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Abstract 

The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered 
with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have 
indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle 
emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples 
collected from sites along a major highway bisecting the panda’s habitat were analyzed to 
investigate whether the highway was an important source of metal contamination. There were 
11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples 
were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil 
depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and 
concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance 
from the highway. Geo-accumulation index indicated that topsoil next to the highway was 
moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the 
highway was extremely contaminated with Cd. The potential ecological risk index 
demonstrated that this area was in a high degree of ecological hazards, which were also due 
to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn 
especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated 
that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. 
The study has confirmed that traffic does contaminate roadside soils and poses a potential 
threat to the health of pandas. This should not be ignored when the conservation and 
management of pandas is considered. 
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Introduction 

The giant panda is one of the most endangered animals in the world, especially Qinling 
subspecies (Ailuropoda melanoleuca qinlingensis) which is fewer than 350 individuals in the 
wild (SFA, State Forestry Administration 2015). Since 1978, 13 conservation zones have 
been established in the Qinling Mountains to protect the giant panda, and the largest density 
area of pandas is the Foping Nature Reserve that belongs to Xinglongling population habitat. 
However, a recent study had found that pandas in the Foping Nature Reserve were exposed to 
toxic metals via their food, the bamboo species Fargesia qinlingensis and Bashania fargesii, 
and soil in their core activity area (Chen et al. 2016). In order to comprehensively explore the 
ecological risk of metals in Qinling giant panda habitat and the giant pandas’ exposure levels 
to toxic metals and health risk, soil, water, bamboo, and feces samples were collected in 
independent distribution areas of six Qinling giant panda populations. The result showed that 
the Qingling giant panda habitat had a certain degree of ecological risk, especially Cd, which 
could cause serious threat to pandas (Zheng 2016). According to the result of multivariate 
statistical analysis and actual investigation, Cd and some metals may come from the traffic-
related activities (Zheng 2016). 

With the development of the economy and improvement of the transportation enterprise, the 
number of roads and traffic flow are becoming increased in the Qinling Mountains. 
Therefore, the typical road in typical area was selected in this study to verify whether the 
road traffic could threaten giant panda and their habitat. The 108th National Highway that 
bisects Foping Nature Reserve is the potentially important anthropogenic source of metals in 
this reserve. Elevated concentrations of heavy metals in roadside soil have been reported in 
previous studies (e.g., Forman and Alexander 1998; Trombulak and Frissell 2000), and the 
concentrations of heavy metals in roadside soil decrease with increasing distance from the 
road (Werkenthin et al. 2014). Toxic metals derived from road abrasion, vehicle emission, 
and the wear of vehicle parts could be transported to roadside soils via spray, surface water 
runoff, or wind dispersal. Contaminants could be transported up to 10 m from the road via 
surface runoff, whereas fine particulate matter could be transported and deposited up to 
250 m away from the roadside by wind and airflow (Werkenthin et al. 2014). To verify 
whether the highway is an important source of toxic metals, especially Cd in giant panda 
habitat, roadside soil samples were taken at different depths and distances. 

In general, metals, essential for plant growth, are taken from soils (Kumar et al. 1995; Li et 
al. 2015; Liu et al. 2015), and many plants can accumulate high concentrations of metals in 
their tissues (Khan et al. 2009). For instance, bamboo (Fargesia dura) growing in a mining 
area accumulated Cd, Cu, Pb, and Zn with concentrations of Cd and Zn being greater in 
bamboo tissue than in the soil (Yanqun et al. 2004), and likewise, bamboo (Fargesia 
qinlingensis and Bashania fargesii) have higher concentrations of Cd and Pb in the Foping 
Nature Reserve that is one of the core activity areas of Qinling giant panda (Chen et al. 
2016). Pandas can consume an average 30 kg of bamboo shoots and leaves per day (Tuanmu 
et al. 2013). Consequently, even relatively low metal concentrations in bamboo tissue can 
result in a higher dietary exposure threatening the pandas’ health. Understanding the potential 
ecological risk and health risk of toxic metals for panda habitat and giant panda is therefore 
important for the effective conservation of this iconic species. 

The geo-accumulation index (Igeo) and the potential ecological risk index (RI) were used to 
evaluate potential ecological risk for giant panda habitat (Müller 1969; Hakanson 1980), and 
the hazard quotient (HQ) was used to assess potential health risk for giant panda. These 

http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR9
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR84
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR84
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR19
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR65
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR73
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR73
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR29
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR33
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR37
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR28
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR78
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR9
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR66
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR49
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR23


methods have been used previously to evaluate the exposure risk of toxic contaminant using 
sediments (Yi et al. 2011; Zhang et al. 2014) and soils (USEPA 1997; Loska et al. 2004; 
Leung and Wong 2008; Chen et al. 2015). 

The objectives of this paper are to (1) verify whether the road traffic is an important source of 
toxic heavy metals, especially Cd in giant panda habitat; (2) parse the rule of spatial variation 
about the heavy metal concentrations in roadside soil; and (3) identify the classification of 
heavy metals in the surrounding environment of highway and confirm which heavy metals 
came from the road traffic. 

Materials and methods 

Study area 

The study was conducted along a 30-km section of the 108th National Highway in the Foping 
Nature Reserve, China (N 33.61° and E 107.95° to N 33.73° and E 107.97°, elevation range 
was 1132 to 1771 m). The highway has been built in the 1960s and is one of the main 
transport corridors in China. According to a recent survey, the daily average traffic flow of 
this road was about 30,000 vehicles in 2014 (Xi’an Evening Daily 2014). 

Sample collection, preparation, and determination 

A total of 132 soil samples were collected from 11 sites along the 108th National Highway in 
March 2015. There were four sampling locations per site, at distances of 0, 50, 100, and 
300 m from the carriageway, and at each sampling location, three soil samples were collected 
at three soil depths (0, 5, and 10 cm). The humus layer was scraped off by a wooden or 
bamboo shovels, and soil profiles were produced, and then, 0, 5, and 10 cm depth of soil were 
collected in the vertical plane that was perpendicular to the ground using the sampler. 
Replicate samples were pooled, and the mass of the combined sample was 0.5 kg. 

Soil samples were transported to the laboratory using the clean polyethylene bags, where they 
were air-dried at room temperature before dried in an oven at 50 °C to a constant weight. 
Approximately 50 g of each sample was then ground and homogenized by passing through a 
0.15-mm nylon sieve before analysis. 

Two hundred and fifty milligrams of soil was placed in a Teflon digestion vessel, and each 
sample was prepared in triplicate. In addition, nine 250 mg samples of standard reference 
materials (soil GBW 07427) obtained from the Center of National Standard. 

Reference Material of China and 12 blank controls were prepared. Guaranteed Reagent (GR)-
grade acid digestion mixture (1 mL HNO3, 3 mL HCl, 5 mL HF, 2 mL HClO4) was added to 
each vessel, and the samples were digested using an electric hot plate with the following 
conditions: ramp to 80 °C hold for 120 min, ramp to 100 °C in 5 min and hold for 120 min, 
ramp to 115 °C in 5 min and hold for 120 min, ramp to 135 °C in 5 min and hold for 300 min, 
ramp to 135 °C in 5 min and hold for 300 min, and then ramp to 165 °C in 5 min and hold for 
300 min. After digestion, 0.5 mL GR-grade nitric acid was added to each sample and diluted 
to 25 mL with ultrapure water (18.2 Mȍ/cm2 Milli-Q water, Millipore). 
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The concentrations of metals were analyzed using atomic absorption spectroscopy (AAS, 
ZEEnit 700 P, Analytik Jena, Germany). Concentrations of Cu, Zn, Mn, and Cr were 
measured by air acetylene flame method of the AAS with electrically modulated deuterium-
HCL background correction. Hydride-forming elements of As and Hg were measured by the 
HS55 Hydride System of the AAS. Concentrations of Pb, Cd, and Ni were measured by 
graphite furnace AAS coupled with a MPE 60 graphite autosampler and by using two-field 
mode Zeeman effect background correction. All concentrations of metals in this study are 
expressed in micrograms per gram on dry weight basis (ȝg/g dw). 

Metal recoveries for standard reference materials were within 10 % of the certified values, 
and all analyses for the standard reference materials were performed in triplicate. Limit of 
detection (LOD) calculated using triple standard deviation values of blanks and average dry 
weight of soils were 0.53, 0.21, 0.71, 0.04, 1.50, 0.75, 0.005, 0.01, and 0.03 ȝg/g for Cu, Zn, 
Mn, Pb, Cr, Ni, Cd, Hg, and As, respectively. 

Evaluation methods of data analysis 

The geo-accumulation index (Igeo) was calculated to assess heavy metal pollution (Müller 
1969), and the Igeo is defined by the following equation: 
 

Igeo = log2

(
Cn

1.5Bn
)
 

where Cn is the concentration of metal in the sample and Bn is the soil background value of 
heavy metal. Factor 1.5 is the background matrix correction factor (Müller 1969). The 
background value of metals in Shaanxi, obtained from the Chinese Ministry of 
Environmental Protection (CNEMC 1990), were presented in Table S1, and classification of 
pollution levels were presented in Table S3. 

The monomial potential ecological risk index of each metal (i
rE ) and the potential ecological 

risk indexes of all metals (RI) are calculated by the following equations: 
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where ifC  is the single metal pollution index, Ci is the determined concentration of metal, Cn
i 

is the background value, which is the same as Bn, and Tir  is the toxic response factor. Based 
on the standardized toxic factor of metals (Hakanson 1980), the order of toxicity is 
Mn = Zn = 1 < Cr = 2 < Cu = Ni = Pb = 5 < As = 10 < Cd = 30 < Hg = 40. Classification 
standard of pollution levels based on irE  and RI was presented in Table S4. 

Health risk assessment for giant panda is calculated based on equations detailed in USEPA’s 
Exposure Factors Handbook (USEPA 1997). Average daily dose (ADD) is determined by the 
following equation: 
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ADD=(C×IRS×EF×ED)/(BW×AT) 

where C is the mean concentration of heavy metal (mg/kg), IRS is the soil ingestion rates, the 
IRS of giant panda compared with the conservative estimates of adult’s IRS = 100 mg/day 
(USEPA 1997), EF is the exposure frequency, 350 day/year, ED is the exposure duration 
(according to the data provided by the experts in Shaanxi Wild Animal Research Center 
(SWARC) that is the only breeding center for the Qinling subspecies conservation, ED is 
10.36 years), and BW is the average body weight; the average weight of giant panda is 80–
130 kg (Zhang and Wei 2006); we selected the average weight 105 kg in this study. AT is 
averaging time, AT = 3781.4 days. 

Noncancer toxic risk is determined by the model hypothesis of hazard quotient (HQ): 
 
HQ=ADD/RfDo 

RfDo is the reference dose of a specific metal (USEPA 1997). If HQ < 1, it is considered to 
be relatively safe for risk exposure. If 1 < HQ < 10, it suggests that there exists considerable 
threat for health effects, If HQ > 10, it suggests a high chronic risk. While the value of HQ 
increases, the probability of risk expose also increases (Hang et al. 2009). 

Statistical analysis 

The spatially matched samples from soil samples were analyzed using two-way ANOVA, the 
fixed factors being location (0, 5, 10 cm) and distances (0, 50, 100, 300 m). Site was included 
as a random factor. 

Correlation analysis (CA), principal component analysis (PCA), and hierarchical cluster 
analysis (HCA) were used to explore associations between metals in soil samples with a view 
of identifying possible sources of contamination (Einax and Soldt 1999; Singh et al. 2004; 
Han et al. 2006; Li and Feng 2012). PCA was widely used to reduce data and to extract a 
small number of latent factors for analyzing relationships among the observed variables 
(Martin et al. 2006; Gou et al. 2007). HCA was performed to further classify the different 
sources of metals on the basis of the similarities of their chemical properties and pathways 
(Han et al. 2006). Kolmogorov–Smimov test was used to test the normal distribution, and the 
suitability was tested by Kaiser–Meyer–Olkin and Bartlett to make sure that the original data 
met the requirements of HCA and PCA. In addition, prior to HCA, the raw data was 
standardized by z-scores and the Ward’s method was performed. All these statistical analyses 
were performed with the statistical package SPSS 20.0 (IBM SPSS Statistics, IBM Corp., 
USA). 
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Results 

Spatial variation of heavy metal concentrations 

The concentrations of all metals except As exceeded the background values (Fig. 1). Before 
ANOVA, the data of heavy metal concentration was tested to meet an approximation of 
normal distribution. Two-way ANOVA indicated a significant effect of distance from 
highway for all metals except mercury (F3,110 > 4.1, p < 0.05). There was a monotonic 
reduction in metal concentration with increasing distance for Cu, Zn, Mn, Pb, and Cd, but Hg 
and As concentrations increased with distance in general; Cr and Ni concentrations decreased 
and then increased with distance (Fig. 1). Concentrations of Zn, Pb, and Cd decreased with 
soil depth (F2,110 > 5.9, p < 0.01), whereas concentrations of Cr, Ni, and As increased with 
soil depth (F2,110 > 3.3, p < 0.05). There was no significant effect of soil depth on 
concentrations of Cu, Mn, or Hg (Fig. 1). 
 
The Igeo was calculated for each sample, and values ranged from −1.50 to 2.73 (Table S1). 
Values of Igeo for Cu, Mn, Cr, Ni, Hg, and As (except for one sample) were less than 0 
indicating that soil samples were uncontaminated by these elements (Table S1). All the 
samples were classified as “uncontaminated to moderately contaminated” for Zn (Igeo = 0.07–
0.62). Except topsoil and 5-cm samples taken with 0 m of the road that were classified as 
“moderately contaminated” (Igeo = 1.13, 1.06), other samples were classified as 
uncontaminated to moderately contaminated for Pb (Igeo = 0.01–0.47). The highest levels of 
contaminations were recorded for cadmium, with all topsoil samples being classified as 
“moderately to heavily contaminated” (Igeo = 2.18–2.73, Fig. 2a). Further, the 3D response 
surface for Igeo of Cd showed that the Igeo values of Cd were largest and showed a decreasing 
trend with the increasing distance and sampling depth (Fig. 3a). The pollution of Cd was 
more serious, especially the topsoil and the area that was near the road closely. 

The Ei
r was calculated for each sample, and values ranged from 1.08 to 298.10 (Table S1). 

Values of Eir for Cu, Zn, Mn, Pb, Cr, Ni, and As were less than 15 indicating that Ei
r of these 

elements was in low pollution degree (Table S4). All the samples were classified as 
“considerable pollution degree” for Hg (Ei

r = 44.14–59.28). The highest levels of pollution 
degree were also recorded for cadmium, with all topsoil samples being classified as very high 
pollution degree (Eir = 214.69–298.10), and other samples were in high pollution degree 
(Ei

r = 75.32–216.58, Fig. 2b). 

The regional comprehensive potential ecological risk (RI) was calculated with nine elements, 
and the values ranged from 149 to 379 (Table S2). All the sites were determined as in very 
high degree of potential hazards (>120, Table S4), and the value of RI presented that 
potential hazards in closer distance from road and in topsoil were larger than that in the faster 
distance and deeper soil (0 > 50 > 100 > 300 m, 0 > 5 > 10 cm) (Fig. 3b). The results of Igeo 
and RI showed that the study area had a higher ecological risk, which was mainly due to the 
pollution of Cd, Pb, Zn, and Hg especially Cd. But whether these higher pollution elements 
can directly threaten the giant pandas or what elements can pose a direct threat for them, the 
hazard quotient was used for the further analysis. The mean HQ of nine heavy metals was in 
the order of Cd (4.57) > Pb (1.80) > Mn (1.10) > Hg (0.97) > Ni (0.82) > Cu (0.44) > As 
(0.28) > Zn (0.25) > Cr (0.03). The values of Cd, Pb, and Mn were greater than 1, which 
indicated that these elements can pose health risk to the giant panda, and the HQ tendencies 
of Pb and Cd were 0 > 50 > 100 > 300 m and 0 > 5 > 10 cm (Table 1). 
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Fig. 1: Spatial variation of concentrations of Cu (a), Zn (b), Mn (c) Pb (d), Cr (e), Ni (f), Cd 
(g), Hg (h), and As (i) with distance in roadside soil from the 108th National Highway. In the 
figures, 0, 50, 100, and 300 m express the sampling sites from roadbed at distances of 0, 50, 
100, and 300 m. Soil samples collected at depths of 0 cm (white bars), 5 cm (blue bars), and 
10 cm (red bars) at each sampling sites. Dotted line denotes background concentration 

https://static-content.springer.com/image/art:10.1007/s11356-016-7221-0/MediaObjects/11356_2016_7221_Fig1_HTML.gif


 

 

Fig 2: The geo-accumulation index (Igeo) (a) and the total potential ecological risk (RI), 
monomial potential ecological risk index (Ei

r) (b) for Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As 
in soil samples collected along the 108th National Highway 
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Fig. 3: The 3D response surface of the Igeo of Cd (a) and RI of heavy metal (b) 
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Table 1: The HQs of nine heavy metals in soil collected along the 108th National Highway. 
Bold values indicate the mean of HQs are greater than 1, which means that these elements 
can pose health risk to giant panda 
 

Distance Depth Cu Zn Mn Pb Cr Ni Cd Hg As 

0 m 

0 cm 0.53 0.37 1.35 3.46 0.03 0.83 6.24 0.87 0.23 

5 cm 0.54 0.37 1.25 1.70 0.03 0.89 4.41 0.86 0.25 

10 cm 0.55 0.36 1.21 1.55 0.04 0.92 3.96 0.85 0.27 

50 m 

0 cm 0.40 0.25 1.16 3.34 0.03 0.68 5.52 1.10 0.28 

5 cm 0.41 0.22 1.00 1.53 0.03 0.74 4.45 1.05 0.28 

10 cm 0.42 0.22 1.04 1.25 0.03 0.77 4.36 0.98 0.28 

100 m 

0 cm 0.38 0.23 1.17 2.51 0.03 0.77 5.11 1.05 0.29 

5 cm 0.38 0.22 1.11 1.03 0.03 0.82 3.96 0.91 0.29 

10 cm 0.39 0.20 1.06 0.95 0.03 0.86 4.15 0.87 0.34 

300 m 

0 cm 0.40 0.21 1.07 2.36 0.03 0.70 5.05 1.01 0.24 

5 cm 0.41 0.19 0.87 1.03 0.03 0.89 3.91 1.03 0.27 

10 cm 0.41 0.19 0.90 0.87 0.03 0.94 3.72 1.03 0.30 

Mean 0.44 0.25 1.10 1.80 0.03 0.82 4.57 0.97 0.28 

 

Multivariate statistical analysis 

CA, HCA, and PCA were used to explore the association between metals in roadside soil 
samples in order to gain insight into whether the potential source of toxic contaminants is the 
road and which elements are derived from traffic. All the raw data was tested and 
standardized before multivariate statistical analysis, and the data met the certain 
requirements. 

The most significant positive correlations were detected between Cd, Pb, and Zn (r = 0.768–
0.831) and between Cr, Cu, Mn, and Ni (r = 0.429–0.833). Cu, Mn, Pb, and Zn also had the 
more significant correlation (r = 0.158–0.482). Hg and As (r = 0.466) were negatively 
correlated with the other seven elements (Table 2). 
 
HCA (Fig. 4a) and PCA (Fig. 4b) also grouped the metals into three main clusters, Cr–Ni–
Cu–Mn, Pb–Zn–Cd, and As–Hg with the Cr–Ni–Cu–Mn cluster being further subdivided into 
Cr–Ni and Cu–Mn. These analyses suggested that the different clusters of metals were 
derived from different sources, with Pb, Zn, and Cd being most strongly associated with the 
same source. 
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Table 2: The correlation matrix for metals measured in soil samples. Bold values indicate that 
the correlation is significant at 0.01 level, which means that these metals have the most 
significant positive correlation 

Elements Cd Cr Cu Hg Mn Ni Pb Zn As 
Cd   −0.153 0.367* −0.104 0.277* −0.016 0.768** 0.827** −0.061 

Cr     0.501** −0.110 0.599** 0.833** −0.109 0.071 −0.170 

Cu       −0.331 0.619** 0.573** 0.366* 0.476* −0.278 

Hg         −0.230 0.026 −0.118 −0.201 0.466** 
Mn           0.429** 0.158* 0.482* −0.172 

Ni             0.053 0.138 −0.323 

Pb               0.831** −0.237 

Zn                 −0.258 

As                   

**Correlation is significant at the 0.01 level, *Correlation is significant at the 0.05 level 

 

 
Fig. 4 

Fig. 4: Hierarchical clustering analysis of metals (a) and rotated component loading 3D plot 
for nine heavy metals (b) in soil samples collected from the 108th National Highway that 
bisects the Xinglongling giant panda habitat (n = 132). The suitability test was tested by 
Kaiser–Meyer–Olkin (0.694) and Bartlett (sig < 0.05); the original data met the requirements 
that were analyzed by HCA and PCA 
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Discussion 

The pollution level of heavy metals in roadside soil of 108th National Highway that was a 
typical road bisecting the giant panda habitat was evaluated to verify whether the road traffic 
can harm giant panda, which was the first objective of this study. Concentrations of all metals 
except As exceeded background levels, and the contaminations were particularly high for Cd 
up to a distance of 300 m away from the highway and for Pb and Zn next to the highway. 
Some studies have shown that the concentrations of traffic-related metals in soil decreased 
with the growing distance from the road edge (Liu et al. 2009; Yan et al. 2013; Werkenthin et 
al. 2014). Whereas, the pollution scope, such as Cd, Pb, and Zn, can be up to a greater 
distance from the highway (Viard et al. 2004; Chen et al. 2010). The contaminated soil could 
also cause a wide range of ecological hazard if the contaminants were transferred to other 
spheres: hydrosphere, atmosphere, and biosphere (Sutherland 2000; Sutherland et al. 2000). 
Contaminated soil particles could be washed into nearby water bodies that like human blood 
and form a potential threat for the whole water environment (Sansalone and Buchberger 
1997), and fine particulate matter could be transported by wind and deposited up to the 
further area, completing the secondary atmospheric precipitation (Werkenthin et al. 2014; 
Schreck et al. 2014). Previous research indicated that diet intake was the direct way that giant 
panda exposed to toxic metals and the metal in soil directly influences on security and quality 
of bamboo (Zheng 2016). Bamboos growing in contamination area accumulated high 
concentrations of metals (Kumar et al. 1995; Khan et al. 2009; Yanqun et al. 2004), and 
metals were transferred through the food chain, posing a potential health risk to panda 
(Parker and Hamr 2001; Burger 2008; Brahmia et al. 2013). The giant panda physical activity 
was found by the camera traps at a small distance from the 108th road in March 2015 (WWF 
China News Center); long-term exposure to contaminated soil and consumption of 
contaminated bamboo could threaten pandas’ health. Moreover, the contaminated roadside 
soils transferred to other spheres (Sutherland 2000; Sutherland et al. 2000) leading to the 
pollution scope extended and threatening the whole habitat and Qinling subspecies (Zheng 
2016). 

In this study, the higher Igeo of Cd, Pb, and Zn and the higher Er
i of Cd and Hg showed that 

these elements can pose a higher ecological risk to the environment in research area. 
Moreover, to further explore whether this pollution situation could directly influence the 
giant panda health or which elements could pose a direct threat for panda’s health, the hazard 
quotient was calculated, and the higher HQ of Cd, Pb, and Mn, which were greater than 1, 
indicated that these elements did pose a higher health risk to the giant panda, especially Cd 
(Zheng 2016). It has been suggested that Cd is involved in carcinogenesis in multiple organs 
including the kidney, prostate, liver, and pancreas (Waalkes 2003; Goyer et al. 2004; Valko et 
al. 2005; Thompson and Bannigan 2008) of animals. Cadmium can induce hepatic nuclear 
DNA damage and testicular injury and increase the sperm aberration rate (Shiva 1982; 
Masters et al. 1994; Larision et al. 2000; Dalton et al. 1996; Bagchi et al. 1997; Siu et al. 
2009). Whereas Pb with low dose can induce nervous system disorders, interfere with 
hemoglobin synthesis, damage the cardiovascular system, etc. (Michelle et al. 2015), Pb as 
the carcinogenic substance can cause renal cortical adenocarcinoma, brain tumors, and DNA 
oxidative damage (Silbergeld et al. 2000) and reproductive system damage (Eibensteiner et 
al. 2005; Mario et al. 2015). Mn is an essential metal that can pose a low ecological risk to 
the environment in this study, but the high level exposure to Mn has a risk for health of giant 
panda. The clinical manifestation of manganese poisoning is a serious mental disorder 
affecting the transmission ability of nerve synapses, with movement disorders, Parkinsonism, 
or permanent disability (Cowan et al. 2009; Long et al. 2014; Safa et al. 2016). 
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This is the first time to verify the harm of road traffic to giant panda in Qinling; therefore, the 
values could only to be compared to those in one of the core areas, Foping Nature Reserve. 
The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As are 20, 90, 559, 25, 19, 17, 
0.25, 0.028, and 6.4 ȝg/g, respectively, in soil samples collected from core area of reserve 
(Liu 2015), and the concentrations of Cd (0.25 > 0.118), Pb (25 > 16.3), and Zn (90 > 65.8) 
exceeded the background values of soil in Shaanxi (CNEMC 1990). The mean concentrations 
of nine elements in our study are higher than those reported in the core area, which, due to 
human activities leading to the concentrations of metals in buffer area, were significantly 
higher than that in the core area (Zheng 2016). 

nother objective of this study was to identify classification of heavy metals, parse the possible 
source of heavy metal contamination in the surrounding environment of highway, and 
validate which metals came from the road traffic. Multivariate analyses identified three 
groups of metals: (1) Cr, Ni, Cu, and Mn; (2) Pb, Zn, and Cd; and (3) Hg and As, suggesting 
three primary sources. 

For the first group of metals, the concentrations of Cr and Ni did not present the exponential 
trend that descended with the increasing distance, but the concentrations were first decreasing 
and then slightly increasing. Wei and Yang pointed out that the concentrations of Cr, Cu, Pb, 
Zn, Ni, and Cd ȝg/g in urban road dusts of cities from China were much higher than 
background values (Wei and Yang 2010). Studies have demonstrated that vehicle emission 
and oil pump wear were the important sources of Ni and 80 % of Ni in atmosphere of 
roadsides came from automobile exhaust (Allen et al. 2001; Faiz et al. 2009; Johansson et al. 
2009). But in this study, there was the suddenly increasing phenomenon that appeared in 
300 m, and the reason might because other natural or man-made factors disturbed the pure 
influence of road. Depending on the specific position of research area, there were very few 
industrial and agricultural activities, so the man-made factors were eliminated. Some research 
have demonstrated that Cr and Ni were affected by the heterogeneity of the soil parent 
material that was controlled primarily by natural lithogenic and/or pedogenic processes 
(Sutherland and Tolosa 2001), and “natural” heavy metal contents in soils could exhibit a 
higher variability controlled by the parent material (Facchinelli et al. 2001), so the 
interference factor was considered as soil parent material ultimately. 

The concentrations of Cu and Mn in the first group did not vary significantly with soil depth 
but roughly decrease with increasing distance from the highway. Fujiwara indicated that the 
brake pad wear was the main source of Cu, Sb, and Ba (Fujiwara et al. 2011). 
Methylcyclopentadienyl manganese tricarbonyl (MMT) antiknock additive was the main 
source of Mn in roadside environment, and Loranger found that manganese concentration in 
ambient air and emission rate increased about 10 % annually since the use of MMT in 1976 
(Loranger and Zayed 1992). In addition, the traffic that led to the concentrations of Cu and 
Mn decreased with the increasing distance from the road (Turer and Maynard 2003; Curtin et 
al. 2011; Li et al. 2013). However, the fluctuating decrease and the sudden increase indicated 
that there was also another disturbance factor to disturb pure impact of traffic. We learned the 
Qinling Mountains were rich in minerals including Cu and Mn (Zhu et al. 1992), so Cu and 
Mn should be under the influence of soil parent material like Cr and Ni. It was therefore 
proposed that metals in this group originate from traffic and soil parent material, but the main 
source was the traffic with the significant differences in different distance from the highway. 

The second group of metals, Pb, Zn, and Cd, exhibited decreasing concentration with 
increasing soil depth and distance from the highway. This pattern was consistent with 

http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR39
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR10
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR84
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR72
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR1
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR18
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR27
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR62
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR17
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR20
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR41
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR67
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR12
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR36
http://link.springer.com/article/10.1007%2Fs11356-016-7221-0#CR85


previous studies and indicated that the highway was the main source of these contaminants. 
The study of traffic-related metals in roadside soils along the Qinghai–Tibet highway 
indicated that Cu, Zn, Pb, Cr, Cd, and As were related to road transportation (Zhang et al. 
2015) and the contents of Zn, Pb, and Cd in roadside soils decreased exponentially with the 
distance from the road (Yan et al. 2013; Zhang et al. 2015). The heavy metal in soil alongside 
mountain railway in Sichuan showed that the concentrations of Cu, Zn, Mn, Pb, and Cd 
decreased with increasing distance from the railroad and indicated that railway transport was 
the source of such pollutants (Liu et al. 2009). A review of Cu, Zn, Pb, Cr, and Ni in 
European roadside soils showed that road construction and transportation affected the 
surrounding roadside soils significantly and the heavy metal contaminations also decreased 
with increasing distance (Werkenthin et al. 2014). It is commonly believed that vehicle 
emissions were an important source of Pb pollution (Lee et al. 2006; Zechmeister et al. 2006; 
Yang et al. 2008, 2011). Zn mainly came from the aging wear of automobile tires and car 
body, and the loss of gasoline and lubricating oil was also a source of Zn and Cd (Ellis and 
Revitt 1982; Alloway et al. 1990; Miguel et al. 1997; Hashisho and EL-Fadel 2004; Blok 
2005; Nabulo et al. 2006). Besides, the application of fertilizer to soils could be an important 
source of Cd (Mattigod and Page 1983; Alloway et al. 1990; Li et al. 2001), but few 
farmlands in this area, the pesticide source of Cd was eliminated, so the elements in this 
group was mainly affected by traffic. 

The third group of metals, Hg and As, indicated that the traffic did not affect both of elements 
because in this study area, the concentration of Hg and As did not decrease with increasing 
distance from the highway. It is generally believed that the coal combustion and solid waste 
incineration and wastewater discharge were generally regarded as the main pollution resource 
of Hg and As. Research showed the concentrations of Hg and As in fly ash of coal 
combustion were 3.5 and 63.5 mg/kg, respectively, in China (Li and Feng 2012; Pirrone et al. 
2010; Yang et al. 2011; Liu et al. 2015). 

Conclusion 

To our knowledge, this is the first investigative study to explore whether the highway can 
pose a potential threat for giant pandas. The results showed that the 108th National Highway 
bisecting Qinling giant panda habitat was indeed a major source of some toxic metals. All the 
determined metals except As exceeded background levels, and the concentrations of Cu, Zn, 
Mn, Pb, and Cd decreased with increasing distance from the highway. Igeo indicated that 
topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up 
to 300 m away from the highway was extremely contaminated with Cd. RI indicated that 
study area was in a high degree of potential hazards, which were also due to the serious Cd 
contamination. The HQ indicated that Cd (HQCd = 4.57 > 1), Pb (HQPb = 1.80 > 1), and Mn 
(HQMn = 1.10 > 1) could be threatening the pandas’ health especially Cd. In addition, it is 
worth noting that although Mn was an essential metal that pose a low ecological risk to the 
environment, the high level exposure to Mn had a risk for giant panda’s health. Moreover, the 
contaminated roadside soils could be transferred to other spheres (Sutherland 2000; 
Sutherland et al. 2000) leading to the pollution scope extended and threatening the whole 
habitat and Qinling subspecies, which had already been confirmed in the previous study 
(Zheng 2016). 

Given the potential for metals to lead to adverse ecology and health effects and thereby 
compromised conservation efforts, it is important to explore the contamination sources of 
heavy metal. The multivariate analysis of metals in this study was consistent with that in soil, 
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water, bamboo, and feces collected from different distribution area of six giant panda 
populations. Cd, Pb, and Zn belonged to the same category, and these toxic pollutants did 
come from the road traffic. Controlling these metals at source would be desirable, but it was 
difficult to immediately cut off the contamination. In the short term, therefore, efforts may be 
focused on controlling traffic flow and transplanting some hyperaccumulators along the road 
to alleviate the influence of heavy metal contamination to protect the giant panda. In the long 
run, the giant panda nature reserve should be completely taken into consideration in the road 
location project, and it is best to choose some location that is far from the nature reserve and 
human settlement and gradually replace the road that bisects the giant panda habitat. 
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