3 pS35 

HCN4 16.9 pS35 

!Na   

Nav1.1  17.0 pS36 

Nav1.5  17.3 pS37 

!Ca,L   

Cav1.2  19.0 pS38 

Cav1.3  21.0 pS38 

!Ca,T   

CaV3.1 9.5 pS39 

CaV3.2! 7.2 pS39 

!to    

Kv1.4  4.0 pS40 

Kv4.2  18.3 pS41 

Kv4.3  4.0 pS42 

!K,1   

Kir2.1  23.8 pS43 

Kir2.2  34.0 pS43 

Electrical 

coupling 

 

Cx30.2 9.0 pS44 

Cx40 200.0 pS44 

Cx43 80.0 pS44 

Cx45	 30.0 pS44 

!

!
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Table S6. Calculation of ionic conductances in PHT in atrial muscle. 

Atrium	

Current	 Protein	 Control	(×10
-4
)	

Pulmonary	

hypertension		

(×10-4)	
gion (pS) 

Scaling	factor	for	

conductance	

(percentage)	

INa	
NaV1.1	 351 214 17.0	

162	
NaV1.5	 4650 7881 17.3	

ICa,L	
CaV1.2	 309 141 19.0	

46	
CaV1.3	 3 0 21.0	

Ito	

Kv1.4	 254 91 4.0	
36	

	
Kv4.2 49 7 18.3	

Kv4.3 1192 583 4.0	

IK,ur	or	Isus	or	IK,p	 Kv1.5	 533 393 -	 74	

IK,r	 ERG1	 201 78 -	 39	

IK,s	 KVLQT1	 691 573 -	 83	

IK,1	
Kir2.1	 475 227 23.8	

38	
Kir2.2	 611 203 34.0	

INaCa	 NCX1	 5853 4257 -	 73	

ICa,p	 PMCA1	 488 504 -	 103	

INaK	or	Ip	

a1	Na
+
-K

+
	pump 16412 11570 -	

68	a2	Na
+
-K

+
	pump 1912 758 -	

a3	Na
+
-K

+
	pump 99 128 -	

Electrical	coupling	

Cx30.2	 0 0 9.0	

59	
Cx40	 159 269 200.0	

Cx43	 5780 2866 80.0	

Cx45	 812 806 30.0	
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Table S7. Calculation of ionic conductances in PHT in transitional tissue. 

Transitional	tissue	(AN	cell)	

Current	 Protein	 Control	(×10
-4
)	

Pulmonary	

hypertension		

(×10-4)	
gion (pS) 

Scaling	factor	for	

conductance	

(percentage)	

INa	
NaV1.1	 317 139 17.0	

151	
NaV1.5	 2087 3475 17.3	

ICa,L	
CaV1.2	 451 259 19.0	

57	
CaV1.3	 0 0 21.0	

Ito,slow	 Kv1.4	 90 27 -	 30	

Ito,fast		
Kv4.2 7 0 18.3	

62	
Kv4.3 728 468 4.0	

IK,r	 ERG1	 76 17 -	 22	

IK,1	
Kir2.1	 359 196 23.8	

42	
Kir2.2	 114 16 34.0	

Jrel		
RyR2	 4239 596 	-	

16	
RyR3	 66 72 	-	

Jup	 SERCA2a	 140658 77857 -	 55	

INaCa	 NCX1	 2094 1026 -	 49	

INaK	or	Ip		

a1	Na
+
-K

+
	pump 18654 15430 -	

81	a2	Na
+
-K

+
	pump 1729 1064 -	

a3	Na
+
-K

+
	pump 182 98 -	

Electrical	

coupling	

Cx30.2	 1 0 9.0	

65	
Cx40	 987 791 200.0	

Cx43	 6653 3830 80.0	

Cx45	 1017 920 30.0	
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Table S8. Calculation of ionic conductances in PHT in the compact node. 

Compact	node	(N	cell)	

Current	 Protein	 Control	(×10
-4
)	

Pulmonary	

hypertension		

(×10-4)	
gion (pS) 

Scaling	factor	for	

conductance	

(percentage)	

If	

HCN1	 411 359 13.3	

31	HCN2	 12 15 35	

HCN4	 11775 3474 16.9	

ICa,L		
CaV1.2	 246 112 19.0	

46	
CaV1.3	 1 0 21.0	

Ito,slow	 Kv1.4	 29 25 -	 84	

Ito,fast	
Kv4.2 0 0 18.3	

67	
Kv4.3 451 299 4.0	

IK,r	 ERG1	 25 26 -	 102	

Jrel		
RyR2	 4403 1670 -	

38	
RyR3	 24 28 -	

Jup	 SERCA2a	 70401 62299 -	 88	

INaCa	 NCX1	 2836 1996 -	 70	

INaK	or	Ip	

a1	Na
+
-K

+
	pump 17540 13922 -	

76	a2	Na
+
-K

+
	pump 1546 1031 -	

a3	Na
+
-K

+
	pump 1069 281 -	

Electrical	coupling		

Cx30.2	 2 1 9.0	

102	
Cx40	 56 57 200.0	

Cx43	 154 247 80.0	

Cx45	 1284 1076 30.0	
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Table S9. Calculation of ionic conductances in PHT in the penetrating bundle.!

Penetrating	Bundle	(NH	cell)	

Current	 Protein	 Control	(×10
-4
)	

Pulmonary	

hypertension		

(×10-4)	
gion (pS) 

Scaling	factor	for	

conductance	

(percentage)	

INa		
NaV1.1	 70 79 17.0	

169	
NaV1.5	 1546 2656 17.3	

ICa,L	
CaV1.2	 278 168 19.0	

60	
CaV1.3	 1 0 21.0	

Ito,slow	 Kv1.4	 22 18 -	 84	

Ito,fast		
Kv4.2 0 4 18.3	

51	
Kv4.3 369 170 4.0	

IK,r	 ERG1	 29 28 -	 96	

IK,1	
Kir2.1	 352 380 23.8	

111	
Kir2.2	 32 42 34.0	

Jrel	
RyR2	 1678 3005 -	

180	
RyR3	 12 28 -	

Jup	 SERCA2a	 24420 26945 -	 110	

INaCa	 NCX1	 3283 1313 -	 40	

INaK	or	Ip	

a1	Na
+
-K

+
	pump 13448 15316 -	

106	a2	Na
+
-K

+
	pump 2169 1559 -	

a3	Na
+
-K

+
	pump 402 97 -	

Electrical	

coupling	

Cx30.2	 1 0 9.0	

88	
Cx40	 988 535 200.0	

Cx43	 139 1022 80.0	

Cx45	 2530 2006 30.0	
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Table S10. Calculation of ionic conductances in PHT in ventricular muscle. 

 

Current	 Protein	 Control	(×10
-4
)	

Pulmonary	

hypertension		

(×10-4)	
gion (pS) 

Scaling	factor	for	

conductance	

(percentage)	

INa		
NaV1.1	 187 272 17.0	

63	
NaV1.5	 7765 4776 17.3	

ICa,L		
CaV1.2	 193 310 19.0	

161	
CaV1.3	 0 0 21.0	

ICa,T	
CaV3.1	 78 57 9.5	

77	
Cav3.2	 476 373 7.2	

Ito,slow	 Kv1.4	 63 65 -	 103	

Ito,fast	
Kv4.2 47 19 18.3	

40	
Kv4.3 444 182 4.0	

IK,ur	or	Isus	or	IK,p	 Kv1.5	 301 254 -	 84	

IK,r	 ERG1	 109 64 -	 59	

IK,s	 KVLQT1	 753 579 -	 77	

IK,1	
Kir2.1	 708 753 23.8	

87	
Kir2.2	 262 132 34.0	

Jrel	
RyR2	 18797 13525 -	

72	
RyR3	 56 64 -	

Jup	 SERCA2a	 61344 164649 		 268	

INaCa	 NCX1	 3811 3025 -	 79	

ICa,p	 PMCA1	 444 338 -	 76	

INaK	or	Ip	

a1	Na
+
-K

+
	pump 5604 8289 -	

112	a2	Na
+
-K

+
	pump 3326 1942 -	

a3	Na
+
-K

+
	pump 208 34 -	

Electrical	coupling	

Cx30.2	 0 0 9.0	

80	
Cx40	 298 456 200.0	

Cx43	 4978 3214 80.0	

Cx45	 449 900 30.0	
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Table S11. Summary of remodelling of ionic currents in PHT in different cell types. If, funny current; 

INa, Na
+
 current; ICa,L, L-type Ca

2+
 current; ICa,T, T-type Ca

2+
 current; Ito, transient outward K

+
 current; Ito,slow, 

slow component of Ito; Ito,fast, fast component of Ito; IK,ur (or Isus or IK,p), ultra-rapid delayed rectifier K
+
 current; 

IK,r, rapid delayed rectifier K
+
 current; IK,s, slow delayed rectifier K

+
 current; IK,1, background inward rectifier 

K
+
 current; Jrel, sarcoplasmic reticulum Ca

2+
 release; Jup, sarcoplasmic reticulum Ca

2+
 uptake; INaCa, Na

+
-Ca

2+
 

exchange current; ICa,p (or ISLCap), sarcolemmal Ca
2+

 pump current; INaK (or Ip), Na
+
-K

+
 pump current. 

 

Current 
Atrial 

muscle 

Atrio-nodal 

(AN) cells 

Nodal (N) 

cells 

Nodal-His 

(NH) cells 

Purkinje 

fibres & 

ventricle  

If - - 31% - - 

INa 162% 151% - 169% 63% 

ICa,L 46% 57% 46% 60% 161% 

ICa,T - - - - 77% 

Ito 36% - - - - 

Ito,slow - 30% 84% 84% 103% 

Ito,fast - 62% 67% 51% 40% 

IK,ur or Isus or 

IK,p 

74% - - - 84% 

IK,r 39% 22% 102% 96% 59% 

IK,s 83% - - - 77% 

IK,1 38% 42% - 111% 87% 

Jrel - 16% 38% 180% 72% 

Jup - 55% 88% 110% 268% 

INaCa 73% 49% 70% 40% 79% 

ICa,p or ISLCap 103% - - - 76% 

INaK or Ip 68% 81% 76% 106% 112% 

Electrical 

coupling 
59% 65% 102% 88% 80 
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Fig. S1. Images demonstrating hand microdissection of the AV node. A, AV node section double immunolabelled for HCN4 (green) and Cx43 (red). The ringed 

area shows high levels of HCN4 and low levels of Cx43 and corresponds to the penetrating bundle (PB). B, Masson’s trichrome staining of a ‘sister section’. The 

area of interest demonstrated in panel A can be seen to be bordered by the central fibrous body (stained bright blue). The combination of high levels of HCN4, low 

levels of Cx43 and the presence of the central fibrous body identifies this area as the penetrating bundle (PB). C, haematoxylin and eosin stained section before 

microdissection. This reveals the area of interest identified from the ‘map’ created by the images in panels A and B. D, the same slide as C post-microdissection with 

the area of interest (in this case the penetrating bundle) removed. AS, atrial septum; CFB, central fibrous body; VS, ventricular septum. 
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Fig. S2. Correlation of mRNA abundance (relative to that of the housekeeper; ΔCT) in unamplified 

and preamplified samples from the atrium and ventricle. See text for details. Linear regression analysis 

showed a significant correlation between the two (R
2
 = 0.62; P<0001). 
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Fig. S3. Expression of miscellaneous transcripts in atrial muscle (A; A),  transitional tissue (B; TT), 

inferior nodal extension (C; INE), compact node (D; CN), penetrating bundle (E; PB) and ventricular 

muscle (F; V) from control (black bars) and PHT (PHT; red bars) rats. In this and similar figures, 

means (+SEM) shown (n=6-8) and bars and asterisks indicate significant differences between the control and 

PHT rats assessed by the limma test (FDR-corrected P<0.2, i.e. 20%); for the control tissues only, letters 

indicate a significant difference from the appropriately lettered region (lower case letters, FDR-corrected 

P<0.2, i.e. 20%; upper case letters, FDR-corrected P<0.05, i.e. 5%).  
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Fig. S4. Expression at the mRNA level of Ca
2+

 channel subunits in atrial muscle (A; A),  transitional tissue (B; TT), inferior nodal extension (C; INE), 

compact node (D; CN), penetrating bundle (E; PB) and ventricular muscle (F; V) from control (black bars) and PHT (red bars) rats. 
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Fig. S5. Expression at the mRNA level of Na
+
-K

+
 pump subunits in atrial muscle (A; A), transitional tissue (B; TT), inferior nodal extension (C; INE), 

compact node (D; CN), penetrating bundle (E; PB) and ventricular muscle (F; V) from control (black bars) and PHT (red bars) rats. 
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Fig. S6. Expression at the mRNA level of receptors in atrial muscle (A; A),  transitional tissue (B; TT), inferior nodal extension (C; INE), compact node (D; 

CN), penetrating bundle (E; PB) and ventricular muscle (F; V) from control (black bars) and PHT (red bars) rats.  
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Fig. S7. Immunohistochemical labelling of neurofilament 150 (red signal; sympathetic neurone marker) in four parts of the cardiac conduction system 

including the AV node in control and PHT rats. The His bundle in the control rat is outlined in yellow.   



! 30 

P
H
T

C
o
n
tr
o
l

His	bundleSinus	node AV	node Penetrating	bundle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S8. Immunohistochemical labelling of HCN4 (green signal) in four parts of the cardiac conduction system including the AV node in control and PHT 

rats. 

 


