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EXTRA VIEW
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ABSTRACT
Mgm101 has well-characterized activity for the repair and replication of the mitochondrial genome. Recent
work has demonstrated a further role for Mgm101 in nuclear DNA metabolism, contributing to an S-phase
specific DNA interstrand cross-link repair pathway that acts redundantly with a pathway controlled by
Pso2 exonuclease. Due to involvement of FANCM, FANCJ and FANCP homologues (Mph1, Chl1 and Slx4),
this pathway has been described as a Fanconi anemia-like pathway. In this pathway, Mgm101 physically
interacts with the DNA helicase Mph1 and the MutSa (Msh2/Msh6) heterodimer, but its precise role is yet
to be elucidated. Data presented here suggests that Mgm101 functionally overlaps with Rad52,
supporting previous suggestions that, based on protein structure and biochemical properties, Mgm101
and Rad52 belong to a family of proteins with similar function. In addition, our data shows that this
overlap extends to the function of both proteins at telomeres, where Mgm101 is required for telomere
elongation during chromosome replication in rad52 defective cells. We hypothesize that Mgm101 could,
in Rad52-like manner, preferentially bind single-stranded DNAs (such as at stalled replication forks, broken
chromosomes and natural chromosome ends), stabilize them and mediate single-strand annealing-like
homologous recombination event to prevent them from converting into toxic structures.
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Introduction

MGM101 (for Mitochondrial Genome Maintenance) was origi-
nally identified in a screen for nuclear genes required for mainte-
nance of functional (rC) mitochondrial DNA (mtDNA) in baker’s
yeast Saccharomyces cerevisiae. The MGM101 gene, identified by
complementation of the temperature sensitivemgm101-1ts mutant
strain,1 encodes a 30 kDa DNA-binding protein2 that associates
with oxidatively damaged mtDNA. Cells lacking functional
Mgm101 are sensitive to a variety of DNA damaging agents (ultra-
violet light, g-rays and hydrogen peroxide) under semi-permissive
conditions, indicating that Mgm101 participates in the repair of
damaged mtDNA.3,4 Moreover, Mgm101 has also been shown to
be a bona fide component of mtDNA-protein complexes called
mitochondrial nucleoids (mt-nucleoids),4 and is a constituent of
mitochondrial membrane-associated replisome, suggesting a role
inmtDNA replication.4,5 It has been demonstrated that S. cerevisiae
Mgm101 (ScMgm101) is required for propagation of mtDNA in
cells containing wild-type (rC) and neutral petite genomes, as dis-
ruption of MGM101 blocks initiation of mtDNA replication in
these cells.6 However, hyper-suppressive (HS) r- genomes enriched
for GC-rich motifs (dubbed ori/rep) are stably maintained in
mutants lacking a functional copy of MGM101, indicating that
these mtDNA derivatives use a distinct mechanism for replication

initiation.4,7 ScMgm101 can participate in ori/rep-independent
mtDNA replication and/or repair by mediating formation of
recombination intermediates containing 30 single-stranded DNA
(ssDNA) overhangs.6 In this process, Mgm101 was suggested to
likely cooperate with Mhr1, Rim1 and the Mre11/Rad50/Xrs2
complex to ensure recombination-dependent DNA double-strand
break (DSB) repair after oxidative damage to mtDNA.3 However,
the exact mechanism of the involvement of Mgm101 in mtDNA
replication and/or repair remains unclear.

Evolutionary conservation of Mgm101 and
its characteristics

Mgm101 is a poorly conserved eukaryotic protein with homologs
found in many fungal lineages, several amoebas, slime molds and
marine animals (sponges, cnidarians, placozoans) but not in
insects, nematodes or vertebrates.6,8 In plants, 2 paralogous organ-
ellar DNA-binding proteins, ODB1 and ODB2, were identified9,10

that localize to mitochondria and chloroplasts, respectively, and
are also found in the cell nucleus.10 The sequences of both proteins
are distantly related to Mgm101, although they lack a Pfam signa-
ture (PF06420) typical of the Mgm101 homologs. ODB1 was
shown to be involved in homologous recombination (HR) and
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DSB repair in the mitochondria of Arabidopsis thaliana suggesting
that it may represent a functional homolog ofMgm101.9

The majority of our current knowledge about Mgm101 func-
tions is derived from studies of the yeast S. cerevisiae. In contrast to
most of other fungi, S. cerevisiae is a petite-positive organism toler-
ating the loss of functional mitochondrial genome, however there
is evidence that the mitochondrial functions of Mgm101 do not
dramatically differ between petite-positive and -negative yeast spe-
cies. In line with this opinion, it has been shown that the orthologs
of Mgm101 from Kluyveromyces lactis (KlMgm101) and Candida
parapsilosis (CpMgm101) functionally complement defects in the
metabolism of mtDNA associated with the mgm101-1ts mutant in
S. cerevisiae.11,12

Comparative sequence analysis of Mgm101 orthologs from
yeast revealed a highly conserved C-terminus consisting of 165
amino acids (AA). This region of Mgm101 corresponds to its
functional core that is composed of 23% positively charged AA
residues and that specifically and tightly binds to (negatively
charged) DNA. In contrast, the N-terminus of the protein is
not conserved. This region contains a cleavable signal for
import into mitochondria. In ScMgm101, the mitochondrial
targeting sequence consists of 22 AA.6 In addition, the non-
conserved N-terminal region of Mgm101 might be responsible
for interspecific differences in DNA-binding and/or interac-
tions with other proteins.6,13 Experiments with chimeric
Mgm101 proteins consisting of N-terminal domain and a con-
served core from 2 different species have demonstrated that the
N-terminal domain affects the activity of Mgm101 presumably
via protein oligomerization and/or the stability of oligom-
ers.12,13 Hence, it is supposed that large N-terminal domain of
ScMgm101 shares structural flexibility distributed eventually
on ring surface of protein.3 It was shown that deletion of 98 AA
from the N-terminus of the protein does not have any effect on
its ability to complement the mgm101-1ts allele.6 Mbantenkhu
et al. showed that ScMgm101 preferentially binds to ssDNA
compared to double-stranded DNA (dsDNA) and catalyzes the
annealing of ssDNA pre-complexed with the mitochondrial
ssDNA-binding protein, Rim1.14 In addition, structural organi-
zation and protein stability of short 32 AA C-terminal region
of ScMgm101 have been analyzed. The C-terminus consists of
highly conserved aromatic and basic AA residues that are able
to fold into 2 ß-sheets followed by a short unstructured C-ter-
minus.14 K253, W257, R259 and Y268 are indispensable for
mtDNA maintenance and K251, R252, K260 affect mtDNA
stability at non-permissive condition and under oxidative
stress. Mutations in positively charged triad of AA (K251-
R252-R253) lead to a failure of ssDNA-binding. The mainte-
nance of mtDNA was affected only under oxidative stress in
strains carrying alleles of MGM101 with mutant codons for
K251, K252, K260 or Y266. Finally, W257A and R259A substi-
tutions impaired conformation and ring structure. The authors
concluded that short C-terminus of ScMgm101 is essential for
ssDNA-binding, oligomeric state and protein stability in vivo.14

Biochemical analysis revealed that ScMgm101 consists of 14
homo-oligomeric rings of approximately 200 A

�
diameter in solu-

tion and that binding to ssDNA promotes formation of large con-
densed helical nucleoprotein filament structure. Moreover,
ScMgm101 with substitutions C216A C217A exhibits destabilized
rings responsible for emergence of stable but defective filaments.3

Having a b-b-b-a fold structure makes Mgm101 a member of a
large family of Rad52-like proteins, including Redß, Erf from bacte-
riophage λ and P22, RecT from prophage rac and the Sak from ul36
lactophage.3,15 These proteins also form homo-oligomers with 14-
fold symmetry in vitro but functional relevance of this higher order
organization is still unknown.15 ScMgm101 (purified in fusion with
MBP domain to increase the yield of soluble protein) was shown to
form helical filaments with diameter of approximately 20 nm and
to possess ssDNA-binding activity in vitro.15 Nardozzi et al. found
that the ring structure disappears when ScMgm101 binds ssDNA.3

The monomers of ScMgm101 were unstable in solution because
they aggregate quickly and are toxic for bacterial cells.15

A recent study characterized the Mgm101 protein from the
yeast C. parapsilosis.12 Mitochondria of this species contain linear
chromosomes terminating with tandem repeat arrays and 50
ssDNA overhang.16-19 These structures (dubbed mitochondrial
telomeres; mt-telomeres) are maintained by a recombination-
dependent mechanism involving telomeric circles (t-circles) and
telomeric loops (t-loops).20-23 Detailed biochemical analysis
revealed that CpMgm101 shares many features with ScMgm101,
but these proteins also exhibit several differences. Both proteins
form homo-oligomers in solution, bind to ssDNA with a similar
affinity and prefer ssDNA over dsDNA substrates. However,
CpMgm101 binds more strongly to dsDNA which can account
for its permanent association with mitochondrial nucleoids and it
has been demonstrated that upon binding to 50 ssDNA overhang
of a model mt-telomere it generates ring-shaped structures with
the DNA being wrapped around the protein. Such differences
indicate a specific role in C. parapsilosis. In this light, it is interest-
ing that single-strand annealing (SSA) activity of CpMgm101 can
mediate the invasion of the ssDNA overhang into dsDNA region
of mt-telomeres resulting in a formation of t-loop structure and
the protein binding to a range of replication and recombination
intermediates suggests a role in both mtDNA replication and
maintenance of mt-telomeres.12 A conciliatory model has been
proposed for mitochondrial context, in which Mgm101 may pro-
mote strand invasion and error-free recombinational repair by an
unconventional utilization of its SSA activity. In this model,
Mgm101 would coat ssDNA stretches occurring in mtDNA to
generate the Mgm101-ssDNA nucleoprotein filaments, which
would directly be annealed to homologous ssDNA donor sequen-
ces. Hence, although Mgm101 would predominantly have a role
in SSA, strand invasion involving events could represent one of
the recombination products during mtDNA replication and repair
in vivo.14

DNA repair functions of Mgm101 in nucleus

In addition to its role in mitochondria, there is increasing evidence
that ScMgm101 also participates in repair of nuclear DNA. Previ-
ous studies employing cell fractionation approaches suggest that
ScMgm101 is present in both the nuclear and mitochondrial frac-
tions.24 Consistently, an imaging approach supports the presence
of diffuse ScMgm101 within the nucleus (Fig. 1). In cells harboring
endogenously Myc-tagged ScMgm101, confocal z-stack images
were sequentially taken to avoid crossover between the DAPI
(DNA) and Alexa 488 (ScMgm101-Myc). Single section images
were taken from the middle of the nucleus to reduce the possibility
of mitochondrial fluorescence above or below the nucleus
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appearing to be in the nucleus. Consistent with its localization in
the mitochondria and cytoplasm, we observed strong Alexa 488
fluorescence spots and diffuse staining outside the nucleus
(Fig. 1A-C). However, diffuse nuclear fluorescence at a similar

level to the diffuse cytosolic fluorescence was also observed
(Fig. 1A-C, G and H), and in many cases higher concentrations of
ScMgm101-Myc accumulated around the edge of the nucleus (an
example can be seen in Fig. 1Ha-Hb). In control cells lacking

Figure 1. Nuclear localization of Mgm101. S. cerevisiae cells with the endogenous MGM101 locus C-terminally tagged with Myc (strain SSY105, previously described by
Ward et al.24), were fixed with paraformaldehyde and treated with a mouse anti-Myc primary followed by a goat anti-mouse Alexa 488-conjugated antibody. Optimum
resolution image z-stacks were collected with a Zeiss LMS510 meta and 100x plan-apochromate objective. A, B and C show the mid-nucleus fluorescent images for Alexa
488nm (green), DAPI (40 ,6-diamidine-20-phenylindole dihydrochloride; blue) and merge, respectively. D, E and F are untagged control cells. G shows a cropped image of a
single yeast cell, Gyz and Gxy are the ortholog views through the stack along the lines indicated (yellow). H shows the plots of fluorescent intensity against distance
through cells a and b.
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tagged protein, Alexa 488 staining was barely detectable under the
same conditions, excluding the possibility that the observed diffuse
fluorescence is due to background levels in the cytoplasm/nucleus
(Fig. 1D-F). We also looked at orthogonal views through the
nucleus, which show strong cytoplasmic Alexa 488 staining spots
above and below but only diffuse ScMgm101-Myc in the nucleus
(Fig. 1Gyz, Gxz). Notably, the induction of DNA damage does
not appear to alter the cellular localization of ScMgm101-Myc
(data not shown). In silico analysis by PSORT II25 and NucPred26

identifies putative nuclear localization signals in the core region of
Mgm101 homologues. The nuclear functions of ScMgm101 were
deduced from a dual localization of a fraction of the protein and,
by inference, its similarity to Rad52:14,24 3 AA residues in
Mgm101 (L121, Y139 and K218) are identical with Rad52, and
therefore are likely to be required for DNA recombination.3

Rad52-mediated HR is highly conserved process that is mainly
required for elimination of DSBs and DNA inter-strand crosslinks
(ICLs). It is also required for telomerase-independent mainte-
nance of nuclear telomeres.27-30 Canonical HR is catalyzed by
Rad51 recombinase, the homolog of bacterial RecA, that forms a
filament on ssDNA and promotes strand invasion into homolo-
gous dsDNA.31 Importantly, the SSA activity of Rad52 permits
recombination between direct DNA repeats independently of
Rad51. Such events, however, are error-prone and generate dele-
tions.32,33 It has been suggested that Mgm101 would operate in a
SSA-like mechanism similar to Rad59, because Mgm101, as well
as other Rad59-like SSA factors, has no large C-terminal domain,
which is present in Rad52 and is important for interaction with
Rad51.34

ScMgm101 has been shown to be involved in repair of oxi-
dative DNA damage4 that can lead to DSBs. Previous data has
shown a crucial role for ScMgm101 in ICL repair (see
below).24,35 ICL repair in mammalian cells is governed by Fan-
coni anaemia (FA) pathway. Defects in this pathway are char-
acterized by bone marrow failure, early onset of leukemia, solid
tumors, skeletal abnormal structures (thumb and ulnus), caf�e
au lait spots, kidney and urogenital failures and infertility.36

We and others have identified a prototypical FA pathway in
yeast S. cerevisiae,24,35 in which putative yeast homologs/ortho-
logs of FANCM (Mph1), FANCJ (Chl1) and FANCP (Slx4), as
well as of FANCM-associated histone folding proteins MHF1
(Mhf1) and MHF2 (Mhf2), have been shown to play a funda-
mental role. FA-like ICL repair further requires Mgm101, the
MutSa (Msh2-Msh6) mismatch repair complex, the Smc5-
Smc6 complex involved in dynamics and organization of chro-
mosomes, and proliferating cell nuclear antigen (PCNA; Pol30)
required for DNA replication.24,35 The involvement of
Mgm101 in this pathway, as well as its direct interaction with
the MutSa complex and Mph1 (recently, the Mph1-Mgm101
physical interaction has also been confirmed by others37),
highly suggest a role for this protein in metabolism of nuclear
DNA after ICL damage. This is also supported by results of a
screen of the yeast deletion library that demonstrated
ScMgm101 contributes to the protection of yeast cells against
genotoxic effects of formaldehyde, a known protein-DNA
crosslinking agent.38 We have further examined the role
Mgm101 plays in ICL repair, with a particular focus on the
putative overlapping function of Mgm101 and Rad52. Disrup-
tion of either MGM101 or RAD52 lead to an increase in

sensitivity to nitrogen mustard (HN2) when cells were synchro-
nized in S-phase (Fig. 2). Disruption of both genes simulta-
neously caused synergistic increase in sensitivity to this
treatment, suggesting that, in this instance, Mgm101 and
Rad52 have overlapping activity or are required in parallel
pathways.

The FA-like pathway primarily protects stalled replication forks
from their collapse into DSBs. Restart of stalled replication forks
can be mediated by the Rad5-controlled error-free branch of post-
replication repair (PRR) that is independent of Rad6-Rad18-con-
trolled branch of PRR.39 In mammals, RAD18 regulates the FA
pathway by facilitating the monoubiquitination and chromatin
loading of FANCD2-FANCI. Additionally, it contributes to target-
ing SNM1A to stalled replication forks by monoubiquitinating
PCNA and mediating its direct interaction with SNM1A at ICL-
stalled replication forks, suggesting that it might be essential for
coordinating ICL repair factors acting in parallel or sequentially.39

Activation of the RAD18-dependent FA pathway does not appear
to be ICL-specific, as it is also involved in response to other types of
DNA damage.39,40 The Pso2 exonuclease and components of the
FA-like pathway act in the processing of an ICL repair intermediate
that must be dealt with prior to the initiation of the recombina-
tional stage of ICL repair. This suggests that, similar to human
SNM1A,41 a tethered cross-linked oligonucleotide is a possible sub-
strate for degradation by Pso2.24 We further speculate that in the
absence of Pso2 activity the same intermediate is recognized by
MutSa, Mph1 and Mgm101. This leads to a recruitment of Exo1
exonuclease, which operates with the same polarity (50-30) as
Pso2.42,43 The resulting degradation of the tethered oligonucleotide
allows filling the gap by process of translesion synthesis and recom-
bination. In the absence of Pso2, the replication stalled near the ICL
lesion triggers signal for Rad5 to polyubiquitinate PCNA and to
recruit the Mph1 helicase. Mgm101, Smc5-Smc6 and Mhf1-Mhf2,
likely serve as accessory factors of Mph1 and stabilize the ICL
repair intermediate. It has been suggested that during ICL repair
Pso2 is dominant over Mph1-Mgm101-MutSa and Exo1 in yeast,

Figure 2. An overlapping role for Mgm101 and Rad52 in the repair of ICLs during
S-phase. BY4741 strains disrupted for MGM101, RAD52 and MGM101 RAD52 were
subject for HN2 treatment following synchronization in S-phase. Analysis was per-
formed as described by Ward et al.24
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as well as Chl1 and Slx4. Despite of absence of the FA core complex
in yeast, FA-like pathway represents S-phase specific branch of ICL
repair with a functional conservation of the mammalian FA path-
way. Mph1/FANCM-mediated regression and stabilization of
stalled replication fork is indispensable for efficient step of replica-
tion-dependent ICL repair.39

Telomeric functions of Mgm101

There is evidence to suggest that ICL repair factors contribute to
the maintenance of nuclear telomeres (for a review see ref. 44).
Mammalian nuclear telomeres are composed of long tracts of tan-
dem repeats 50-TTAGGG-30 and terminate with 30 ssDNA over-
hang. Although it is reminiscent of a typical recombination
intermediate, the telomere is protected against inappropriate
DNA repair that would result in chromosome fusions. This is
achieved by means of a specialized complex of proteins called
shelterin that associates with telomeric DNA via DNA-protein
and protein-protein interactions.45 The human shelterin complex
prevents chromosome ends from eliciting a DNA damage
response, and protects against deleterious degradation or partici-
pation in genome-destabilizing recombination or fusion events.46

Furthermore, shelterin prevents hyper-resection by components
of alternative non-homologous end-joining and HR.47

In the nuclei of most eukaryotes, the main mechanism for telo-
mere elongation is mediated by telomerase, a reverse transcriptase

carrying its own RNA template that adds telomere repeats de novo
at chromosome ends.48,49 On the other hand, alternative lengthen-
ing of telomeres (ALT)50 does not rely on telomerase. This mecha-
nism involves HR29,30,51,52 and strictly depends on Rad52.29 The
recombination-dependent telomere maintenance pathways
include formation of t-loops and t-circles.21,53-56 Intra-chromo-
somal recombination within telomeric sequences or excision from
a t-loop may elicit t-circle formation and, along with shortening of
the chromosome ends, it is part of a process known as telomere
rapid deletion (TRD).21,57,58 There are additional DNA repair fac-
tors involved in both telomerase-dependent and -independent
maintenance of telomeres such as Mre11 and Exo1 nucleases, as
well as Ku heterodimer.59

In mammals, FA and a variety of premature aging syn-
dromes are associated with shortened telomeres. Genes that
have been shown to be mutated in these diseases participate at
least to some extent on DNA damage response and repair, but
their precise role in maintaining telomere length is still largely
unknown. However, the presence of the SNM1B 50-30 exonucle-
ase (Apollo), an ortholog of Pso2/SNM1A, on mammalian telo-
meres and its interaction with the major telomere-binding
protein TRF260 suggest that ICL repair factor(s) could poten-
tially play a role in the maintenance of telomeres. This is sup-
ported by an observation that the human FA scaffold protein
SLX4 associates not only with DNA repair proteins SLX1,
MUS81-EME1 and ERCC1-XPF, but also TRF2, and that this

Figure 3. A role of the Pso2-dependent and FA-like pathways in telomere length maintenance in yeast. (A) Pso2-dependent and FA-like pathways in concert with
Mgm101 compensate telomeric defects in rad52 cells. (B) A combination of pso2 and/or msh2 with deletion of YKU70 did not pronounce the shortening of TRFs typical
for a yku70 single mutant. The strains24 of S. cerevisiae with indicated genotypes were subjected to TRF analysis as described by �Simoni�cov�a et al.67
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complex primarily associates with long telomeres during late S-
phase.61-63 The SLX4-containing complex is involved in nucleo-
lytic resolution of telomeric DNA intermediates and disrupting
the SLX4-TRF2 interaction results in defective telomere
replication.64

To determine whether Pso2 and the FA-like pathway in
yeast provide a similar contribution to telomere length mainte-
nance, we performed TRF (telomere restriction fragment) anal-
ysis in cells deficient for these factors (Fig. 3). Our data
suggests that neither Pso2 nor the FA-like pathway alone par-
ticipates in telomere length maintenance in yeast. However, if
both pathways are inactivated, the size distribution of telomeric
fragments is modestly changed with a greater enrichment for
shorter fragments (Fig. 3A). The possibility of genetic interac-
tion between ICL repair factors and Rad52-dependent recombi-
nation event(s) in the process of telomere elongation was also
examined. In agreement with previous observations, extensive
telomere elongation is observed in rad52 cells.65 Importantly,
deletion of either Pso2-dependent or FA-like pathway in rad52
cells resulted in the recovery of the wild-type telomere length.
It is likely that in the absence of the ICL repair factors telomeres
are not maintained by ALT mechanism and the shortening of
telomeres in the corresponding cells may be caused by
decreased levels of telomerase activity or by inefficient recruit-
ment of telomerase to the chromosomal ends. Importantly, a
combination of pso2 and/or msh2 with the deletion of YKU70
did not induce a shortening in TRF lengths (Fig. 3B) typical for
the yku70 single mutant,66 suggesting that Pso2 and Msh2 act
in a different pathway to Ku70.

Double mutant lacking both Mgm101 and Rad52 exhibits nor-
mal length of TRFs, suggesting that Mgm101 and Rad52 likely
have biochemically very similar (if not identical) functions at telo-
meres during S-phase. In other words, it appears that Mgm101 is
involved in a process of telomere elongation during chromosome
replication in rad52 defective cells. In the light of recent biochemi-
cal and structural data,12 we speculate that Mgm101 could bind
ends of linear DNA molecules, stabilize their structures and medi-
ate SSA-like HR event causing their elongation in cells lacking
Rad52. Another possibility is that Mgm101 could be an alternative
accessory factor of telomerase which plays a role in telomere
length maintenance only in the absence of ALT. Interestingly,
pso2 msh2 mgm101 rad52 quadruple mutant (but neither pso2
mgm101 rad52 nor msh2 mgm101 rad52 triple mutant) exhibit
shorter telomeres demonstrating that the Pso2-dependent and
FA-like pathway cooperate with Mgm101 in telomere mainte-
nance in rad52 cells. The future experiments aimed at testing a
physical association of Mgm101 with telomeric repeats in the
wild-type cells as well as rad52 deletion mutants will address this
possibility in a more detail.

Concluding remarks

Data accumulated over last few years suggests that Mgm101
and Rad52 could have overlapping roles in a yeast cell, at least
in the context of nuclear DNA metabolism. This overlap
includes a function of both proteins (i) at the site of stalled rep-
lication forks where Mgm101 could contribute to repairing
DSBs that arise as a consequence of replication fork collapse,
and (ii) at telomeres where Mgm101 could be involved in a

process of telomere elongation during chromosome replication.
We hypothesize that in a Rad52-like manner (biochemically
and structurally) Mgm101 could preferably bind ssDNAs, sta-
bilize them and mediate SSA-like HR event to ensure that they
are not processed into structures that can be toxic.
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