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Abstract 
Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. 

Immature spermatozoa may be unable to interact because they do not express the appropriate 

hyaladherins on their surface. Fresh human semen samples were fractionated using 

differential density gradient centrifugation (DDGC) and the ability of these fractions to bind 

hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 

was located mainly on the acrosome and equatorial segment and became more restricted to 

the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronan acid 

conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding 

reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm 

populations obtained after DDGC or after interaction with hyaluronic acid were assessed for 

DNA fragmentation and chromatin maturity. Strong relationships between both measures and 

sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation 

enhanced hyaluronic-acid-binding of both DDGC-

pelleted sperm and sperm washed free of seminal fluid.  In conclusion, hyaladherins were 

detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was 

shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA 

fragmentation and better chromatin maturity. Capacitation induced changes in the distribution 

and presence of hyaladherins may enhance hyaluronic-acid-binding.   

KEYWORDS: DNA integrity, chromatin maturity, hyaluronic acid, hyaladherins, 

capacitation, acrosome reaction 

 

<A>Introduction 

With the advent of intracytoplasmic sperm injection (ICSI) in the early 1990s, male 

reproductive dysfunction could be treated effectively for the first time (Palermo et al., 1992).  

Overall success rates for assisted conception procedures, however (including ICSI), have 

remained relatively static, with about 24% of cycles for all age groups delivering a term 

pregnancy (≥37 weeks) (HFEA, 2015). The choice of sperm for ICSI, particularly given the 
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procedure’s increasing popularity and uptake (HFEA, 2008), however, has focused on 

various techniques aimed at enrichment of a viable, fertile sperm population. 

 

Standard sperm washing and sorting technologies, such as swim up and differential density 

gradient centrifugation (DDGC), are routinely used to prepare sperm for assisted 

reproduction procedures (Akerlof et al., 1987). On the basis of  classical parameters such as 

concentration, viability, motility and morphology under WHO guidelines, these techniques 

do enrich for more fertile spermatozoa (WHO, 2010). Functional properties of DDGC-

enriched populations, such as DNA integrity and chromatin maturity that could explain the 

improved fertility of these populations of spermatozoa, are, however, usually not assessed. 

Available evidence suggests that, although spermatozoa prepared using standard routine 

sperm preparation methods such as DDGC or swim-up may have generally lower levels of 

DNA fragmentation or compromised chromatin compared with spermatozoa from 

unprocessed semen samples, and may therefore be suitable for use in assisted reproduction 

techniques, such preparations may not exclude sperm that are compromised in these regards 

(Zini et al., 1999; Brahem et al., 2011b; Henkel, 2012; Mortimer and Mortimer, 2013). This 

is a particular issue for ICSI in which sperm selection relies almost exclusively on the 

embryologist’s judgement. Hence, alternative methods are being sought to prepare 

spermatozoa with optimum quality for ICSI procedures (Yetunde and Vasiliki, 2013; Zhao et 

al., 2014). In response to this demand, several novel procedures have been, or are being, 

developed, aiming at the enrichment or isolation of high-quality spermatozoa for motility, 

morphology, DNA integrity and maturity (Said and Land, 2011). One of these, hyaluronic 

acid binding, is being mooted as a viable, non-destructive sperm selection method based on 

its ability to discriminate mature sperm with low levels of chromosomal aneuploidies and 

DNA fragmentation (Jakab et al., 2005; Huszar et al., 2006). 

 

Hyaluronic acid is a negatively charged, non-sulphated glycosaminoglycan that is a 

constituent of the extracellular glycocalyx environment in soft and connective tissues (Chen 

and Abatangelo, 1999) and is also found at high levels in the female genital tract, including 

the cervical mucus and the cumulus oophorus complex (Eppig, 1979; Toole, 2004). 

Hyaluronan synthases produce hyaluronic acid in vertebrates, which interact with 

hyaladherins including the sperm-egg interacting factor PH20 (SPAM1), CD44 and RHAMM 

(receptor for hyaluronic-acid-mediated motility). These proteins can also influence cell 

Page 3 of 34



 4 

motility, survival and proliferation (Forteza et al. 2001; Day and Prestwich, 2002; Toole, 

2004; Plazinski and Knys-Dzieciuch, 2012). 

 

Hyaluronic acid may play an important role in fertilization by ‘capturing’ spermatozoa- 

expressing hyaladherins that can either bind it directly, e.g. CD44 (Bains et al., 2002) or 

facilitate sperm penetration of the cumulus layers via a hyaluronidase activity followed by 

accessing and binding to the zona pellucida, e.g.  SPAM1 (McLeskey et al., 1998). It has 

been shown that spermatozoa binding to hyaluronic acid in vitro have better indicators of 

nuclear maturation, cytoplasmic extrusion and plasma membrane remodelling than 

spermatozoa that do not bind hyaluronic acid (Huszar et al., 2003; Parmegiani et al., 2010a; 

Rengan et al., 2012).  

 

On the basis of the likely functional aspects of hyaluronic acid and hyaladherins in the 

fertilization process, protocols have been developed in which spermatozoa are allowed to 

interact with, and bind to, a prepared surface coated with hyaluronic acid before collection 

and use for ICSI (Jakab et al., 2005; Nasr-Esfahani and Marziyeh, 2013). Several reports 

indicating some efficacy for the procedure have been published in relation to clinical 

pregnancy, pregnancy loss and, more recently, live birth rates of which the largest clinical 

trial to date made use of the commercially available physiological ICSI platform (Worrilow 

et al., 2013). See also (Nasr-Esfahani et al., 2008; Parmegiani et al., 2010a; Mokanszki et al., 

2014; Beck-Fruchter et al., 2015). 

 

Processing crude semen by DDGC works by favouring the sedimentation of mature sperm 

with higher density and motility into and through the denser layer(s) of a gradient (Sakkas et 

al., 2000; Sakkas, 2013). If sperm binding to hyaluronic acid can be shown to reflect the 

characteristics related to good cell maturity and quality, including lower levels of DNA 

fragmentation, further development of the method as a means of selecting higher quality 

sperm for ICSI and possibly IVF is justified. 

 

The aims of the study were to examine sperm for evidence of hyaluronic acid (hyaluronan) 

binding proteins (hyaladherins), to monitor their expression in response to capacitation and 

the acrosome reaction and to compare levels of DNA fragmentation and chromatin 

compaction in sperm processed by standard DDGC or after their interaction with a 

hyaluronan-coated surface. 
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The study was considered and nationally approved by the relevant UK Integrated Research 

Application System (IRAS) Ethics Committee (NRES 12_NE_0192) on 13 January 2013 and 

locally approved by the University of Leeds’ School of Medicine Research Ethics Committee 

(SoMREC/13/017) on 28 November 2013.  

 

<A>Materials and methods 

<B>Patient samples  

All semen samples were ethically obtained from young male volunteers of unproven fertility 

by masturbation into sterile, tissue culture grade universal containers after 3 days of 

abstinence. Collected semen samples were liquefied for 30 min at 37°C. A basic semen 

assessment was undertaken to exclude grossly abnormal samples and ensure that all samples 

were within the ranges expected for normal semen. The included volunteers were aged 

between 19 and 36 years with a mean age (±SD) of 22.43 ± 4.25 years and only those with 

normal semen parameters as defined by WHO (2010) criteria were included in the study. A 

more complete description of the volunteer semen profiles is presented in Table 1. 

 

<B>Differential density gradient centrifugation  

Semen samples were processed using a two-layer density gradient (90–45%) of 

SupraSperm™, a silane-coated colloidal silica-based HEPES-buffered density gradient 

medium (Origio, Denmark) and spermatozoa harvested from the 90% pellets and 45–90% 

interface regions after swing-out centrifugation at 300 ×g for 20 min. These fractions are 

henceforth referred to as 90% and 45% fractions. Spermatozoa from both fractions were 

washed by resuspension and mixing with Quinn’s sperm washing medium (Origio, Denmark) 

and centrifugation at 300 × g for 10 min (two repeat washes). Sample motility was then 

assessed using a Leitz Laborlux 12 light microscope (Mazurek Optical Services, UK) and 

spermatozoa counted (after killing by dilution with water) in a Neubauer haemocytometer 

(Table 1).  1×106 pelleted and interface spermatozoa were cytospun (Thermo-Shandon, UK) 

on to poly-L-Lysine coated slides (VWR, UK) for later fixation and staining. 

 

<B>Detection of sperm hyaladherins  

Spermatozoa were centrifuged by DDCG as described above. Pelleted spermatozoa were 

resuspended in 1x phosphate buffered saline (PBS) (Gibco, UK) before placing on poly-L-

Lysine coated slides (VWR, UK). After air drying, 100 ȝl of 3% bovine serum albumin 
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(Sigma-Aldrich, UK) in PBS was placed on the slides and incubated for 60 min at room 

temperature to block non-specific binding. A generic probe for hyaladherins was first applied 

by incubating slides with 100 ȝl (10 ȝg/ml) of hyaluronic acid-TRITC (hyaluronictetramethyl 

rhodamine isothiocyanate 1500kDa; Creative PEGWorks, USA) for 75 min at room 

temperature. Slides were then washed with PBS before incubation with 100 ȝl of a 

biotinylated monoclonal anti-CD44 antibody (Abcam, UK; 1:100 dilution of 0.5 mg/ml, in 

PBS for 90 min at room temperature. Slides were washed twice with PBS for 15 min each 

and then incubated with streptavidin conjugated with fluorescein isothiocyanate (FITC) (BD 

Pharmingen, UK; 1:1000 dilution of 0.5mg/ml in PBS) and DAPI (4, 6-diamidino-2-

phenylindole) (Sigma-Aldrich, UK) for 60 min at room temperature in the dark and then 

rinsed with PBS. Coverslips were mounted with a drop of polyvinyl alcohol mounting 

medium (Sigma-Aldrich, UK) and samples were viewed with a Leica LEITZ DMRB 

fluorescence microscope (Mazurek Optical Services, UK). To act as controls for non-specific 

fluorescence, spermatozoa were incubated with unlabelled hyaluronic acid (Creative 

PEGWorks, USA) or with the biotinylated secondary antibody and streptavidin-FITC (BD 

Pharmingen, UK) layers alone (non-immune). Image background noise reduction and 

contrast enhancement were undertaken using open source Image J software 

(https://imagej.nih.gov/ij/). 

 

<B>Evaluation of hyaladherins before and after capacitation and the acrosome reaction 

 

Capacitation was accomplished according to the World Health Organization 2010 (WHO) 

guidelines with minor modifications (WHO, 2010). Briefly, spermatozoa were separated by 

DDCG as described earlier. To induce capacitation, pelleted spermatozoa (106) were 

incubated for up to 3 h in 1 ml of a hepes-buffered Ham´s F10 solution (Gibco, ThermoFisher 

Scientific, UK) supplemented with 3.5% (w/v) BSA, 0.2% (w/v) NaHCO3 5mM CaCl2, 

0.36% (w/v) sodium lactate and 0.003% (w/v) sodium pyruvate (all reagents sourced from 

Sigma-Aldrich, UK) at 37°C with constant rotation. After the incubation period, capacitated 

spermatozoa were recovered by centrifugation at 300 ×g for 10 min and washed twice with 

PBS. Pelleted spermatozoa resuspended in the buffer supporting capacitation, incubated for 0 

h (non-capacitated), were used as a control.  
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To induce the acrosome reaction, 10 µl of Ca2+ ionophore A23187 (Sigma-Aldrich, UK, 

stock solution 1.0 mM) (was added to about 106 capacitated spermatozoa in 1 ml (final 

concentration 0.01 mM) and incubated at 37°C for 15 min. The reaction was stopped by 

adding 70% ethanol and spermatozoa were recovered as indicated above. An incubation with 

DMSO (Sigma-Aldrich, UK) only did not induce acrosome reaction. Spermatozoa were then 

placed on poly-L-Lysine coated slides and labelled with HA-TRITC and biotinylated anti-

CD44 (Abcam, UK) as described above (section 2.04). As acrosome reaction is more 

efficiently accomplished by capacitated spermatozoa, in addition to monitoring hyperactive 

motility, capacitation was also assessed by counting spermatoza labelled as PSA-FITC (lectin 

from Pisum sativum [pea] FITC conjugate; Abcam, UK) after incubation in buffer-supporting 

capacitation for 0 h and 3 h and subsequent acrosome reaction (Bailey, 2010; De Jonge and 

Barratt, 2013). 

<B>Spermatozoa binding to hyaluronic-acid-coated slides 

Slides coated with hyaluronic acid (HBA® slides, Origio, Denmark) were used to check the 

ability of sperm to bind to hyaluronic acid according to the manufacturer’s protocol. Briefly, 

after separation of human spermatozoa by density-gradient centrifugation (described earlier), 

about 1×106 (10 ȝL) spermatozoa (pelleted and interface) were placed onto the assay 

chamber and incubated for 15 min at room temperature. Spermatozoa with hyaluronic acid 

receptors are able to bind to the hyaluronic acid-coated slide with an actively beating tail, 

whereas spermatozoa lacking hyaluronic acid receptors are not able to bind to the slide and 

can move around freely. The percentage of hyaluronic-acid-bound spermatozoa (pelleted and 

interface) was calculated as follows: (% bound = bound motile/total motile × 100). In the 

absence of computer-assisted semen analysis, hyaluronab-binding assay slides were also used 

to manually assess hyperactive motility induced by capacitation.  

 

<B>Isolation of spermatoza bound and unbound by hyaluronic-acid  

Human semen samples were washed twice with Quinn's sperm washing medium  at 300 × g 

for 10 min. The pellet was then re-suspended in Quinn's sperm washing medium. 

Spermatozoa were loaded on to a specially prepared dish coated with hyaluronic acid 

(Biocoat, USA) at a concentration of 50×106 /ml. After 15 min incubation at 37°C and 95% 

air: 5% CO2, spermatozoa unbound by hyaluronic acid were removed by gently rinsing the 

dish with Quinn's sperm washing medium for 2 min with constant pipetting. Spermatoza 
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bound to the plates were recovered by more vigorous washing and both bound and unbound 

samples were centrifuged at 300 ×g for 15 min and washed twice with PBS.  

 

<B>Acridine orange staining and quantitation  

Spermatozoa resolved by DDGC, ability to bind to hyaluronic acid, or both, were loaded onto 

slides coated with poly-L-Lysine and fixed with a modified Carnoy’s solution (9:1 ratio of 

methanol and glacial acetic acid) for 2 h at room temperature (Yagci et al., 2010). Slides 

were then stained for 5 min at room temperature with 12 µg/ml of acridine orange ready to 

use 2% solution, (Polysciences Inc, USA) and then rinsed with double-distilled water. After 

excitation with blue light, acridine orange emits green fluorescence when associated with a 

double stranded DNA (dsDNA; wavelength: 530 nm), whereas single-stranded DNA 

(ssDNA) emits red fluorescence (ssDNA; wavelength: 600nm). Three acridine orange 

categories of green (++), yellow (±) and red (--) fluorescence were used to evaluate the levels 

of DNA fragmentation in 90% and 45% fractions of spermatozoa corresponding to low, 

medium and high levels of DNA fragmentation, respectively. At least 150 spermatozoa per 

sample were categorized using a Zeiss LSM510-META upright confocal microscope (Zeiss, 

Germany) by two independent observers.  

 

<B>Aniline blue staining and quantitation 

Spermatozoa resolved by DDGC and abilty to bind to hyaluronic acidy were assessed for 

excessive histone retention indicating defective chromatin compaction and hence maturity 

using aniline blue staining.  Briefly, spermatozoa were loaded on to poly-L-Lysine coated 

slides and fixed with a 3:1 solution of methanol: acetic acid for 1 h at room temperature. 

Slides were then stained with aniline blue solution (2.5% in 2% acetic acid, Sigma-Aldrich, 

UK) for 5 min at room temperature (Huszar et al., 2003). At least 150 spermatozoa per 

sample were evaluated by brightfield light microscopy under oil immersion (100x objective). 

Spermatozoa with unstained (--), moderately stained (±) and extensively stained (++) nuclei 

were scored as sperm with fully, partially and weakly compacted chromatin, respectively, by 

two independent observers.  

<B>Changes in abilty to bind to hyaluronic acid after capacitation  

Capacitation of sperm obtained directly after centrifugation and washing of semen or from 

DDGC pellets was carried out and binding to hyaluronic acid was assessed as described 

earlier. The percentage of capacitated and non-capacitated spermatozoa binding to hyaluronic 
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acid was estimated after treatment of bound and unbound cells with Ca2+ ionophore and 

labelling with PSA-FITC (De Jonge and Barratt, 2013). 

 

<B>Statistical analysis 

Experimental data were analysed using GraphPad Prism (version 6, Graphpad Software, 

USA). Data were not normally distributed even after transformation and except for values 

obtained from binding capacity of hyaluronic acid in the 90% and 45% DDGC fractions, 

which were analysed using the Mann–Whitney U test; all other group-based comparisons 

were analysed using Kruskall–Wallis analysis of variance with Dunn’s post-hoc multiple 

comparisons test applied to compare groups. The P-values for median rank differences are 

indicated in all figures as a (0.0001) > b (0.001) > c (0.01) > d (0.05). 

 

<A>Results  

<B>General semen assessment of volunteers participating in this study 

 A cohort of healthy young male volunteers of unproven fertility (n = 16) from the student 

population of the University of Leeds was used in this study (Table 1). The average age of 

the cohort was 22.4 (range 19–36 years). The average sperm concentration, total sperm count, 

semen volume and per cent sperm motility (range) were, respectively, 136.6 (36–251); 361 

(93.6–1205); 2.9 (0.6–4.8) and 77.5 (56–92).  

 

<B>Microscopic evaluation of hyaluronic-acid-binding in human sperm 

To investigate the general presence, capacity and conditions for sperm to recognize and bind 

hyaluronic acid, spermatozoa were recovered from 90% pellets and incubated with 

hyaluronic acid labelled with (TRITC) and an antibody to the common hyaladherin, CD44 

and counterstained with 4',6-diamidino-2-phenylindole (DAPI) (Figure 1 and 

Supplementary Figure 1). The images shown were processed for background noise 

reduction and contrast enhancement to help improve clarity. The original images are 

presented in Supplementary Figure 1 for comparison. Hyaluronic-acid TRITC labelled the 

acrosome and the tail and more strongly, the neck region (A, E) whereas an antibody to 

CD44 (green) labelled the equatorial segment and the acrosome (C, E). We next looked for 

changes in hyaluronic-acid-binding in response to sperm capacitation and the acrosome 

reaction. On capacitation, CD44 acrosomal labelling was slightly reduced and more restricted 

to the equatorial segment (D, F) and was reduced further after the acrosome reaction (I, K). 
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Labelling with TRITC-tagged hyaluronic-acid, however, intensified after capacitation 

(compare A, E with B, F), particularly on the neck region. On repeating the experiment with 

samples pre-incubated with excess unlabelled soluble hyaluronic acid, signals for both CD44 

(J, L) and hyaluronic acid-TRITC (H, L) were strongly reduced but not abolished altogether. 

Incubation with secondary antibody alone did not elicit a fluorescent signal (not shown). 

Acrosomal staining with PSA-FITC after Ca2+ ionophore triggering of the acrosome reaction 

was also much reduced confirming the efficiency of capacitation (Figure 2).  

 

<B>DNA fragmentation and chromatin compaction in spermatozoa recovered from DDGC 
fractions and from populations bound and unbound by hyaluronic acid  
 

Significantly more spermatozoa recovered from hyaluronic acid bound by 90% fractions 

compared with sperm recovered from 45% fractions (P < 0.0001) (Figure 3). To assess the 

relevance of this relationship to spermatozoal viability, levels of DNA fragmentation and 

chromatin compaction in 90% and 45% DDGC spermatozoal fractions and in hyaluronic-

acid-binding and non-binding populations of washed spermatozoa were assessed by acridine 

orange and aniline blue staining. Examples of each are shown in Figure 4 in relation to 

acridine orange for DDGC (A, B) and samples bound by hyaluronic acid (C, D), respectively 

and in Figure 5 in relation to AB for DDGC (A, F) and samples bound by hyaluronic acid 

(C, D), respectively. Keys for the subjective measurement of staining are shown alongside. 

Acridine orange staining generated predominantly green (++) fluorescent nuclei in both 90% 

fractions and samples bound by hyaluronic acid indicating sperm with relatively low levels of 

DNA fragmentation compared with more mixed colours (++, ±, --) in 45% fractions and 

samples not bound by hyaluronic acid.  Similarly, AB only weakly (±) or did not (--) stain 

sperm from 90% fractions and samples bound by hyaluronic acid compared with sperm from 

45% fractions and samples that did not bind to hyaluronic acid that were more strongly (++) 

stained. Hence, hyaluronic acid and aniline blue staining essentially mirrored each other in 

relation to DNA fragmentation and chromatin compaction with each indicating better quality 

sperm in 90% DDGC fractions and sperm bound to hyaluronic acid from washed samples.  

 

Relationships between sperm sedimentation and DNA fragmentation are shown in Figure 

6A. These results were not unexpected considering the known ability of DDGC to 

differentiate between good and poor-quality sperm based on their relative density and 

motility. Hence, higher levels of sperm with low DNA fragmentation (++) were recovered 
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from the 90% fractions compared with the 45% fractions (as indicated by the mixed acridine 

orange colours in Figure 4B). Pelleted (90%) sperm also had lower proportions of sperm 

with medium (±) and high levels of DNA fragmentation (--) DNA. There were also higher 

numbers of sperm with medium levels of DNA fragmentation in 45% (interface) fractions 

compared with pellets and almost no sperm with high levels of fragmented DNA were 

recovered from sperm pellets. DNA fragmentation was also assessed in relation to capacity to 

bind to hyaluronic acid where sperm with little or no fragmentation dominated populations 

bound by hyaluronic acid (Figure 6B) and an almost complete clearance of sperm from 

populations bound by hyaluronic acid with medium levels of DNA fragmentation were 

observed.  These findings were emphasized by the virtual absence of sperm with higher 

levels of DNA fragmentation in populations bound by hyaluronic acid (Figure 4C). 

Significant differences between categories are shown above the box whiskers for this and the 

charts shown in Figures 7 and 8  (a; P < 0.0001, b; P < 0.001, c; P < 0.01, d; P < 0.05). 

 

Aniline blue staining was used to assess incomplete protamination and so levels of chromatin 

compaction or maturity in DDGC fractionated and sperm populations bound and unbound by 

hyaluronic acid. Very low proportions of sperm staining strongly with aniline blue (++) were 

recovered from 90% fractions that were instead dominated by sperm that did not stain with 

this dye (--; Figure 7A). Although higher levels of strongly stained sperm were recovered 

from the 45% fractions, differences were not statistically significant compared with other 

groups and weakly stained  (±) or unstained sperm indicating good chromatin compaction 

were well represented in 45% fractions. Proportions of weakly stained sperm essentially 

mirrored those of strongly stained sperm in both DDGC fractions. Similarly, sperm with ++ 

and ± AB staining characteristics were more highly prevalent in samples unbound by 

hyaluronic acid with unstained sperm dominating the bound fractions (Figure 7B). In these 

experiments, the virtual clearance of sperm with any stained nuclei was observed in samples 

bound by hyaluronic acid suggesting that hyaluronic-acid-binding was a better discriminator 

than DDGC for removing sperm with relatively immature (±) chromatin.  

  
<B>Changes in sperm hyaluronic-acid-binding and hyperactive motility after capacitation 
 
The effect of capacitation on the ability of spermatozoa to bind to hyaluronic acid was further 

assessed using slides coated with hyaluronic acid (Figure 8). Higher numbers of sperm 

recovered and capacitated from washed, sperm samples could bind to hyaluronic acid 
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compared with non-capacitated controls, although the difference was not statistically 

significant. In the 90% fractions, DDGCpromoted hyaluronic-acid-binding, regardless of 

whether the conditions for capacitation were favourable. This, in itself, suggests that the 90% 

fraction contains more sperm competent to bind hyaluronic acid and that capacitation of 

sperm from this fraction makes little difference to the ability to bind to hyaluronic acid. On 

the other hand, the data suggests that conditions favourable to capacitation may improve 

hyaluronic-acid-binding in samples of simply buffer washed sperm. A large increase in 

hyperactive motility (more vigorous, asymmetrical tail beating and occasional rotation of 

sperm immobilised on the HBA slides) was observed after 3 h but not after 0 h incubation in 

capacitation supportive buffer for both Quinn’s washed and DDGC (90%) processed sperm 

(Table 2).  

 

<A>Discussion  

At present, assisted reproductive techniques (such as ICSI and IVF) account for about 5% of 

births in the Western world (Lewis and Kumar, 2015) and, with ICSI, some checkpoints of 

natural fertilization are bypassed. As a result, low-quality spermatozoa with features such as 

abnormal morphology, low motility, damaged DNA, aneuploidy and poor zona binding 

potential that are not normally able to participate in natural fertilization, may be selected for 

ICSI procedure inadvertently (Cummins and Jequier, 1995; Tournaye, 2003; Alukal and 

Lamb, 2008). As spermatozoa have no mechanism to repair DNA damage, DNA strand 

breaks can be transferred to the oocyte during ICSI, and will rely on the oocyte to repair them 

(Lewis and Kumar, 2015). Therefore, sperm with higher levels of DNA fragmentation may 

contribute to embryonic mortality (Bonduelle et al., 2002; Jakab et al., 2005; Heytens et al., 

2009; Marchesi et al., 2010). Hence, new methods to select sperm of optimum quality for use 

in assisted reproduction techniques are still being developed, including morphological (The 

International Mobile Subscriber Identity), electrical (flow cell, Zeta potential) and cell sorting 

methods (fluorescent-activated cell sorting and magnetic-activated cell sorting) (Chan et al., 

2006; Nasr-Esfahani et al., 2012; Delaroche et al., 2013; Sakkas, 2013; Teixeira et al. 2013) 

 

Previous studies have suggested that sperm able to bind the endocervical mucus have better 

morphology and that selecting for sperm with good morphology, inter alia should also select 

for sperm with other good parameters, including progressive motility and low DNA 

fragmentation (Sati et al., 2008; Prinosilova et al., 2009; Yagci et al., 2010). A potential link 

between hyaluronic-acid-binding (which can be considered a surrogate for sperm binding to 

Page 12 of 34



 13 

the endocervical mucus and the hyaluronan-rich cumulus oopherous complex) and 

spermatozoal viability, was established in the 1990s (Vandevoort et al. 1997; Cayli et al. 

2003).  This, and related work, suggest that spermatozoa capable of binding to hyaluronic 

acid have completed their maturation processes, most specifically plasma membrane 

remodelling and full chromatin condensation, and subsequently have an increased fertilizing 

capacity (Cayli et al., 2003; Huszar et al., 2003; Mokanszki et al., 2014). Different studies 

have suggested that hyaluronic-acid-binding improves embryo quality and development after 

ICSI, although all these studies were relatively small (Nasr-Esfahani et al., 2008; Parmegiani 

et al., 2010a; Parmegiani et al. 2010b; Mokanszki et al., 2014; Beck-Fruchter et al., 2015). 

Considering that intermittent sperm binding to hyaluronic acid during their journey across the 

female genital tract may be an important aspect of natural fertilization (Henkel, 2012), the 

current study was set up to investigate the dynamics of sperm binding to hyaluronic acid in 

vitro and to investigate the relationship between hyaluronic-acid-binding and standard 

methods of sperm preparation for IVF (in this case, differential density gradient 

centrifugation) and measures of sperm quality that included DNA fragmentation and 

chromatin condensation.  Initially, microscopy was used to detect hyaladherins, including 

CD44 on human sperm, which was detected on the acrosome as has been reported elsewhere 

(Bains et al., 2002) and equatorial regions of washed spermatozoa. Compared with CD44, 

however, the signals obtained with a fluorescently tagged probe for hyaluronic-acid-binding 

(HA-TRITC), capable of generically recognizing hyaladherins (including CD44) seemed to 

be more widely distributed over the sperm surface with some localized areas of high 

intensity, particularly in the neck region. In this regard, signals for CD44 and hyaladherins in 

general were both substantially blocked by incubating sperm with excess hyaluronic acid 

beforehand. These results confirm previous reports that hyaladherins (CD44 among them) are 

present on human sperm (Kornovski et al., 1994; Cherr et al,. 2001; Bains et al., 2002; Kim 

et al., 2008; Martin-Deleon, 2011). The failure to completely abolish labelling of 

hyaladherins after cold incubation with hyaluronic acid probably reflects the transient 

interaction of hyaluronic acid with its receptors compared with the stronger and more stable 

interaction between antibodies and their ligands (Plazinski and Knys-Dzieciuch, 2012). Other 

background signals may be caused by non-specific interaction of small amounts of free 

TRITC with ‘sticky’ sperm surfaces.   
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During transit through the female genital tract, sperm undergo capacitation, which involves 

protein tyrosine phosphorylation, hyperactive motility and the dramatic re-distribution of 

membrane proteins and lipids including the efflux of membrane cholesterol (Zaneveld et al. 

1991; Liu et al., 2007; Gadella et al., 2008; Leahy and Gadella, 2011). Other changes may 

also affect the distribution of hyaladherins in preparation for encountering the descending egg 

mass (Baldi et al., 2000). In this regard, striking changes in the labelling of hyaladherin were 

observed after incubation under conditions favouring capacitation and after the acrosome 

reaction. General fluorescence, particularly with hyaluronic acid-TRITC increased after 

capacitation and the acrosome reaction, suggesting greater accessibility of this detection 

reagent to its ligands in keeping with the likely redistribution of membrane components 

(Leahy and Gadella, 2011). Capacitation, as reported originally by Yanagimachi (1969) using 

hamster spermatozoa  is now a widely recognised phenomenon that is linked with the 

acquisition of hyperactive motility (Fraser, 1998; Suarez, 2008; Bailey, 2010), the observed 

redistribution of hyaladherins accords with reports showing that cytoplasmically mature and 

actively motile spermatozoa have completed their plasma membrane remodelling, which 

probably includes the redistribution of hyaladherins (Cayli et al. 2003; Huszar et al. 2003; 

Prinosilova et al. 2009; Parmegiani et al. 2010a; Yagci et al. 2010).  Hyperactive motility is 

not an absolute requirement for sperm binding to hyaluronic acid, but it may be a requirement 

for sperm penetration of the hyaluronic acid-rich, cumulus complex surrounding the oocyte in 

vivo (Hong et al., 2009). It is likely that the higher hyaluronic-acid-binding scores in 

capacitated sperm reflect this process in vitro. 

 

The sperm-preparation procedure, DDGC, widely used in assisted reproduction techniques 

(WHO, 2010), is thought to enrich for higher quality spermatozoa with a higher density and 

motility caused by prior cytoplasmic extrusion and greater chromatin condensation. These 

denser and more motile, mature cells can more readily (and rapidly) sediment through high-

density silica-based media (Bolton and Braude, 1984; Mortimer and Mortimer, 2013).  In this 

regard, sperm populations from 90% fractions had generally higher abilities to bind to 

hyaluronic acid and lower levels of DNA fragmentation than 45% fractions, suggesting that 

either hyaladherins are more abundant or have a higher affinity for hyaluronic acid in pelleted 

sperm (also with low levels of DNA fragmentation) and agreeing with the likelihood that 

these sperm are more cytoplasmically mature. We also showed that hyaluronic-acid-binding 

is highly effective at excluding spermatozoa with higher levels of DNA fragmentation and 

particularly so for excluding sperm with lower levels of chromatin maturity. The post-hoc 
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Dunn’s test reports the most significant ranking differences between group medians after K-

W analysis of variance. Although the differences in DNA fragmentation between unpaired 

90% and 45% fractions or between hyaluronic-acid-binding and non-binding samples were 

occasionally not statistically significant using this test, the trends were clear nonetheless. 

These findings are supported by other studies showing that spermatozoa from the 90% 

fractions of DDGC processed samples have a high percentage of normal morphology and 

chromatin maturity and generally lower levels of DNA fragmentation (Le Lannou and 

Blanchard, 1988; Sakkas et al. 2000; Tomlinson et al., 2001; Brahem et al. 2011a). 

        

Although the data collected in this study were derived from men of unproven fertility, our 

results are relevant when considering assisted reproduction techniques for infertile men, 

where higher levels of sperm DNA fragmentation may be associated with increased chances 

of early pregnancy failure after IVF and ICSI (Zini et al., 2008; Robinson et al., 2012; Zhao 

et al., 2014; Osman et al., 2015).  Earlier studies have shown that, compared with 

spermatozoa recovered after a general washing step, sperm from the same semen sample 

binding to hyaluronic acid were more mature in relation to cytoplasmic and nuclear 

condensation (Huszar et al., 2003; Yagci et al., 2010) and that hyaluronic-acid-selected 

sperm from crude semen samples had low levels of DNA fragmentation (Yagci et al., 2010). 

These data suggest that hyaluronic-acid-binding may be a useful augmentation or alternative 

to DDGC for preparing crude semen samples for ICSI and potentially other IVF procedures, 

particularly where sperm numbers are too low for DDGC.  Clinical support for these 

findings, however, is equivocal. One highly relevant prospective study (Nijs et al., 2009), 

whereas establishing clear connections between conventional sperm assessment methods and 

more advanced techniques, including assays of DNA fragmentation and chromatin maturity, 

could not link these connections through to the sample’s ability to bind to hyaluronic acid. A 

later, smaller study appeared to uphold this disconnect (Nijs et al., 2010). Recent meta-

analyses of numerous studies that included use of a selection step for hyaluronic acid step 

before ICSI have so far also failed to support efficacy with the caveat that the studies 

concerned were relatively small (Zini et al., 2008). The largest study to date reported a 

significant drop in pregnancy loss but unfortunately failed to report birth outcomes 

(Worrilow et al., 2013). A more recent report showed a significant improvement in live births 

although the lack of available raw data led to the study’s exclusion from a later meta-analysis 

that recommended the need for better clinical trials with full data reporting (Mokanszki et al., 

2014; Beck-Fruchter et al., 2015). 
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In conclusion, to the best of our knowledge, this is the first study to bring together 

compelling evidence for the relationship linking a standard sperm-processing technique 

(DDGC) with affinity of sperm for hyaluronic acid. Sperm DNA fragmentation and 

chromatin compaction status, therefore, reflects this relationship and supports claims for a 

positive sperm quality benefit for hyaluronic-acid-based sperm selection. Whether this 

benefit translates into significantly improved live birth outcomes for ICSI remains to be 

determined.  In this regard, the use of more specific, anti-hyaladherin-based procedures for 

sperm selection (initially targeting CD44, RHAMM and SPAM1) should also be considered. 

We are currently undertaking the largest clinical trial to date  (Witt et al., 2016; 

ISRCTN99214271) of an sperm-selection procedure based on hyaluroni acid for ICSI that is 

sufficiently sensitive to detect a beneficial effect Our findings will be reported in the autumn 

of 2017. 
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In the absence of computer-assisted seman analysis, hyperactive motility (more vigorous and 

irregular tail beating often accompanied by whole cell rotation) was observed on four 

samples (D3, D5, D11 and D14) of sperm bound to hyaluronic acid using hyaluronan binding 

assay slides. To assess the effect of capacitation, normal sperm motility before capacitation 

was first assessed in sperm from the crude semen samples immediately after washing 

(column 2) and after processing by DDGC (90% fractions; column 3). The same samples 

were then re-assessed for hyperactive motility after 0 h (columns 4 and 6) and 3 h (columns 5 

and 7) capacitation.
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Figure 1: Immunofluorescence images of sperm probed with reagents targeting hyaladherins. 

Sperm samples from 90% fractions are shown after Image J background noise reduction and 

contrast enhancement after labelling with hyaluronan acid conjugated with 

tetramethylrhodamine isothiocyanante (TRITC) directly (A, B, G, H), or indirectly with an 

antibody to CD44  (C, D, I, J). Panels E, F, K, L shows the corresponding merged images 

with an additional DAPI layer included to aid definition of sperm nuclei. Panels A, C and E 

show sperm samples labelled before capacitation. Panels B, D, F show sperm samples 

labelled after capacitation. Panels G, I, K show sperm that were acrosome reacted. Panels H, 

J, L (controls) show sperm pre-incubated with excess unlabelled hyaluronic acid prior to 

incubation with hyaluronic-acid-TRITC or antibodies to CD44. Equatorial regions of some 

sperm are indicated by arrow and the scale bar is 5 µm. 

Figure 2: Demonstration of the efficiency of capacitation by inducing the acrosome reaction. 

To determine the efficiency of capacitation, sperm samples from 90% fractions were 

incubated in capacitation supportive buffer for 0 h (A) and 3 h (B) and then acrosome reacted 

before labelling with fluorescein-conjugated Pisum sativum agglutinin (green) and 

counterstaining with 4',6-diamidino-2-phenylindole (DAPI) (blue) in each case. Acrosome 

reacted sperm are indicated by a star ‘*’. The scale bar is 5 µm. 

Figure 3: Assessment of hyaluronic-acid-binding in sperm recovered from DDGC fractions. 
Binding of sperm recovered from the 90% and 45% fractions to hyaluronan was assessed 
using HBA® slides (n = 15). Box-whisker plots are drawn showing quartiles, minimum and 
maximum values with the significance indicated as ‘a’ (P ≤ 0.0001; Mann–Whitney U test).  

Figure 4: Examples of acridine orange stained sperm from experimental samples. Sperm 

were recovered from the 90% (A) and 45% (B) differential density gradient centrifugation 

fractions (n  = 15) or after brief incubation on surfaces coated with hyaluronic acid (n = 10) 

and which remained bound to the substrate after gentle washing (C) or were recovered from 

the unbound washes (D).  After washing, the samples were cytospun on to coated slides and 

stained with acridine Orange. Note the more uniform staining with acridine orange (green) in 

90% and hyaluronic-acid-binding fractions compared with 45% fractions and hyaluronic 

acid-unbound populations (mixed colours). The panels to the right of the main figures shows 

the subjective scoring system used to assign staining categories (++, ±, --) to the samples. 

The scale bar is 20 µm (A–D).  

Figure 5: Examples of acridine-orange-stained sperm from experimental samples. Sperm 

were recovered from the 90% (A) and 45% (B) differential density gradient centrifugation 
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fractions or after brief incubation on surfaces coated with hyaluronic acid and which 

remained bound to the substrate after gentle washing (C) or were recovered from the unbound 

washes (D).  After washing, the samples were cytospun on to coated slides and stained with 

Aniline Blue. Note the weaker staining (--) in 90% and hyaluronic-acid-binding fractions 

compared with 45% and hyaluronic-acid-unbound fractions (a mix of strongly and marginally 

stained sperm). The panels to the right of the main figures shows the subjective scoring 

system used to assign staining categories (++, ±, --) to the samples. The scale bar is 10 µm 

(A–D). 

Figure 6: Box-whisker plots of acridine orange category data from the study. Semi-

quantitative data for acridine orange staining in relation to differential density gradient 

centrifugation sedimentation into 90% and 45 % fractions (A; n = 15) and into hyaluronic-

acid-binding and unbound populations (B; n = 10) are plotted with quartiles, minimum and 

maximum values shown. Acridine orange categories indicate low (++), medium (±) and high 

(--) DNA fragmentation. Note the generally inverse relationships between staining categories 

and sedimentation or hyaluronic-acid-binding profiles. The K-W, post-hoc Dunn’s test 

assigns the significance alpha between group medians hierarchically with a (<0.0001) > b 

(<0.001) > c (<0.01) > d (<0.05). HA, hyaluronic acid. 

Figure 7: Box-whisker plots of AB category data from the study. Semi-quantitative data for 

AB staining in relation to differential density gradient centrifugation sedimentation into 90% 

and 45 % fractions (A; n = 15) and into hyaluronic-acid-binding and unbound populations (B; 

n = 10) are plotted with quartiles, minimum and maximum values shown. AB categories 

indicate fully (--), partially (±) and weakly (++) compacted chromatin. Note the generally 

inverse relationships between staining categories and sedimentation or hyaluronic-acid -

binding profiles.  The K-W, post-hoc Dunn’s test assigns the significance alpha between 

group medians hierarchically with a (<0.0001) > b (<0.001) > c (<0.01) > d (<0.05). HA, 

hyaluronic acid. 

Figure 8: Box-whisker plots of hyaluronic-acid-binding in relation to capacitation. The effect 

on hyaluronic-acid-binding of capacitation in washed sperm (n = 10) or sperm recovered 

from 90% fractions (n = 10) is shown with quartiles, minimum and maximum values shown 

and the most significant difference being between washed, non-capacitated sperm and 90% 

capacitated sperm indicated (a). Although not statistically significant due to outlying values, 

note the clear increase in hyaluronic-acid-binding following capacitation of washed sperm. 
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The K-W, post-hoc Dunn’s test assigns the significance alpha between group medians 

hierarchically with a (<0.0001) > b (<0.001) > c (<0.01) > d (<0.05). 

Supplementary Figure 1. As for Figure 1 but showing the original unenhanced images.  
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Table 1: General semen assessment of young male volunteers (unproven fertility) 
participating in the study.  

Sample Volunteer 
age 
(years) 

Sperm 
concentration 
(million/ml) 

Total sperm count 
(× 106) 

Semen 
volume 
(ml) 

Sperm 
motility (%) 

D1 20 159 238.5 1.5 56 
D2 21 69 345 5 94 
D3 22 122 244 2 70 
D4 36 200 300 1.5 90 
D5 21 56 224 4 67 
D6 21 120 360 3 86 
D7 20 156 93.6 0.6 85 
D8 19 120 240 2 70 
D9 28 233 349.5 1.5 92 
D10 24 185 370 2 75 
D11 21 90 270 3 65 
D12 24 36 108 3 85 
D13 19 251 1204.8 4.8 87 
D14 20 179 716 4 61 
D15 22 154 385 2.5 83 
D16 21 55 330 6 75 
Mean ± 
SD 

22.4 ± 
4.2 

136.6 ± 64.5 361 ± 264.53 2.9 ± 1.5 77.5 ± 11.7 
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Table 2. Hyperactive motility after capacitation.a 

Sample Sperm 
motility, 
Quinn’s 
washed 
semen (%) 

Sperm 
motility after 
DDGC, 90% 
fraction (%) 

Sperm 
hyperactive 
motility, Quinn’s 
washed semen at 
0 h cap  (%) 

Sperm 
hyperactive 
motility, Quinn’s 
washed semen at 
3 h cap (%)  

Sperm 
hyperactive 
motility, 90% 
fraction at 0 h 
cap (%) 

Sperm 
hyperactive 
motility, 90% 
fraction at 3 h 
cap (%) 

 Hyperactive mo
incubation in ca
conditions (%) 

D3 70 88 0.53 44.5 0.6 47.5 47.5 

D5 67 81.5 0.2 41.0 0.4 43.4 43.4 

D11 65 84.3 0.4 
 

39.8 0.4 44.0 44 

D14 61 79 0.27 42.8 0.3 39.6 39.6 

Mean ± SD 65.8 ±3.8 83.2 ±3.9 0.35 ±0.2 42 ± 2.01 0.43 ± 0.13 43.6 ±3.23 43.63 ± 3.23 

aSee also Figure 8. 
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