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Abstract  38 

For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only 39 

implicitly considered the underlying role of environmental change. We illustrate that explicitly 40 

re-introducing environmental change drivers in B-EF research is needed to predict the 41 

functioning of ecosystems facing changes in biodiversity. Next, we show how this re-42 

introduction also allows for better control over community composition in B-EF experiments 43 

and thus helps to obtain mechanistic insights about how multiple aspects of biodiversity relate 44 

to function, and how biodiversity and function relate in food-webs. We also highlight 45 

challenges for the proposed re-introduction, and propose analyses and experiments to better 46 

understand how random biodiversity changes, as studied by classic approaches in B-EF 47 

research, contribute to the shifts in function that follow environmental change.  48 

 49 
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1. Predicting effects on ecosystem functions from changes in biodiversity: a brief history  68 

Various types of environmental change, such as climate change and the deterioration of 69 

environmental quality, can profoundly alter multiple facets of biodiversity [1-3]. The past 25 70 

years have seen a rise in different empirical approaches to examine how such changes affect 71 

ecosystem functions and services [4, 5]. Many focus on altering biodiversity while observing 72 

any corresponding changes in function [6]. These approaches can be first classified based on 73 

the nature of the manipulation (Table 1 and ‘Glossary’), whether species are added or removed 74 

randomly or non-randomly. Random manipulations assume a random extinction or 75 

colonization order, while non-random species additions or removals are done based on the 76 

(presumed) response of species to environmental change [7], or based on the effects of species 77 

on function (e.g. species that function best are removed first) [8]. A second distinction can be 78 

based on whether manipulations of biodiversity are direct or indirect. Direct biodiversity 79 

manipulations are performed by manually removing or adding species [9], whereas with 80 

indirect manipulations, a relevant environmental change is introduced to alter biodiversity [10, 81 

11]. 82 

 83 

Indirect and non-random manipulations of biodiversity make intuitive sense because they are 84 

rooted in a recognition that environmental change drivers are often the cause of biodiversity 85 

alterations [3] and that these alterations are non-random [8, 12]. As a consequence, early 86 

research on biodiversity and ecosystem functioning (‘B-EF research’ [6]) often adopted 87 

indirect and non-random biodiversity manipulations [10, 11, 13]. However, such approaches 88 

were increasingly subject to controversy and disagreement. In his seminal paper, Huston [14] 89 

criticized indirect and non-random biodiversity manipulations for difficulties in separating 90 

‘true’ biodiversity effects from the effects of ‘hidden treatments’. Huston argued that by 91 

indirectly altering biodiversity using an environmental variable, researchers precluded 92 

partitioning the effects of biodiversity on ecosystem functioning from the many other effects 93 

environmental change can have on function (‘Glossary’). Non-random manipulations were also 94 

shown to suffer from inherent bias, because results were highly dependent on the chosen order 95 

of species removal or addition. Collectively, the critiques by Huston and others [14-16] pushed 96 

the field towards direct and randomized biodiversity manipulations (Table 1, [6, 9]). The 97 

advantage of this methodological shift was that the causal relationship between biodiversity 98 

and ecosystem functioning could be more rigorously tested, and the different effects that 99 

biodiversity alterations could have on ecosystem functioning were more readily quantified 100 

[17]. However, despite this improvement in methodology, it still remains unclear how either 101 



random or direct manipulations of biodiversity can be used to meet two of ecology’s main 102 

challenges: (1) to support quantitative prediction of the ecological effects of anthropogenic 103 

activities [6]; and (2) to unravel the mechanisms linking community structure and composition 104 

to ecosystem function [18, 19]. An emerging trend in contemporary B-EF research is to re-105 

introduce non-random and indirect manipulations of biodiversity using environmental change 106 

drivers, such as various climate variables, chemical stressors, and nutrient enrichment [20-24]. 107 

In the present contribution we submit that this approach (1) is a prerequisite to predicting the 108 

functioning of ecosystems facing changes in biodiversity that are caused by environmental 109 

change (section 2); and (2) facilitates unravelling mechanistic insight into the connections 110 

between community structure and composition to ecosystem function (section 3).  111 

 112 

2. The re-introduction of environmental change drivers is needed to predict ecosystem 113 

functioning following changes in biodiversity  114 

In many ecosystems, environmental change causes biodiversity declines or increases [25-28]. 115 

Experiments that directly and randomly manipulate biodiversity are unlikely to predict function 116 

in these ecosystems (Fig. 1, shaded area). This is because biodiversity changes that are non-117 

random with respect to function (‘Glossary’) will affect ecosystem function more or less than 118 

do random biodiversity changes [8, 29]. In addition, environmental change can also alter the 119 

effect species have on ecosystem functions by altering (1) per-capita functioning [30, 31], and 120 

(2) population density [32, 33]. Depending on the type of environmental change, these 121 

alterations can be mostly positive (e.g. nutrient enrichment, [34]), mostly negative (e.g. 122 

drought, [35], pollution, [36]), or negative for some species and positive for others (e.g. 123 

warming, [37-39]). 124 

 125 

Trait-based frameworks are available to predict how non-random effects of environmental 126 

change on per-capita functioning, population densities, and biodiversity translate to changes in 127 

ecosystem function [8, 29]. A simple extension of this framework with species interactions 128 

(Box 1) and using richness as a biodiversity indicator illustrates two important points. First, 129 

environmental change can cause a variety of B-EF relationships (Fig. 1). The shape of this 130 

relationship critically depends on (1) whether the responses elicited by the environmental 131 

change driver are positive or negative, and (2) the type of non-randomness exerted by the 132 

environmental change driver [27, 40] (Box 1). Second, changes in function are expected before 133 

any change in species richness is observed (Fig. 1A and D; levels 0-0.1), and – more generally 134 

– the variability of ecosystem function within one level of species richness is substantial (Box 135 



1, Box 3, ‘Outstanding questions’). The ensemble of B-EF relationships constructed through 136 

direct and random biodiversity manipulation (Fig. 1, shaded area) does not capture the variation 137 

in B-EF shapes arising from indirect and non-random biodiversity manipulation, and can both 138 

over- (e.g. Fig. 1B) and underestimate variation of function within one biodiversity level (e.g. 139 

Fig. 1C). 140 

 141 

3. The re-introduction of environmental change drivers can augment mechanistic insight 142 

Many descriptors of biodiversity (richness, community composition and structure), but also 143 

total density (community size) and per-capita functioning, can affect ecosystem functions [32, 144 

41, 42]. A main research theme in ecology is to understand their relative importance to function 145 

[6, 43]. Using environmental change drivers to indirectly manipulate biodiversity, total density, 146 

and per-capita functioning facilitates such studies. This is because different environmental 147 

change levels trigger effects on different subsets of these variables (Fig. 1). For example, in 148 

Fig. 1A, environmental change levels between 0.25 and 0.7 will all lead to the same species 149 

richness, but alter total density and per-capita functioning. In Fig. 1B, effects on richness are 150 

always more important than effects on total density or per-capita functioning. In Fig. 1A and 151 

D, low levels of change only affect per-capita functioning and total density. The fact that 152 

different levels of environmental change cause different effects offers greater control over the 153 

different mechanisms underlying change of function than do direct manipulations of 154 

biodiversity. Controlling per-capita functioning is by definition impossible through direct 155 

manipulations of biodiversity because it is no descriptor of biodiversity, and always requires 156 

some change of environmental conditions. Even community composition, structure, and 157 

richness will often be uncontrollable through direct biodiversity manipulations. For example, 158 

in the model presented in Fig. 1, persistence of species 0 or dominance by any other species 159 

than species 9 is only possible in the continuous presence of an appropriate environmental 160 

change driver, i.e. through indirect manipulations. Without this presence, community structure 161 

will always converge to the one shown in Box 1 and richness will be 9, even when all 10 species 162 

are added to the initial community. Many examples illustrate community compositions and 163 

structures that only emerge in the presence of specific environmental change drivers and do 164 

not occur in their absence (Table 1). 165 

The relationship between biodiversity and functioning in multi-trophic communities (food-166 

webs) has been an important research theme in ecology since the 1990s [6, 44-46]. For 167 

example, the biodiversity of one food-web compartment can drive functions performed by 168 



other parts of the food-web [47], or both can be unrelated [48]. Using environmental change 169 

drivers to indirectly and non-randomly manipulate biodiversity facilitates such studies. This is 170 

because environmental change drivers often target specific food-web compartments so that it 171 

becomes possible to experimentally alter biodiversity and related functions of specific food-172 

web compartments and measure corresponding changes in other compartments (Table 1). In 173 

addition to the well-known cases of resource addition or manipulation of climate variables, 174 

chemical stressors comprise an exceptionally useful group of experimental agents that can be 175 

used for both non-random manipulations as well as for manipulations that are random with 176 

respect to the effects species have on function. This is illustrated by the many studies that have 177 

exposed relatively complex food-webs composed of field organisms (typically primary 178 

producers and invertebrate grazers and predators) to concentration series of chemical stressors 179 

during several weeks to months (Fig. 2). For example, many pyrethroid insecticides will target 180 

arthropod consumers and predators [49, 50], while photosystem-inhibiting herbicides will 181 

target specific algal taxa [51, 52]. In contrast, certain biocides such as triphenyltin [53] and 182 

narcotic chemicals [54] are examples of chemical substances that exert effects that are random 183 

with respect to function. Directly manipulating food-webs to persistently exclude certain 184 

trophic levels or functional groups (e.g. small-bodied benthic grazers, specific bacterial 185 

communities or algal taxa) will be nearly impossible. Indirect non-random manipulations might 186 

therefore be the only solution.  187 

 188 

4. Back to the future: methods to connect indirect manipulations of biodiversity with 189 

classic B-EF research 190 

Several methods are available that facilitate connecting indirect manipulations of biodiversity 191 

to the classic approach of direct, random manipulations (Box 3, ‘Outstanding questions’) [22]. 192 

The literature is replete with studies exposing communities to environmental gradients 193 

(bottom-right entry in Table 1). When a sufficient number of change levels has been tested 194 

across a sufficiently broad gradient of change, the contributions of biodiversity-mediated 195 

effects can be separated from the other effects of environmental change on ecosystem function 196 

(‘Glossary’ contains examples of such effects) using available analytical techniques. One 197 

possible way to do so is by applying multivariate statistical techniques, such as structural 198 

equation modelling [58, 59] (Box 2). However, sophisticated structural equation models [20, 199 

23] can also be used to partition the effects on function that are not mediated by biodiversity 200 

into their constituents (‘Glossary’). In addition, methods based on versions of the Price 201 

equation that do not require monoculture data but only need species contributions to function 202 



before and after environmental change can be used to separate the effects of species loss and 203 

gain that is random and non-random with respect to function from all other effects 204 

environmental change can have on function [41].  205 

 206 

Post-hoc analyses are a useful first step to quantify biodiversity-mediated effects on function. 207 

However, we recommend combining direct and indirect biodiversity manipulations as separate 208 

treatments in a single experiment, which is rarely done (Table 1). In a first design, we 209 

recommend using a well-known environmental change driver to non-randomly manipulate a 210 

community, while setting up another treatment where the same community is manipulated 211 

directly, but non-randomly in a manner that aims to match the community resulting from the 212 

application of the environmental change driver. For example, in Fig. 1B, applying a level of 213 

change of 0.1 would constitute an indirect biodiversity manipulation that excludes species 1. 214 

Higher levels would exclude species 2, 3, and so on. Thus, the direct biodiversity manipulation 215 

treatments should represent the same gradient of community compositions, by consecutively 216 

excluding species 1, 2, 3, and so on. Next, the B-EF relationship resulting from the indirect 217 

manipulation (e.g. Fig. 1B, ‘resulting B-EF’ panel) could be compared to the one resulting 218 

from the direct species removal. If both were not significantly different, this would suggest that 219 

the chosen type of environmental change mainly acts upon ecosystem functioning through 220 

effects on biodiversity. If B-EF relationships do differ, follow-up studies could examine in 221 

more detail the potential mechanisms explaining this difference, for example by inspecting the 222 

magnitude of effects on per-capita functioning [24]. However, we recognize that this design 223 

can be challenging because, as mentioned in section 3, certain community compositions are 224 

impossible to reconstruct without the use of environmental variables. This problem could be 225 

addressed by statistically testing if per-capita functioning (functional contribution of a species, 226 

e.g. its total biovolume divided by its population density) differs between the direct and indirect 227 

biodiversity treatment. If the inferred values of per-capita functioning do not differ between 228 

both biodiversity treatments, this suggests that the selected type of environmental change 229 

impacts ecosystem functioning through other mechanisms than effects on per-capita 230 

functioning.   231 

 232 

A second design consists of a factorial experiment where the presence or absence of a direct 233 

biodiversity manipulation that aims to match the community composition resulting from the 234 

indirect biodiversity manipulation (as discussed in the first design) is crossed with the presence 235 

and absence of an environmental change driver [60]. If all the effects of the driver on ecosystem 236 



functioning are mediated by biodiversity changes, then the combination of direct biodiversity 237 

manipulation and the environmental change treatment should display the same level of 238 

ecosystem functioning as both the direct manipulation alone and the environmental change 239 

treatment alone. If this were not the case, then it would suggest non-biodiversity-mediated 240 

effects on ecosystem functioning.  241 

 242 

5. Challenges of re-introducing environmental change drivers in B-EF research 243 

Although we advocate re-introducing environmental change drivers to B-EF research, there are 244 

are at least two challenges that need to be addressed for this to be successful. First, in the 245 

approach we advocate, we implicitly assume that environmental change does not affect per-246 

capita species interactions (the ߙ in Box 1). The effects of species interactions on a focal 247 

species can only be altered through changes in the density of species with which it interacts. 248 

This assumption has been shown to prevail in some systems [61], but not in others [62, 63]. 249 

Arguably the best-known example of environmental effects on per-capita interactions is the 250 

‘stress gradient hypothesis’, where there is a shift from competitive (i.e. negative) to facilitative 251 

(i.e. positive) interactions as the level of stress increases [62, 63]. Such effects can lead to a 252 

variety of effects of stress on community composition and ecosystem function, depending on 253 

the type of stress factor and species traits [64]. Suttle et al. [65] found that sustained increased 254 

precipitation eventually caused negative interactions among plant species that were not 255 

apparent before the treatment. In alfalfa communities, Barton and Ives [66] found that reduced 256 

precipitation changed interactions between spotted aphids and their ladybeetle predators 257 

through dietary shifts of the latter. These examples make clear that species interactions 258 

prevailing in the pre-change system cannot always be used to predict the chain of secondary 259 

and higher-order effects occurring after the change. In such cases, knowledge about shifts in 260 

per-capita species interactions is needed to predict how the selected environmental change 261 

driver affects biodiversity and ecosystem function (Box 3, ‘Outstanding questions’).  262 

 263 

Second, we have discussed environmental change drivers eliciting either positive or negative 264 

responses that change monotonically as the level of environmental change increases, and stay 265 

constant through time. However, many environmental change drivers can elicit positive 266 

responses in some species but negative responses in others (e.g. temperature [37]), and many 267 

responses are non-monotonic, with the sign of the response depending on the level of 268 

environmental change (e.g. [67]). In addition, depending on the life history of the considered 269 

species, populations can genetically adapt [68], which can alter their response to environmental 270 



change through time. While these features do not threaten the general principle of our thesis, 271 

they do indicate that community composition can be harder to predict, and therefore more 272 

difficult to control, for certain combinations of environmental change drivers and ecosystem 273 

types.  274 

 275 

6. Opportunities for ecosystem assessment and management 276 

Novel tools for biological monitoring will substantially increase the amount of biodiversity 277 

data [69, 70]. However, linking monitored biodiversity trends to ecosystem functions remains 278 

a major difficulty for ecosystem assessment, as has been discussed in the framework of several 279 

environmental regulations worldwide [71, 72]. Re-introducing environmental change drivers 280 

in B-EF research could help ecosystem managers by realistically translating observed 281 

biodiversity trends to trends of ecosystem function for a suite of well-studied environmental 282 

change drivers. Studies compiling and comparing different types of environmental change [21, 283 

73] will be instrumental to ask if knowledge about one type of environmental change can be 284 

transposed to other types of environmental change (Box 3, ‘Outstanding questions’). Following 285 

ecosystem assessments, predicted changes of ecosystem functions could be used to inform 286 

management as well, for example by triggering mitigating measures if needed. In addition, 287 

ecosystem managers could propose critical levels of biodiversity change that, when exceeded, 288 

lead to unacceptable loss of ecosystem functioning. The connection of B-EF research to applied 289 

science has often been debated [74]. We conclude that re-introducing the use of environmental 290 

change drivers to B-EF research can reinforce this connection.  291 

 292 
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Tables 305 

Table 1: Biodiversity manipulation can occur directly or indirectly and randomly or non-306 

randomly (‘Glossary’). Classic research on biodiversity and ecosystem function (‘Classic B-307 

EF’) has focused on direct and random biodiversity manipulations. We provide four examples 308 

of environmental change drivers that cause negative (A and B) or positive (C and D) non-309 

random direct effects in communities. Note that effects in case D are only initial effects, as 310 

explained in section 5. Direct non-random manipulations are rare and are proposed in section 311 

4 as a way forward to elucidate the role of biodiversity-mediated effects of environmental 312 

change on function. Indirect and random manipulations are rare as well but some chemical 313 

stressors can achieve such manipulations. Indirect biodiversity manipulations are by definition 314 

non-random with respect to species responses to environmental change. 315 

 316 

 Direct Indirect 

Random 

Common: 

Classic  

B-EF [6, 9] 

Rare:  

Narcotic chemicals decrease survival of all species with lipid 

bilayers, and therefore manipulate biodiversity randomly with 

respect to function [54]. 

Non-

random 

Rare [7]: 

Proposed 

designs 

(section 4) 

Common: 

A: Drought in streams decreases survival of large-bodied 

consumers and predators and reduces growth of encrusting green 

algae [35]. 

B: Pyrethroid insecticides in ditches decrease survival of arthropod 

predators [49, 50]. 

C: Nitrogen enrichment in grasslands increases growth of nitrogen 

demanding grasses [34]. 

D: Increased precipitation in grasslands increases growth of 

nitrogen-fixing forbs [65]. 

 317 

 318 

 319 

 320 

 321 

 322 



Box 1: Non-random and indirect vs. random and direct biodiversity manipulations. We 323 

simulate richness and ecosystem functioning in a community of 10 species responding to a 324 

level l of an environmental change driver and contributing to an ecosystem function F:  325 ௗே೔ௗ௧ ή ଵே೔ ൌ ௜ሺ݈ሻߤൣ ൅ σ ௜ǡ௝ߙ ή ௝ܰଵ଴ଵ ൧   (based on [44]) 326 ܨ ൌ σ ௜݂ሺ݈ሻ ή ௜ܰכଵ଴ଵ   327 

The Įi,j are per-capita effects of species j on species i (Įi,j = Įj,i = -0.2; intraspecific effects Įi,i 328 

are set to -1). ܰ௜ is the density of species i (asterisks denote equilibrium densities); ߤ௜ሺ݈ሻ and 329 ௜݂ሺ݈ሻ are growth rates and per-capita contributions to F (‘per-capita functioning’) as a 330 

function of l:   331 ߤ௜ሺ݈ሻ ൌ ௜ǡ௠௔௫ߤ ή ሺͳ ൅ ௜ݎ ή ݈ሻ    332 

௜݂ሺ݈ሻ ൌ ௜݂ǡ௠௔௫ ή ሺͳ ൅ ʹ௜Ȁݎ ή ݈ሻ    333 

where ݎ௜ represents the response of species i to environmental change and the division by two 334 

ensures per-capita functioning responds more strongly than density [75]. All species have 335 ௜݂ǡ௠௔௫ ൌ ͳͲ, respond differently to environmental change (Fig. I), have different growth rates 336 

(Fig. I) and therefore different competitive strengths (Fig. II ).   337 

We manipulated richness indirectly and non-randomly by exposing the community to levels l 338 

between 0 (no change) and 1 (100% increase or decrease of ߤ of the most responsive 339 

species), and measured the corresponding F (Fig. 1, colored symbols). When dominants 340 

respond most negatively (Fig. 1A), function decreases but richness is higher with than 341 

without environmental change because of competitive release of species 0. Thus, 342 

environmental change promotes co-existence and richness only decreases at high levels of 343 

change. The resulting B-EF relationship is therefore non-monotonic. When environmental 344 

change mostly elicits negative responses of subordinates (Fig. 1B), richness decreases already 345 

at low levels of change because subordinates (species 1) combine a low density, which makes 346 

them inherently prone to competitive exclusion, with a large negative response. In this case, a 347 

monotonic positive B-EF relationship emerges. When environmental change elicits positive 348 

responses, negative (Fig. 1C) or positive B-EF relationships (Fig. 1D) emerge from exactly 349 

the same mechanisms as in Fig. 1A and 1B.  350 

 351 

We also manipulated richness directly and randomly by removing all possible combinations 352 

of 1 to 5 species from the community and measuring the corresponding F while setting l=0 353 

(Fig. 1, shaded area, identical for all four scenarios). 354 



 355 

 356 

Figure I: Environmental change elicits negative (left panels) or positive responses (right panels) 357 

that are strongest for species with high (top row) or low (bottom row) growth rates, i.e. species 358 

that are dominant and subordinate in pre-change conditions, respectively (Fig. II ). Numbers 359 

give species identity.  360 

 361 

Figure II: Equilibrium densities in absence of environmental change.  362 
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Box 2: Separating biodiversity-mediated effects on ecosystem functioning Structural 374 

equation models (SEMs) can be used to compare biodiversity-mediated effects on ecosystem 375 

functioning with the other effects environmental change can have on function (‘Glossary’). A 376 

SEM is described as “the use of two or more structural [cause-effect] equations to model 377 

multivariate relationships”, which allows for an intuitive graphical representation of complex 378 

causal networks [58, 59]. Most notably, a SEM cannot only be used to isolate biodiversity-379 

mediated effects on ecosystem functioning, but also to investigate the partial contributions of 380 

correlated explanatory variables to test alternative hypotheses [58].  381 

For illustrative purposes, we analysed data from a previously published microcosm study 382 

evaluating the effects of chemical pollution (a mixture of insecticides) on aquatic invertebrate 383 

richness and decomposition in a ditch community [76, 77] with a simple structural equation 384 

model. We also present previously published effects of nitrogen and carbon dioxide enrichment 385 

on plant richness and biomass production in grasslands [22]. These analyses show that 386 

richness-mediated effects are negative for environmental change drivers that have negative 387 

effects on richness and that this effect can only partly be compensated by other effects of 388 

environmental change. These analyses also show that the relative contribution of both types of 389 

effect differs among types of environmental change drivers. Many examples in the literature 390 

support the conclusion that cosm studies with chemical agents can be successfully analysed 391 

with SEMs, including SEMs with more extended effect pathways [20, 23]. In more replicated 392 

experimental setups [58], different biodiversity and community metrics could be tested in 393 

parallel to extract the most relevant biodiversity metric causing alterations in ecosystem 394 

functioning. 395 

 396 

Figure I. A: Environmental change drivers can affect functions by altering biodiversity or 397 

through other mechanisms (‘Glossary’) [22]. B: Structural equation models for three 398 

environmental change drivers. All effects are significant (P < 0.05) except when indicated 399 

(n.s.). The variance of diversity and function explained by the model (R²) for the case of 400 

chemical pollution was 68% and 65%, respectively. Effects are standardized path coefficients 401 
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[59]. Details on the analysis for the other two drivers can be found in the original publication 402 

[22]. 403 
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Box 3: Outstanding questions 435 

 436 

 Model simulations indicate that environmental change can affect function 437 

without changing richness but how important are such effects in real ecosystems? 438 

How do effects on function at invariant richness vary among ecosystems?  439 

 Biodiversity-ecosystem functioning research has mostly focused on the effects 440 

of random species loss on functions. How do these effects compare to those occuring 441 

following environmental change? 442 

 How does environmental change alter per-capita species interactions and how 443 

does this affect our capacity to manipulate biodiversity using environmental change 444 

drivers?  445 

 How can knowledge about a selection of well-studied environmental change 446 

drivers be used to manage ecosystems exposed to other types of environmental 447 

change? 448 

 449 
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Glossary 468 

Environmental change driver: An environmental variable that exhibits long-term changes, 469 

often as a result of anthropogenic activities. Examples include nutrient deposition, climate 470 

warming, habitat destruction, and chemical stress.  471 

Direct biodiversity manipulation: If biodiversity is manipulated directly, communities with 472 

different biodiversity levels are composed, e.g. by taking different subsets of a species pool in 473 

case of taxonomic richness.  474 

Indirect biodiversity manipulation: If biodiversity is manipulated indirectly, one applies 475 

different levels of an environmental change driver to create a biodiversity gradient. Indirect 476 

biodiversity manipulations are by definition non-random with respect to species responses to 477 

environmental change.  478 

Random biodiversity manipulation: If biodiversity is manipulated randomly, community 479 

composition is varied within a diversity level. By doing so, one can statistically control for 480 

effects of community composition on ecosystem function.  481 

Non-random biodiversity manipulation: Non-random biodiversity manipulations are done 482 

based on known or presumed extinction or colonization orders (non-random with respect to 483 

species responses to environmental change), or based on the contribution of species to function 484 

(non-random with respect to species effects on ecosystem functions) [78].  485 

Biodiversity-mediated effect of environmental change on ecosystem function: Effects 486 

occurring through changes in any aspect of biodiversity (community composition or structure, 487 

richness).   488 

Other effects of environmental change on ecosystem function: Effects occurring through 489 

mechanisms other than biodiversity changes. Examples include changes of total density 490 

(community size), changes of per-capita functioning (௜݂ሺ݈ሻ in Box 1, e.g. physiological 491 

responses to warming), or changes of the bioavailability of macronutrients such as carbon, 492 

nitrogen, or phosphorous [79].  493 
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Figure legends 502 

Figure 1: Simulations illustrating that indirect and non-random manipulations of biodiversity 503 

can result in a multitude of biodiversity-ecosystem function relationships (‘Resulting B-EF’, 504 

colours represent a scale from l=0 (yellow) to l=1 (red), the value for l=0 is indicated with a 505 

‘x’ for clarity) by affecting not only richness but also per-capita functioning (average effect 506 

across all species) and total density (sum of all species). These effects depend on the level of 507 

environmental change (‘level-dependent effects’) and the shape of the resulting B-EF critically 508 

depends on whether dominants (A and C) or subordinates (B and D) respond more strongly to 509 

environmental change, and on whether the elicited responses are negative (A and B) or positive 510 

(C and D). The shaded area indicates the expected B-EF under direct and random biodiversity 511 

manipulations.  512 

 513 

Figure 2: Chemical stressors can be used to non-randomly and indirectly manipulate 514 

biodiversity, as illustrated by empirically observed effects of continuous exposure of 515 

freshwater ditch food-webs to chemical stressors in published micro- and mesocosm 516 

experiments. A: Predators, herbivores and detritivores are separated into arthropod (Arth) and 517 

non-arthropod (Non-arth) species; primary producers are separated into macrophytes (Macro) 518 

and algae; Det. represents detrital material and its associated microflora. B: Results for 519 

exposure to 50µg/L linuron, a photosystem (‘PS’) inhibitor [51, 52]. C: Results for exposure 520 

to 35 µg/L chlorpyrifos, a pyrethroid insecticide [49, 50]. Significant primary responses by the 521 

corresponding chemical stressor are shown in red, secondary effects mediated by species 522 

interactions are shown in green. White circles indicate that there was no effect. The relative 523 

sizes of the coloured and dotted circles indicate whether the effect was positive (increase in 524 

abundance - coloured circle larger than dotted circle) or negative (decrease of abundance - 525 

coloured circle smaller than dotted circle).  526 
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