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Abstract

We study some of the key quantities arising in the Arnold’s theory (1966) of the incompressible

Euler equations both in two and three dimensions. The sectional curvatures for the Taylor-Green

vortex and the ABC flow initial conditions are calculated exactly in three dimensions. We trace

the time evolution of the Jacobi fields by direct numerical simulations and, in particular, see how

the sectional curvatures get more and more negative in time. The spatial structure of the Jacobi

fields is compared with the vorticity fields by visualizations. The Jacobi fields are found to grow

exponentially in time for the flows with negative sectional curvatures.

In two dimensions, a family of initial data proposed by Arnold (1966) is considered. The sectional

curvature is observed to change its sign quickly even if it starts from a positive value. The Jacobi

field is shown to be correlated with the passive scalar gradient in spatial structure.

On the basis of Rouchon’s physical-space based expression for the sectional curvature (1984),

the origin of negative curvature is investigated. It is found that a ’potential’ αξ appearing in the

definition of covariant time derivative plays an important role, in that a rapid growth in its gradient

makes a major contribution to the negative curvature.

PACS numbers: 47.10.Df, 47.20.Cq
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I. INTRODUCTION

A variational formulation for the Euler equations has been developed1 and has been

proposed to study instability of fluid motion in the Lagrangian sense. This is done by

regarding the Euler equations as an infinite-dimensional Hamiltonian system and hence the

theory is differential geometric in nature.

In this framework, a geodesic curve on a manifold of volume-preserving flow maps cor-

responds to each realization of the 3D Euler equations. Deviations of the geodesic curves

describe possible instability of fluids and specifically a sectional curvature associated with

the geodesic has been proposed to measure the Lagrangian stability of a flow field. Roughly

speaking, if the curvature is negative we expect instability with an exponential growth in

the Jacobi field and if it’s non-negative neutral stability1−3.

The Hamiltonian method is believed to be the most fundamental formulation of inviscid

fluid dynamics, where the Jacobi field and the sectional curvature play an important role.

But apparently no studies have looked at them by direct numerical simulations of the Euler

equations. One reason is that practical calculations in wavenumber space, on which the

evaluations of the sectional curvatures for steady flows are based, are not very useful for the

implementations of direct numerical simulations. Here we use an equivalent formulation of

splitting the Jacobi’s equation into two first-order equations in physical space.

A simple example of a steady solution the 2D Euler equations was used to show that

sectional curvature takes negative values for some cross sections1. This computation was

done by working with Fourier series expansions. Later, this result was extended to three

dimensions where the ABC flow is shown to have a negative sectional curvature, again using

Fourier series4. See also a generalization to the magnetohydrodynamic case5. We also note

that a local existence theorem of the 3D Euler equations has been obtained on the basis of

a differential geometric approach6,7.

A recent progress on mathematical side is about the relationship between Lagrangian and

Eulerian stability analyses8−10. One objective is to show that these two kinds of stability

criteria are equivalent. A result in this direction states that, for steady two-dimensional

flows without stagnation points, if the Eulerian perturbations (measured by f below) are

bounded, then no Jacobi field (ξ below) can grow faster than quadratically in time.10

The Arnold’s formulation was recast by Rouchon11 in a traditional language that fluid
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dynamicists (including the present author) can comprehend with ease. This formulation is

based in physical space.

It gives, in particular, a useful integral formula for the sectional curvature in physical

space, (see (13) below). On this basis, it was established that for every Euler flow, except

for pure rotation, there exits at least a direction along which the curvature takes a negative

value. This suggests that every Euler flow has at least one unstable direction (associated

with the velocity field and a Jacobi field) at any time. This result has been extended to the

case of compressible fluids12.

In spite of these advances, with purely analytical methods the evaluation of the sectional

curvatures have been restricted to simple cases of steady flows. It has not been tested

to non-stationary flows which may be more relevant, say, to the problem of the onset of

turbulence.

The purpose of this paper is three-fold. First, we present exact evaluations of the sectional

curvatures for the Taylor-Green vortex and the ABC flow for a number of cross sections by

using Rouchon’s formula for them. It has turned out that some of them are zero and

others are negative. Also, this confirms the equivalence of the two kinds of calculations

of the sectional curvature (for the cases of the ABC flow and Arnold’s 2D example); the

traditional one in Fourier series and the new one using Rouchon’s formula. Second, we

present the numerical results on the time evolution of the Jacobi fields for that kind of

initial conditions. In particular, we show how the sectional curvature gets more and more

negative in time. Apparently, no attempts have been reported to follow the Jacobi field and

the sectional curvature of fluid dynamical equations by direct numerical simulations. We

also compare the structure of the Jacobi field with the vorticity by visualizations. Third,

we examine 2D problems in some details by similar methods.

We also note that for the case of ordinary differential equations in classical mechanics of

particles, there are some challenging and interesting results which estimate curvature statis-

tics by numerical methods13−15. For applications of the methods of Hamiltonian mechanics

to fluid dynamics, see e.g. Ref. 6 or Refs. 16-18. For a primitive attempt of geometrization

of fluid mechanics, Refs. 19, 20 may be of historical interest.

The rest of the paper is organized as follows. In Section II, we present the mathematical

formulation and recapitulate Rouchon’s formula and inequalities. In section III, the results

of 3D computations are given. Examples of analytical evaluations of the sectional curvatures
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for some initial data and numerical results on the time evolution thereof are presented. In

Section IV, the case 2D Euler equations is described. Finally, summary and discussion are

given in Section V.

II. FUNDAMENTALS

A. Mathematical formulation

We briefly describe Arnold’s theory following Rouchon’s exposition. We recapitulate the

results only and send the interested readers to Ref. 11 for derivations.

We consider the 3D incompressible Euler equations:

Du

Dt
= −∇p, ∇ · u = 0, (1)

where u denotes the velocity field and p the pressure. By the vorticity equations

Dω

Dt
= (ω · ∇)u (2)

and by
D2ω

Dt2
= −P · ω (3)

we have
D2

Dt2
|ω|2
2

=

(

Dω

Dt

)2

− ω · P · ω,

= (ω · S)(S · ω) − ω · P · ω, (4)

where P = ∇∇p denotes the Hessian matrix of the pressure and S the rate-of-strain tensor;

see, e.g. Ref. 21.

We recall that in differential geometry, the concept of covariant derivative plays an im-

portant role, which is close to, but slightly different from Lagrangian derivative. Actually,

covariant derivative is just a solenoidal projection of Lagrangian derivative22. More precisely,

we have for any function F (x, t)

∇
∂t

F (x, t) ≡ DF (x, t)

Dt
+ ∇αF , (5)

where αF is there to ensure ∇· ∇
∂t

F (x, t) = 0. We recall the Jacobi’s equation in differential

geometry23, which is second-order in t

∇2

∂t2
ξ = −R(ξ,u) · u. (6)
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Here R(ξ,u) is a curvature tensor and ξ is the Jacobi field along x, a more precise meaning

of which will be given below. (Note that u = Dx
Dt

= ∇
∂t

x.) Its direct consequence is

∇2

∂t2
|ξ|2
2

=

(∇
∂t

ξ

)2

− ξ · R(ξ,u) · u. (7)

Also, the geodesic equation may be written as

∇
∂t

u = 0.

It may be of interest to note a formal correspondence ω ↔ ξ and P · ω ↔ R(ξ,u) · u

provided we identify D
Dt

↔ ∇
∂t

. However, the difference between the Lagrangian and covariant

derivatives is important, as it gives rise to a major contribution to the negative curvature:

the second term on the RHS of (13) below. At any rate, that the pressure Hessian is closely

related to the sectional curvature.

The differential geometric approach studies stability of fluid particle trajectories. Hence

we need the 3D Euler equations together with the equation for particle trajectories














∂u

∂t
+ u · ∇u = −∇p,

Dx(a, t)

Dt
= u(x(a, t), t), x(a, 0) = a.

(8)

We consider small perturbations on the spatial position and the velocity of a fluid element

a. These perturbations are characterized by a parameter s, where s = 0 corresponds to an

unperturbed state. We then write x(a, t; s) for the position of perturbed paths at time t.

We consider a perturbation (or variation) ξ of the spatial position and a perturbation f of

the velocity. We may define those by

f(x, t) ≡ ∂

∂s
u(a, t; s)

∣

∣

∣

∣

s=0

= δu, ξ(x, t) ≡ ∂

∂s
x(a, t; s)

∣

∣

∣

∣

s=0

.

The variable ξ is called the Jacobi field24.

By linearizing both equations in (8) using a chain rule, we obtain the following set of

equations in place of the Jacobi field11















Dξ

Dt
= (ξ · ∇)u + f , ∇ · ξ = 0,

Df

Dt
= −(f · ∇)u −∇q, ∇ · f = 0,

(9)

the latter of which is nothing but the linearized Euler equations. Here q denotes another

potential. The former reduces to the vorticity equations if f is neglected.
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If we consider
∇
∂t

ξ(x, t) ≡ Dξ(x, t)

Dt
+ ∇αξ

by using (5), we find ∇ · ((ξ · ∇)u) + 4αξ = 0, or equivalently,

∇ · ((u · ∇)ξ) + 4αξ = 0.

for the equation for a ’potential’ αξ.

Noting
D

Dt
(ξ · ∇) = f · ∇,

we have
D2ξ

Dt2
= −P · ξ −∇q. (10)

We use the definition of covariant derivative twice to obtain the equations for the Jacobi

field
∇2

∂t2
ξ + Au(ξ) = 0, (11)

where

Au(ξ) ≡ P · ξ − (u · ∇)∇αξ + ∇γ. (12)

We have the following symmetry

〈ξ1,Au(ξ2)〉 = 〈ξ2,Au(ξ1)〉 = 〈ξ1 · P · ξ2 −∇αξ1
· ∇αξ2

〉 ,

which follows from an identity
〈∇
∂t

ξ1 · ∇αξ2

〉

= 0.

In this paper the brackets denote a spatial average in a periodic domain, that is, 〈 〉 =

1

V

∫

dx, V = (2π)3 in three dimensions. Setting

2Uu(ξ) =
〈

ξ · P · ξ − |∇αξ|2
〉

, (13)

we finally find25

1

V

∇2

∂t2
ξ = −δUu(ξ)

δξ
,

where δ
δξ

denotes a functional derivative. We define the sectional curvature in the directions

of u and ξ by

C(u, ξ) =
2Uu(ξ)

〈|u|2〉 〈|ξ|2〉 − 〈(u · ξ)2〉 ,

or K(u, ξ) = 1

V
C(u, ξ), after normalization. Note that 2Uu(ξ) = 〈ξ · R(ξ,u) · u〉 .
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B. Bounds for the sectional curvature

The matrix M ≡ P − (∇u)T∇u introduced in Ref. 11 has a dimension of [M ] = time−2

and was interpreted as setting the time scale of particle dispersion. Using this matrix, the

following inequalities have been established11

2Uu(ξ⊥) ≥ 1

V

∫

ξ⊥ · M · ξ⊥dx, (14)

1

3V
min

x
tr(M(x, t)) ≥ min

‖ξ‖=1

2Uu(ξ) ≥ 1

V
min

x
λmin(x, t). (15)

where λmin is the smallest of the eigenvalues of M .

The proof uses an elementary identity

tr(M(x, t)) = 4p− (∂iuj)(∂iuj) = −tr(S · S) ≤ 0.

More importantly, the upper bound in (15) states that unless S ≡ 0, we can always find

negative sectional curvature for some cross sections. This may be interpreted as the existence

of unstable directions for Euler flows at any time. We note that the analysis is slightly

dynamical as it involves the pressure term.

However, it tells nothing about how such directions associated with negative curvatures

relate to the dynamics of the Euler equations. For example, it is not clear whether the

Jacobi fields follow the unstable directions in time to make the associated sectional even

more negative or not. Hence, some numerical approach is required. We also study a property

of the matrix M numerically in subsection IV.C.

III. 3D COMPUTATIONAL RESULTS

A. Analytic evaluation of sectional curvature

First, we check with the evaluation of the sectional curvature of the ABC flow in the

directions of

u =











A sin z + C cos y

B sin x+ A cos z

C sin y +B cos x











and ξ =











a sin z + c cos y

b sin x + a cos z

c sin y + b cos x











.

By solving two equations

4p = −∇ · ((u · ∇)u), (16)
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4αξ = −∇ · ((ξ · ∇)u) (17)

we obtain two potentials (or, pressures-like quantities ) p and αξ. Plugging them into (13),

we find

2Uu(ξ) = −1

8

(

(aB − bA)2 + (bC − cB)2 + (cA− aC)2
)

≤ 0.

(In practice, we may have recourse to symbolic manipulations to work it out. A sam-

ple script may be obtained from http://www.koji-ohkitani.staff.shef.ac.uk/papers.)

This completely agrees with the result using Fourier series4, where a more general case was

treated. It shows that the curvature is negative-definite and Uu(ξ) is zero if and only if

(a, b, c) and (A,B,C) are parallel.

Next, we consider the initial condition of the Taylor-Green vortex

u =











A cos x sin y sin z

B sin x cos y sin z

C sin x sin y cos z











, with A+B + C = 0

We consider two kinds of initial conditions of the Jacobi fields.

Case 1 (velocity type)

ξ =











a cos x sin y sin z

b sin x cos y sin z

c sin x sin y cos z











, with a+ b + c = 0

Again using symbolic manipulations, the result turns out to be simply

2Uu(ξ) ≡ 0,

irrespective of the choice of A,B,C and a, b, c. We knew that it vanishes for A = a, B =

b, C = c, because the Jacobi fields in the direction of the velocity is irrelevant25. However,

the vanishing of the curvature in more general cases (A,B,C) 6= (a, b, c) is non-trivial.

Second, we choose the Jacobi field to have a similar functional dependence as the vorticity

(with lower case amplitudes).

Case 2 (vorticity type)

We consider

ξ =











(c− b) sin x cos y cos z

(a− c) cos x sin y cos z

(b− a) cos x cos y sin z











.
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By the same procedure, we find

2Uu(ξ) = − 3

128

(

a2B2 + b2A2 + 2(bA− aB)2

+(A+B)2(a2 + b2) + (a+ b)2(A2 +B2)
)

≤ 0

In these cases it turns out to be negative-definite, just like the case of ABC flow.

B. Numerical simulation of Jacobi field and sectional curvature

Here we are interested in the time evolution of the sectional curvatures and the Jacobi

fields, which have not been reported by numerical simulations. To study this we solve

simultaneously the 3D Euler equations together with the Jacobi’s equations numerically.

That way, we may study how the Jacobi fields evolve in time and compare their behaviors

with those of flow fields.

Numerically we employ a standard pseudo-spectral method with 2/3-dealiasing. Typical

grid points used are 2563 and 5123. For time marching, we use fourth-order Runge-Kutta

method with a typical time step ∆t = 10−3. Because we solve the inviscid equations the flows

become under-resolved rather quickly. By monitoring the analyticity strip we estimate the

computation remains reliable up to about t = 2 at 5123, see Fig.1 and 2 for energy spectra

defined by E(k) ≡
∑

k≤|k|<k+1
|u(k)|2/2. There are no noticeable differences in the post-

processing of the numerical data (e.g. visualizations and correlations) between resolutions.

We use mainly the 2563 data for visualizations.

We treat the Taylor-Green vortex numerically for the two cases.

Case 1

We set A = a = 1, B = b = −1, C = c = 0. The Jacobi equation is second-order in time

and the (second) initial condition for f is taken as f(x) = ω(x). The initial condition for

ξ is similar to the velocity. We show time evolution of (unnormalized) sectional curvature

in Fig.3 to show the contributions of two terms we plot 〈|∇αξ|2〉 , 〈ξ · P · ξ〉 , and 2Uu(ξ),

separately. In this case, the sectional curvature is zero initially but becomes negative under

time evolution, primarily because of a rapid growth in 〈|∇αξ|2〉, together with a mild decrease

in 〈ξ · P · ξ〉.
Case 2

We set again A = a = 1, B = b = −1, C = c = 0 and take f(x) = ω(x). The initial
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FIG. 1: Time evolution of spectra of energy E(k)

for Case 1 at t = 0.4, 0.8, 1.2, 1.6 and 2.0 from

below. The results from 2563 and 5123 compu-

tations are overlaid.
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FIG. 2: Time evolution of spectra of Jacaobi

field Eξ(k) for Case 1 at t = 0.4, 0.8, 1.2, 1.6 and

2.0 from below. The results from 2563 and 5123

computations are overlaid.
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FIG. 3: Time evolution of unnormalized

sectional curvature 2Uu(ξ) (solid),
〈

|∇αξ|2
〉

(dashed) and 〈ξ · P · ξ〉 (short-dashed) for Case

1. The dotted line represents 0.
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FIG. 4: Time evolution of unnormalized

sectional curvature 2Uu(ξ) (solid),
〈

|∇αξ|2
〉

(dashed) and 〈ξ · P · ξ〉 (short-dashed) for Case

2. The dotted line represents 0.

condition for ξ is similar to the vorticity. In this vorticity-type initial condition for ξ,

the sectional curvature is already negative at the initial instant of time (Fig.4): 2Uu(ξ) =

−3/64 = −0.046875. It becomes more and more negative as time goes on again by a rapid

growth of 〈|∇αξ|2〉 .

C. Spatial structure

We now study spatial structure of the Jacobi field and compare it with the vorticity field.

For Case 1 (velocity-type initial condition for ξ), we show in Fig.5 and 6 the iso-surface
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plots of |ω|2 and |ξ|2 in a box [0, π/2]3. The thresholds are chosen as |ω|2 = 〈|ω|2〉 and

|ξ|2 = 〈|ξ|2〉. The region with large vorticity has a layer-like structure, which is typical in

the early stage evolution of the Euler equations. While these plots suggests that the spatial

correlation is growing between vorticity and Jacobi field ξ qualitatively, it is not easy to

see whether and how this is taking place. In view of the similarity between the vorticity

ω and the Jacobi field ξ mentioned in Section II.A, it is of interest to check this point

quantitatively. We plot in Fig.7 the correlation coefficient r(ω, ξ) between ω and ξ, defined

by

r(ω, ξ) =
〈ω · ξ〉

√

〈|ω|2〉 〈|ξ|2〉
.

It clearly shows that the correlation grows monotonically in time and reaches a value of

about 0.5. This gives some support to the formal similarity between the vorticity and the

Jacobi field in Section II.A.

For the Case 2, the initially they are perfectly correlated (ω = ξ at t = 0 by initialization).

We show in Fig.8 and 9 the iso-surface plots of |ω|2 and |ξ|2. As far as the time interval

covered by the present computations, the spatial structures remain close to each other. In

fact, the correlation coefficient stays at a high level throughout the time evolution and is

still 0.97 at t = 2.0 (figure omitted).

The above results show that the Jacobi field tends to build a strong correlation with the

vorticity field and that strong a correlation once developed tends to persist under the time

evolution.

IV. 2D COMPUTATIONAL RESULTS

As a counterpart to the vorticity in 3D, in 2D it is the vorticity gradient χ = ∇⊥ω which

becomes large. It satisfies
Dχ

Dt
= χ · ∇u,

where ∇⊥ = (∂y,−∂x). Hence χ is expected to behave similarly as Jacobi field. The

framework of Jacobi’s equation itself essentially remains the same as in 3D.
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FIG. 5: Iso-vorticity surface of |ξ|2(gray, yellow

online) and |ω|2(dark gray, green online) at t =

0.4 for Case 1.

FIG. 6: Iso-vorticity surface of |ξ|2(gray, yellow

online) and |ω|2(dark gray, green online) at t =

2.0 for Case 1.
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FIG. 7: Time evolution of the correlation coef-

ficient r(ω, ξ) between the vorticity and the Ja-

cobi field.

A. Analytic evaluation of sectional curvature

Using Fourier series some sectional curvatures were evaluated for a class of flows of the

2D Euler equations1. It may be illustrative to derive them using (13), which is based in

physical space, because it clarifies how the negative curvature shows up. It it noted that

this information is not available if we work in Fourier representation.

For a class of flows defined by a stream function ψ = cos k · x, we consider a section of

the form ψξ = cos l · x, where k = (k1, k2), l = (l1, l2). The corresponding velocity and
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FIG. 8: Iso-vorticity surface of |ξ|2(gray, yellow

online) and |ω|2(dark gray, green online) at t =

0.4 for Case 2.

FIG. 9: Iso-vorticity surface of |ξ|2(gray, yellow

online) and |ω|2(dark gray, green online) at t =

2.0 for Case 2.

Jacobi fields read

u = (−k2 sin k · x, k1 sin k · x),

and

ξ = (−l2 sin l · x, l1 sin l · x),

respectively. Then (16) becomes simply

4p = 0.

Since p is harmonic in the periodic box, it should be a constant and the pressure Hessian

vanishes identically; P = 0. It should be noted at this stage that the sectional curvature is

inevitably negative because of the first term in the integrand in (13) vanishes.

On the other hand, (17) becomes

4αξ = (k1l2 − k2l1)
2 cos k · x cos l · x,

from which it follows that, for k 6= ±l,

αξ = −(k × l)2

2

(

cos(k + l) · x
|k + l| +

cos(k − l) · x
|k − l|

)

,

and we compute

〈

|∇αξ|2
〉

=
|k × l|4

8

|k + l|2 + |k − l|2
|k + l|2|k − l|2 =

|k|2 + |l|2
4

|k × l|4
|k + l|2|k − l|2 ,

13



where 〈 〉 = 1

S

∫

dx, S = (2π)2. Normalizing by 〈|u|2〉 = |k|2/2 and 〈|ξ|2〉 = |l|2/2 we

recover a result1

C(u, ξ) =
2Uu(ξ)

S 〈|u|2〉 〈|ξ|2〉 = −|k|2 + |l|2
4

sin2 α sin2 β,

where α is an angle between k and l and β is an angle between k + l and k − l. Note that

〈u · ξ〉 = 0 for k 6= l. Note also that the normalized sectional curvature in two dimensions

is K(u, ξ) = C(u, ξ)/S.

B. Numerical simulation of Jacobi field and sectional curvature

An example of a flow and a Jacobi field which has a positive sectional curvature was

given in Ref. 1. The following class of flows was considered there

ψ = ε (cos(3px− y) + cos(3px+ 2y)) ,

ψξ = ε (cos(px + y) + cos(px− 2y)) ,

where p denotes positive integers. It was shown that K(u, ξ) < 0 at p = 1 and K(u, ξ) > 0

at p = 2 and that with ε = 1

K(u, ξ) → 9

8π2
, as p→ ∞.

Although straightforward, the evaluation of the sectional curvature for general p is com-

plicated. Using (13) we may work out for p = 1, 2 explicitly as follows.

Here we take ε = 0.01 for numerical purposes. At p = 1, we find

C(u, ξ) = −5913

100
ε4 = − 5913

1000000
= −0.005913

which is negative. At p = 2, we have

C(u, ξ) =
432612

6205
ε4 =

108153

15512500
≈ 0.006971,

which has changed its sign as stated in Ref. 1.

We have performed numerical simulations of the 2D Euler equations with the Jacobi field

equations for the two cases of the initial conditions Case 1 (p = 1) and Case 2 (p = 2) using

2/3-dealised pseudo-spectral computations on 10242 grid points.
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First we check the enstrophy spectra Q(k) ≡
∑

k≤|k|<k+1
|ω(k)|2/2 for Case 1 and Case

2 in Fig.10 and 11, to confirm numerical accuracy. We observe wild fluctuations because

of higher harmonics of order p at t = 0. This is a typical phenomenon where we have

interference of near-singular structures in the domain26.
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FIG. 10: Time evolution of spectra of enstrophy

Q(k) for Case 1 at t = 2, 3 and 4.
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Q
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FIG. 11: Time evolution of spectra of enstrophy

Q(k) for Case 2 at t = 1.5, 2 and 2.5.

We begin considering Case 1. In Fig.12 we show the time evolution of vorticity contours.

Initially there are 6 vortices in a period in the x-direction and the early stage evolution

proceeds rather slowly. Between t = 2.0 and t = 3.0 compression and extension of these

vortices become noticeable in a spatially alternating manner. In Fig.13 we show the time

evolution of the Jacobi field in its ’stream function’ form. At t = 3.0 or later, we observe

large values of the Jacobi field in the regions with mild vorticity gradient, but not with the

steepest one. We next consider the integrand of the sectional curvature in Fig.14. In the

early stage of its development, say t ≤ 2.0, its signature is neither clearly correlated with

vorticity gradient nor with the Jacobi field. But later at t ≥ 3.0 it is strongly correlated with

them. The numerical results show that large values of the Jacobi field and large (negative)

values of the sectional curvature are highly correlated, and is also associated with mild

vorticity gradient.

We now consider the time evolution of norms in Fig.15, where we confirm the vorticity

gradient and the Jacobi field grow exponentially in time. In Fig.16, the time evolution of the

sectional curvature is shown, together with its breakdown, that is, separate contributions

from each term in (9). We observe that the sectional curvature becomes even more negative

as time goes on and that this mainly comes from a rapid growth in the gradient of ∇αξ.

Now we consider Case 2. The time evolution of contours of vorticity and those of the

15
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FIG. 12: Time evolution of contours of vorticity ω for Case 1 in [0, 2π]2. Five equally spaced levels

are used between the maximum and the minimum.

Jacobi field is shown in Fig.17 and 18, respectively. In this case, the large values of the

Jacobi field coincide with steep gradient of vorticity at late times. It should be noted that

the patterns of ψξ at, say, t = 2.5 is markedly different from that of t = 0. In Fig.19, we

show the integrand of the sectional curvature, where we confirm that it take large values in

those regions with steep vorticity gradient.

The time evolution of norms of vorticity gradient and Jacobi field has been examined.

After t = 2 they grow exponentially in time (not shown). As seen in Fig.18, this corresponds

to the time for ψξ to settle in the final pattern. The time evolution of the sectional curvature

is also studied. In Fig.20 a close-up view is given where the curvature changes its sign around

t = 0.8. No special event has been identified in the Jacobi field in physical space at that

time. The sectional curvature takes a large negative value (about −250 at t = 3.0) in the

late stage even it starts from a small positive value.
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FIG. 13: Time evolution of contours of the Jacobi field ψξ for Case 1. Plotted similarly as in

Fig.12.

C. Comparison of Jacobi and passive scalar fields

Here we examine the correlation coefficient r(ω, ψξ) between the vorticity and the Jacobi

fields and the correlation coefficient r(∇ω,∇ψξ) and between their gradients. They are

defined respectively by

r(ω, ψξ) =
〈ωψξ〉

√

〈ω2〉 〈(ψξ)2〉
, r(∇ω,∇ψξ) =

〈∇ω · ∇ψξ〉
√

〈|∇ω|2〉 〈|∇ψξ|2〉
,

where ξ = ∇⊥ψξ. In Fig.21 we plot them for Case 1 and in Fig.22 for Case 2. Generally

speaking, they grow in magnitude with time, except for gradients in Case 1 where a non-

monotonic behavior is seen. In Case 1, the vorticity gradient |∇ω| and the Jacobi field

|∇ψξ| are not well correlated at late times. In fact, it is the passive scalar gradient |∇θ| that

has a better correlation with the Jacobi field (see Fig.23 below). We study the matrix M

described in Section II.B in connection with passive scalar dispersion in this sense. In Fig.23

the time-evolution of contours of passive scalar for Case 1 is given. The initial condition is
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FIG. 14: Time evolution of contours of the integrand of the sectional curvature ξ · P · ξ − |∇αξ|2

for Case 1. Plotted similarly as in Fig.12.

taken as

θ(x) = −∆ψξ(x).

In Fig.24 the corresponding contours for tr(M) are plotted. By comparing them we see that

at late times t = 4.0 characteristic structures in tr(M) are observed where contours of the

passive scalar field is stretched intensely. Recall that these locations coincide with peripheral

regions between vortices with steep vorticity gradient (Fig.12). At least qualitatively, the

observations support the view that M is related with particle dispersion. It should be noted

that the locations are markedly different from those with large negative sectional curvature.

To summarize, in Case 1, the Jacobi field, the sectional curvature and scalar gradient are

strongly correlated and are mildly correlated with vorticity gradient. The vorticity gradient

is well correlated with tr(M) and is mildly correlated with scalar gradient. For Case 2, all

the five fields are well correlated in their characteristic structure (figures for θ and tr(M)

are omitted).
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FIG. 16: Time evolution of unnormalized

sectional curvature 2Uu(ξ) (solid),
〈

|∇αξ|2
〉

(dashed) and 〈ξ · P · ξ〉 (short-dashed) for Case

1. The dotted line represents 0.

V. SUMMARY AND DISCUSSION

We have discussed Arnold’s theory of Euler equations numerically on the basis of Rou-

chon’s formulation. After working out the sectional curvatures analytically for some initial

conditions, we have solved numerically the Euler equations and the Jacobi equations simul-

taneously. The results on the Jacobi field and the sectional curvatures are presented both

in two and three dimensions.

A growing correlation of the Jacobi fields with the vorticity is observed in 3D and with

the scalar gradient (and with the vorticity gradient in some case) in 2D. Rouchon’s integral

expression for the sectional curvature is made up of two parts. It is found that |∇αξ|2 grows

much faster than ξ ·P ·ξ. In 2D, we observe that even if K(u, ξ) > 0 at t = 0, soon we have

K(u, ξ) < 0. Moreover, the spatial structure of the vorticity and the fields are examined in

some details, including the relationship between a passive scalar field and the matrix M is

studied.

We have observed exponentially growth in the Jacobi field in most cases. This may not

be totally trivial because it was pointed out10 that the Jacobi field does not always grow

exponentially in time even though the corresponding sectional curvature is negative. Indeed,

it was shown that it is impossible to have a flow which is stable in the Eulerian sense and

is exponentially unstable in the Lagrangian sense10. Here, the Eulerian and Lagrangian

perturbations are measured by f and ξ, respectively. More precisely, if u a steady solution
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FIG. 17: Time evolution of contours of vorticity ω for Case 2. Plotted similarly as in Fig.12.

of the 2D Euler equations with no stagnation points, then we have

‖ξ‖(t) ≤
√

3 + 2At2
supx |u|
infx |u|

∫ t

0

‖f‖(t′)dt′,

where A is a constant. An example was given therein by using a plane parallel Couette flow,

where a negative sectional curvature arises for such a peculiar case, which is stable and has

only a continuous spectrum.

A possible singularity formation in inviscid flows is thought to be related to the (physically

important) onset of turbulence. The Hamiltonian methods may be useful for studying the

blow-up/regularity issues of the 3D Euler equations, while we refrain from discussing such

delicate matters because of limited spatial resolutions. Nevertheless, it may be of interest to

seek regularity criteria in terms of the geometric quantities, such as the sectional curvature.

For example,the well-known Beale-Kato-Majda criterion27 states that
∫ T

0

sup
x

|ω(x, t)|dt <∞

for the regularity of a 3D Euler flow on a time-interval [0, T ). As its variant we can show

that if the pressure Hessian is regular then no singularity can form for the Euler flow in a
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FIG. 18: Time evolution of contours of the Jacobi field ψξ for Case 2. Plotted similarly as in

Fig.12.

number different of manners21,27,28. It is of interest to examine whether or not the curvature

can remain bounded, that is,

∫

(

ξ · P · ξ − |∇αξ|2
)

dx <∞, for any ξ

at a time of possible singularity. Some of the recent works30−33 on related problems appear

to be promising.

Acknowledgments

Part of this work was presented at a seminar at University of Warwick on March 8, 2008.

The author thanks R. Kerr and M. Bustamante for some useful comments. This work was

presented at an Institute for Mathematics and its Applications (IMA) Conference “Analysis

and Computation of Incompressible Fluid Flow” at University of Minnesota, during February

22-26, 2010. He also thanks S.C. Preston and G. Misiolek for useful comments. This work has

21



t=0.0

x

y

t=1.0

x

y

t=2.0

x

y

t=2.5

x

y

FIG. 19: Time evolution of contours of the integrand of the sectional curvature ξ · P · ξ − |∇αξ|2

for Case 2. Plotted similarly as in Fig.12.

been partially supported by an EPSRC grant EP/F009267/1. He has also been supported

by Royal Society Wolfson Research Merit Award.

[1] V.I. Arnold, “Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses appli-

cations a l’hydrodynamique des fluides parfaits,” Annales de l’institut Fourier 16, 319(1966).

[2] V.I. Arnold, Mathematical Methods of Classical Mechanics, (Springer, Berlin, 1978).

[3] V.I. Arnold and B. Khesin, Topological methods in hydrodynamics, (Springer, Berlin, 1998.)

[4] F. Nakamura, Y. Hattori and T. Kambe, “Geodesics and curvature of a group of diffeomor-

phisms and motion of an ideal fluid,” J. Phys. A: Math. Gen. 25, L45(1992).

[5] Y. Hattori, “Ideal magnetohydrodynamics and passive scalar motion as geodesics on semidirect

product groups” J. Phys. A: Math. Gen. 27, L21(1994).

[6] J. Marsden, D.Ebin and A. Fischer, Diffeomorphism groups, hydrodynamics and relativity.

22



-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

2U
u(

ξ)
,<

ξ·
P·

ξ>
,<

|g
ra

dα
ξ|2 >

t

FIG. 20: Close-up of time evolution of unnormal-

ized sectional curvature 2Uu(ξ) (solid),
〈

|∇αξ|2
〉

(dashed) and 〈ξ · P · ξ〉 (dotted) for Case 2. The

dotted line represents 0.

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0 0.5 1 1.5 2 2.5 3 3.5 4

co
rre

la
tio

n 
co

ef
f.

t

FIG. 21: Time evolution of correlation between

the vorticity gradient and the Jacobi field for

Case 1: r(ω, ψξ) (solid), r(∇ω,∇ψξ) (dashed).

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2

0 0.5 1 1.5 2 2.5 3

co
rre

la
tio

n 
co

ef
f

t

FIG. 22: Time evolution of correlation between

the vorticity gradient and the Jacobi field for

Case 2: r(ω, ψξ) (solid), r(∇ω,∇ψξ) (dashed).

In Proc. 13th Biennial Seminar of Canadian Math. Congress (J. R. Vanstone, ed.), Montreal,

1972, pp. 135-279.

[7] J. Marsden and D. Ebin, “Groups of diffeomorphism and the motion of an incompressible

fluid” Ann. of Math, 92, 102(1970).

[8] G. Misiolek, “Stability of flows of ideal fluids and the geometry of the group of diffeomor-

phisms,” Indiana Univ. Math. J. 42, 215(1993).

[9] S.C. Preston, “Eulerian and Lagrangian stability of fluid motions,” PhD Thesis, SUNY Stony

Brook, (2002).

[10] S.C. Preston, “For Ideal Fluids, Eulerian and Lagrangian Instabilities are Equivalent,” Geom.

23



t=0.0

x

y

t=2.0

x

y

t=3.0

x

y

t=4.0

x

y

FIG. 23: Time evolution of contours of passive scalar θ for Case 1 in [0, 2π]2. Plotted similarly as

in Fig.12.

Funct. Anal. 14, 1044(2004).

[11] P. Rouchon, “Jacobi equation, Riemannian curvature and the motion of a perfect incompress-

ible fluid,” Eur. J. Mech. B/Fluids 11, 317(1992).

[12] P. Rouchon, “Dynamique des fluides parfaits, principe de moindre action, stabilité lagrangi-
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