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Figure 1: Planar shapes segmentation and virtual roaming. From the sampled scanned point clouds, the planar shapes of indoor scene (such 
as floor, walls, ceilings, etc.) have been finely segmentation. Subsequently, the indoor scene is represented by only fewer number of planar 
patches and the digital model with texture is imported to Unity 3D to enable members of the public virtually experience the space.

 

 

 

Abstract

 
 

The use of a terrestrial laser scanner (TLS) has become a popular 
technique for the acquisition of 3D scenes

 

in architecture and 
design. Surface reconstruction

 

is used

 

to generate a digital

 

model

 

from the acquired point clouds. However, the model often

 

consists 
of excessive data, limiting real-time user experiences that make use 
of the model.

 

In this study, we present a coarse to fine planar shape 
segmentation

 

method

 

for

 

indoor point clouds,

 

which results in

 

the 
digital model of an indoor scene

 

being

 

represented by a small

 

number of planar patches.

 

First,

 

the Gaussian map and region 
growing techniques are

 

used to coarsely segment

 

the planar shape 
from sampled point clouds. Then, the best-fit-plane is

 

calculated

 

by 
random sample consensus (RANSAC), avoiding the negative 
impact

 

of outliers. Finally, the refinement of planar shape is

 

produced

 

by projecting point clouds onto

 

the corresponding best-
fit-plane. Our method has been demonstrated to be robust towards 
noise and

 

outliers in the scanned point clouds

 

and overcomes

 

the 
limitations

 

of

 

over-

 

and under-segmentation.

 

We have tested our 
system and algorithms on real datasets and experiments

 

show

 

the 
reliability of the

 

proposed method against existing

 

region-growing

 

methods.
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1  Introduction

  
 

High

 

quality 3D models of

 

real-world indoor scenes

 

have an 
important role in

 

forensic scene reconstruction

 

[Buck et al. 2013], 
indoor scene understanding

 

[Nan et al. 2012], interior design

 

[Shao 
et al. 2012], robot

 

navigation

 

[Mozos et al. 2012]

 

and building 

information models (BIM) [Xiong et al. 2013]. The acquisition of 
such scenes has been supported by the low-cost of 3D acquisition 
sensors and the popularization of commercial RGB-D sensors 
[Silberman and Fergus 2011;Silberman et al. 2012; Zou et al. 
2012]. Mobile scanning systems can be used to produce a complete 
single point cloud of a large indoor space with a complex 
geometrical structure by using simultaneous localization and 
mapping (SLAM) [Adán et al. 2015; Izadi et al. 2011; Whelan et 
al. 2015]. However, inaccurate registration leads to low-quality 
point clouds fusion, especially in dark and sparse textured areas. 
Terrestrial laser scanners (TLS) can be used to tackle this problem 
and to acquire point clouds of indoor scenes. In comparison to an 
RGB-D sensor, the benefit of TLS is that high precision and 
complete point clouds can be acquired using only a few scan 
positions. 
 
Since a typical indoor scene is primarily composed of planar shape 
elements, such as walls, floors, and ceilings, it can be represented 
by a limited number of planar patches, instead of over-detailed 
triangle meshes. The benefits of this representation are as follows 
[Mura et al. 2014; Ochmann et al. 2016]: (a) Low storage and less 
RAM is required for processing; (b) A parameterized scene model 
can be generated permitting easy scale and rotation of the whole 
scene or parts of it; (c) Wall thickness and building information 
models can be generated. Planar shape segmentation from point 
clouds was the fundamental step in the Mura et al. and Ochmann et 
al. studies. This step is also the focus of our work. 
 
Most previous methods use normal, curvature and other geometric 
descriptors to segment planar shapes. However, these techniques 
negatively impacted on the segmentation in the case of noisy and 
smooth regions. We use a TLS to acquire point clouds and our 
method then segments planar shapes. In addition, we use a graph 
structure to represent an indoor scene, which can be used in a real-
time virtual experience. In summary, the contributions of this paper 

 

 
 

 
 



are: 
 

 We introduce a novel coarse to fine segmentation algorithm to 
finely segment planar shape from point clouds, avoiding over- 
and under-segmentation. 

 
 We use a geometric representation for indoor scenes, relying 

on a graph structure and a limited number of planar patches. 
 
2  Related work 
 
We focus our review of related work on the two prominent 
approaches proposed for planar shape extraction in previous 
studies: region growing and model fitting. 
 
2.1  Region growing 
 
Region growing is a popular feature-based method to segment a 
region of interest (ROI) from a point cloud. Once a seed point and 
growing conditions are given (for example the normal direction, 
curvature, roughness, etc.), neighboring points are merged only if 
the growing conditions are satisfied. This growing step is repeated 
until all the points have been considered. Ease of implementation 
and fast speed mean that region growing has been intensively used. 
The drawbacks of this method are that it is sensitive to the choice 
of seed and the computation accuracy of growing conditions such 
as normal and curvature calculations. 
 
Rabbani et al. used local surface normal and the region growing 
algorithm to group points belonging to smooth surfaces [Rabbani 
et al. 2006]. Xiong et al. discretized point clouds using a uniform 
3D grid data structure and planar patches were extracted by 
connecting neighboring points with similar surface normal [Xiong 
et al. 2013]. Zhang et al. employed mean-shift curvature to 
distinguish features and then region growing was used to cluster 
[Zhang et al. 2008]. Deschaud et al. estimated a better normal by a 
weighted fitting plane and extracted the planar shape by a voxel-
based growing algorithm, instead of growing with k nearest 
neighbours [Deschaud and Goulette 2010]. Ma et al. selected a 
point with the lowest curvature as a seed and adopted region 
growing to add the k neighbours of the seed point to the current 
segmentation region [MA et al. 2013]. To tackle the problem of 
segmentation related to the choice of seed, fuzzy clustering [Biosca 
and Lerma 2008] and mean-shift [Liu and Xiong 2008; Wang et al. 
2013] have been used. 
 
A Gauss map can also be used to detect features from point clouds, 
relying on the normal of every point [Weber et al. 2010]. Wang et 
al. adopted a Gaussian map and mean-shift to recognise planes, 
cylinders, cones and spheres [Wang et al. 2013]. Liu et al. proposed 
a non-parametric cell mean-shift method to extract clusters from 
point clouds based on a Gaussian map and an orientation analysis 
was used to identify hyperbolic and elliptical regions [Liu and 
Xiong 2008].  
 
2.2  Model fitting 
 
The RANSAC and Hough transform are two prominent model 
fitting methods. RANSAC is an effective model fitting method 
from inliers and robustly against noise, outliers and missing data 
[Fischler and Bolles 1981]. Schnabel et al. analyzed the complexity 
of RANSAC and detected a variety of different types of shapes, 
including plane, sphere, cylinder, cone and torus [Schnabel et al. 
2007]. Ochmann et al. represented wall candidates as triples 
( , , )

w w w
t n d , considered the thickness of a wall, and detected planes 

from point clouds after RANSAC implementation [Ochmann et al. 
2016]. To avoid spurious surface extraction, Awwad et al. proposed 
an improved Seq-NV-RANSAC approach by checking the normal 
between the existed points and hypothesized RANSAC plane 
[Awwad et al. 2010]. 
 
The Hough transformation algorithm is another type of model 
fitting method. Early work used the 2D Hough transform to detect 
geometric primitives [VC 1962]. The 3D Hough transform is an 
extension to detect planar patches. Vosselman and Dijkman used 
the 3D Hough transformation to extract planar patches from 
irregular point clouds and the problem of over-segmentation was 
tackled by merging small planar patches [Vosselman and Dijkman 
2001]. Leng et al. used the Hough transformation to extract planar 
clusters from rock-mass point clouds, taking a cluster to the voting 
distribution in the parameter space [Leng et al. 2016]. Oesau et al. 
proposed an automatic reconstruction method of planar shape. 
Vertical walls were detected through clustering in a Hough 
transform space, and both inside and outside segmentation were 
performed by graph-cut [Oesau et al. 2014]. It has, however, been 
demonstrated that the RANSAC method generally has higher 
performance and is much faster than the 3D Hough transform 
method [Tarsha-Kurdi et al. 2007].  
 
3  Our Approach 
 
The pipeline that we use for segmenting planar shapes from TLS 
point clouds is shown in Figure 2. First, the TLS is positioned so as 
to acquire the point clouds (Figure 2a). Next is point clouds 
sampling (Figure 2b). Next, we separated the window and room 
from the complete point cloud of the indoor scene (Figure 2c) and 
our segmentation algorithm was carried out on each component 
(Figure 2d). The result is a representation of the indoor scene by a 
group of planar patches (Figure 2e). The final digital model with 
texture is imported to Unity 3D to enable members of the public to 
virtually experience the space (Figure 2f). Within the segmentation 
process, we calculate normal and curvature for every point using 
the weighted principal component analysis and the planar regions 
are coarsely extracted by region growing on the Gaussian map. 
Planar shape regions are extracted by projecting a point cloud on a 
best-fit-plane. An important aspect of our approach was to 
overcome the problem of over- and under-segmentation.  
 
3.1  Coarse segmentation 
 
3.1.1  Sampling 
 
Since a TLS point cloud is often composed of tens of millions of 
points, it is sampled, often uniformly, to accelerate subsequent data 
processing. Poisson-disk sampling satisfies three properties: the 
distance between any two disk centers should be larger than the 
sampling radius; the union of the disks should cover the entire 
sampling domain; each point in the domain has a probability that is 
proportional to the sizing at this point to receive a sampling point 
[Guo et al. 2015]. We used the Poisson-disk sampling algorithm to 
reduce the number of points in the point cloud. 
 
3.1.2  Normal and curvature computation 
 
Reliable normal and curvature estimation at every point in a point 
cloud is challenging, and subsequently has an impact on, for 
example, surface reconstruction [Kazhdan et al. 2006] and point 
cloud segmentation [Crosilla et al. 2009]. Moving least square 
[Pauly et al. 2003a], quadric surface fitting [Douros and Buxton 
2002], the fitting plane and improved algorithms[Hoppe 1992] 
have been used to estimate normal and curvature.  



Consider the neighbour points of every pointip are denoted as 
3

1 2 i i i i{ , ,,..., }, ( , , )mQ q q q q x y z    and the centroid of these 

neighbour points is denoted asq , then the normal in can be 

optimized by the following equation: 

i i
1

argmin ( ) n
m

i

E q q


                                                              (1) 

The least squares method is used to solve this equation. The 
eigenvector corresponding to the smallest eigenvalue of symmetric 

positive covariance matrix T

1

1
( )( )

m

i i
i

q q q q
m 

    describes the 

normal in . Following [Pauly et al. 2002], we use eigenvalues to 

describe the surface variation and the curvature at ip  is defined as: 

3

1 2 3


  


 

                                                                       (2) 

where i  denoted the eigenvalues of the corresponding covariance 

matrix and 1 2 3    . 

 
The result is sensitive to the choice of neighbour points, since 
neighbour points can belong to various surfaces around boundary 
regions and corners. To tackle the problem of the choice of 
neighbour, k nearest neighbours (KNN) [Hoppe 1992; Nurunnabi 
et al. 2015], fixed radius neighbours [Awwad et al. 2010; Mitra and 
Nguyen 2003; Xiong et al. 2013] and the weighted adaptive method 
[Deschaud and Goulette 2010; Pauly et al. 2003; Wang et al. 2013] 
are common approaches to use. Considering that the TLS acquires 
point clouds with equal densityrh , we used the fixed radius method 
and defined a weighted fitting plane to estimate normal and 
curvature. The general idea of our method is that the closest point 
impacts highly on the estimation.  
 
The normal in can be optimized by the following equation: 

i i i
1

argmin ( ) n
m

i

E q q


                                                                (3) 

The weighted covariance matrix of neighbour points is defined as: 

T
i i1

( )( )
k

ii
q q q q 


                                                      (4) 

where q  is the weighted centroid of neighbour points andi is 

the weighted coefficient of every point. 
 
The bandwidth is defined to decide the weighted coefficient of 
every point. For every point ip , the weighted coefficient i is 

defined as: 
2 2exp( / )i i i rq p h                                                             (5) 

where /rh k r , k is the number of neighbour points in the range 

of radius r, andr dist  . Here denotes the coefficient and dist
is the average distance between neighbor points.  
 
Figure 3 shows the curvature estimation of a cube using various 
radii. The higher curvature occurs around the boundary regions, 
with the highest curvature located at the corners, whereas lowest 
curvature is located on the planar surface. The choice of neighbour 
points impacts on the curvature computation.  

3.1.3  Region growing 
 
Let 3

i i i i( , , )p x y z   be the original coordinates of every point, 

each with a corresponding normal represented asin . The discrete 

Gaussian map of every pointip  can be defined as the mapping of 

T  onto the unit sphere  3 2 2 2( ) R | 1S x,y,z x y z    

centered atp . Therefore, the coordinate of point i'p  using a 

Gaussian map is: 

i'
i

i

n
p p

n
                                                                                 (6) 

The i'p  mainly rely on the centroid and corresponding normal of 

every point. In the ideal situation, point clouds in the Descartes 
coordinate system located on a plane map to a point (the black point 
in Figure 4a) after the Gaussian map transformation, because the 
normal of every point has an equal orientation. However, the TLS 
point clouds contain noise and, as a result, the normal of every point 

(a) (b) 

(c) (d) 
Figure 3: Curvature estimation using various radius. (a) Cube 
point clouds ;(b) Radius is ; (c) Radius is ; (d) Radius 
is  

 
(a) (b) (c) (d) (e) (f) 

Figure 2: Overview of our approach. (a) Terrestrial laser scanner; (b) Sampled point clouds. A hole occurs on the floor, where the TLS was 
placed for 3D acquisition. (c)Window and room were split from the sampled point clouds. (d)Planar shape regions segmentation by our 
proposed algorithm. Various color depicted various plane. (e) Planar patches and corresponding boundary. (f) The digital model with texture 
was virtually experience using Unity 3D.  
 



on a plane doesn’t have equal orientation. The mapped points cover 
a small region, as shown by the black points in Figure 4b. 

 
Figure 4: Gaussian Map. (a) An ideal planar point cloud maps to 
a point on the Gaussian map; (b) Point cloud with noise maps to an 
area on the Gaussian map. 
 
The purpose of planar shape segmentation for indoor scene is to 
partition the point cloud into various planar clusters. Region 
growing is a well-known segmentation algorithm, the principle of 
which is to start with a seed region and to grow it by neighborhood 
when the neighbors satisfy some conditions. In this study, we used 
the mapped points on the Gaussian map, instead of the original 
point cloud. The region growing condition is defined as: 

   i' '

0

j

j

p p

curvature

  



                                                                         (7) 

where i'p and ' jp  are the current point and neighbor point on 

Gaussian map,  is the threshold and jcurvatureis the curvature 

of the j index point using equation 2.  
 
The general idea of our method is to merge neighbor points with a 
similar normal. The procedure is as follows: 
 
Step 1: Compute normal and curvature of every pointip  and 

compute the i'p  by Gaussian map transformation.  

 
Step 2: A point on the planar patch, i.e. whose curvature is 
approximately zero, is chosen as a start seed. 

 

Step 3: The region growing strategy is greedily performed on the 
Gaussian map such that one neighbour point ' jp  is added to a 

planar patch and labelled when it satisfies equation 7. 
 

Step 4: If any neighbour point doesn’t satisfy the region growing 
condition, a new planar patch is added. Then, another point with 
lowest curvature is chosen as a seed for the new planar patch and 
step 3 is repeated. The process continues until no points remain. 

Step 5: According to the label of every point, planar patches on the 
Gaussian map and original point clouds are respectively visualized 
by various colours. 

 
3.2  Fine segmentation  
 
Because of smooth regions at wall boundaries, sharp features on 

corners and noise around the room windows, it is difficult to 
produce an exact segmentation. Refinement is thus required, 
avoiding over- and under-segmentation (Figure 5).  

Figure 5: Over-segmentation (top figure) and under-segmentation 
(bottom figure) after coarse segmentation.  
 
3.2.1  Fitting plane by RANSAC 
 
Given the plane equationz ax by c    and every point of the 

coarse segmentation represented by 3
i i i i( , , )s x y z  , a fitting 

plane can be optimized using: 

    
1

2

0

min
n

i i i
i

S ax by c z




                                                     (8) 

The least squares method (LS) can be used to calculate the 
coefficients , ,a b c . However, we found that outliers, i.e. points 

not belonging to the plane, negatively impacted on the plane fitting. 
To address this problem, we used the RANSAC algorithm to fit the 
plane, even with a high number of outliers. 
 
RANSAC includes two iterative stages: hypothesis and test. In the 
hypothesis stage, we randomly selected three points to compute 
plane coefficients by LS. In the test stage, every point was taken as 
the input of the estimated plane and the distance between point and 
plane was calculated. The point was taken as an inlier only when 
this distance was less than a threshold. The most probable inliers 
were chosen after several iterations and further used to compute the 
plane coefficient by LS. Figure 6 shows an example of calculating 
a best-fit-plane using RANSAC. The coarse segmentation (Figure 
6a) was taken as the input of RANSAC. In comparison to LS 
(Figure 6c), we acquired better fitting results using RANSAC 
(Figure 6d). The plane fitting procedure using RANSAC is as 
follows:  
 
Step 1: Randomly select three points with lowest curvature and 
estimate plane coefficients; 
 
Step 2: Calculate the distance between point and the plane, and the 
point is taken as inlier when distance is less than threshold.  
 
Step 3: Compute the number of inliers. If the number is greater than 
threshold, go to Step 4.   
 
Step 4: Re-compute a best-fit-plane using all the inliers. 
 

(a) 

(b) 



Figure 6: Plane fitting by RANSAC. (a) Input point clouds with 
outliers; (b) Curvature computation; (c) Plane fitting by least 
squares method; (d) Plane fitting by RANSAC. 
 
3.2.2  Fine segmentation 
 
To improve the refinement, let every point 3

i i i i( , , )p x y z   

project on the corresponding best-fit-plane. The corresponding 
projection point i i i i'' ( '' , '' , '' )p x y z  is defined as:  

''

''

''

i i

i i

i i

x x a t

y y b t

z z t

  
   
  

                                                                          (9) 

where
2 2 1

i i iax by z c
t

a b

  


 
.  

The distance between point and corresponding plane is calculated 
and the point is added to the current plane patch only when the 
distance is less than a threshold.  
 
3.3  Indoor scene representation  
 
Indoor scene understanding has application in architecture and 
design. Instead of producing an over-detailed triangle mesh from a 
point cloud, it is more useful to segment a limited number of planar 
patches. Our method produces an effective scene representation in 
three steps. First, we segment the indoor scene into various 
components (such as room and window) according to the geometry 
layout. Second, we finely segment planar patches for each 
component. Third, we devise a data structure to describe the 
connection between components and planar patches. In our study, 
the procedures of splitting window and room from point clouds are 
as follows: 
 
Step 1: Layout calculation by projecting the point cloud on the best-
fit-plane corresponding to the floor. The projection points for floor 
(Figure 7b) and the projection points for indoor scene except 
ceilings (Figure 7c) are respectively denoted by set A and B; 
 
Step 2: Label projection points. The intersections of two sets are 
labelled and taken as projection points for the point cloud of the 
room, and the complements of the two sets are labelled and taken 
as projection points for the point cloud of the window (Figure 7d); 
 
Step 3: Segmentation. According to the label of every projection 
point, room (Figure 7e) and window (Figure 7f) can be separated. 
 

4  Experimental Results 
 
We used a Faro Focus3D, a high-performance time-of-flight TLS, 
to record the point cloud of an indoor scene, consisting of more 
than 120,000 points after Poisson-disk sampling. All experiments 
were performed on an Intel Core i7 computer with 32GB RAM. All 
the algorithms were written using Microsoft visual studio 2008.net 
with C++ and OpenGL.  
 
Curvature computation: Figure 8 shows the result of curvature 
computation on a real dataset using various radius. The results are 
sensitive to the choice of radius, which can negatively impact on 
the segmentation. In the experiment, we calculated the average 
distance between points in the point cloud and adjusted coeffeicent 
  of equation 5 to obtain a suitable radius until the coarse 
segmentation was good.  In addition, the direction of the normal at 
every point can impact on the coarse segmentation in our method, 
especially in the case of parallel surfaces. There are two possible 
directions for the normal using equation 3. To tackle this problem, 
[Pang et al. 2010] can be used to correct the normal direction. 

Figure 8: Curvature computation for indoor scene using various 
radii. (a) Radius is 2 dist ; (b) Radius is 4 dist ; (c) Radius is 
6 dist ; (d) Radius is 10 dist . 
 
Coarse segmentation: In Figures 9 and 10, curvature, normal, 
Gaussian map and region growing are depicted and planes are 
visualized by various colours. Figure 9 shows the results of coarse 

 

(a) (b) 

(c) (d) 

 

(a) 

(d) 

(b) 

(e) 

(c) 

(f) 
Figure 7: Window and room separation from indoor point cloud. 
(a) Input indoor point cloud; (b) Projection points for floor; (c) 
Projection points for indoor scene except ceilings; (d) Projection 
points segmentation; (e) Room segmentation ;(f) Window 
segmentation. 

 

(a) 

(c) 

(b) 

(d) 



segmentation form the point cloud. We calculated the curvature 
(Figure 9a) and normal (Figure 9b) of every point, and then every 
point was transformed by Gaussian map (Figure 9c). After region 
growing (Figure 9d), the majority of points in the point cloud 
located on the planar shape have been extracted (Figure 9e). 
Neighbour points at boundary and corner regions belong to 
multiple planes, thus over-segmentation occurs around the 
boundary regions. Figure 10 shows an example of planar shape 
segmentation from the point cloud of the window.  
 
Fine segmentation: Figure 11 shows the segmentation results from 
the point cloud of the window after fine segmentation, which 
consists of five planes. From left to right, each figure shows the 
point clouds after coarse segmentation, fitted plane using RANSAC 
and fine segmentation. As seen from these experiments, regardless 
of the results of coarse segmentation, our method can improve the 
accuracy of planar patches segmentation after fine segmentation. 
 

 
Figure 11: Fine segmentation from point cloud of the window. 

 
Figure 12 shows the segmentation results from the point cloud of 
the room after fine segmentation, which consists of six planes. Each 
left figure shows the point cloud after coarse segmentation (black 
colour) and right figure shows fine segmentation (red colour). It 
can be clearly seen that the bottom corner of the door and boundary 
of every plane cannot be accurately segmented after coarse 
segmentation.  
 
Figure 13 shows the final segmentation results of the indoor scene 
using our method. We compare our planar patches segmentation 
process against a previous method based on curvature and normal 
similarity (Figure 5). Our method produces a better result. Three 
aspects are worth commenting on: (a) Noise is the main issue for 
segmentation of the window, whereas the main issue of room 
segmentation is sharp features on the corners and boundary regions. 
We first split the point cloud of the indoor scene into window and 
room, and then a suitable radius can be chosen for every component. 
(b) We projected point clouds on the best-fit-plane to extract planar 
shape point clouds, overcoming the limitations of the geometric 

similarity method. (c) A TLS can produce a point cloud with holes, 
or missing data, as in the floor for our data. We filled the holes on 
the floor by projecting the point cloud on the plane corresponding 
to floor. 
 

 
Figure 12: Fine segmentation from point cloud of the room 

 
To demonstrate our method for a data set which includes missing 
regions and occlusion, we tested it on a complicated point cloud, 
consisting of a room with window, table, chair, human, etc. (Figure 
14a). Figure 14b shows the normal and curvature for every point. 
The coarse segmentation is illustrated in Figures 14c and 14d. 
Planer patches, including walls, floor, ceilings, and desktop have 
been illustrated in various colors Figure 14e).  The refinement 
planar shape segmentation is shown in Figure 14f. 
 

   Indoor scene representation: After indoor scene segmentation 
and planar patch extraction for each component for our test scene 
(Figure 13), we identified and traced the boundary points of each 
planar patch (Figure 15). As seen in Figure 16, the indoor scene can 
be represented as a room and a window. Furthermore, the room can 
be represented by a graph structure, which contains six nodes. The 



window can also be represented by a graph structure which contains 
five nodes. Finally, this digital model with texture was imported to 
Unity 3D to enable members of the public to virtually experience 
the indoor scene online.  

 

 

 

 

Figure 15: Boundary of every planar patch 

Figure 16: Indoor scene geometric structure 

5  Conclusion and Future work 
 
In this article, we have proposed a novel coarse to fine 
segmentation method for planar shape segmentation from TLS 
point clouds. The Gaussian map and region growing techniques 
were used to coarsely segment the planar shapes from sampled 
point clouds. The best-fit-plane was calculated by RANSAC, 
avoiding the negative impact of outliers. The refinement of planar 
shape was produced by projecting a point cloud on a corresponding 
best-fit-plane. The benefit of our method is to overcome the over- 
and under-segmentation caused by the previous geometric 
similarity methods. We also provided a simplified representation 
for an indoor scene based on a graph structure and a limited number 
of planar patches. 
 
Future work will focus on segmenting planar shapes from 
complicated indoor scenes containing clutter and occlusions. In 
addition, we will also extend our method to indoor scenes 
consisting of multiple rooms.  
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Figure 9: Coarse segmentation. (a) Curvature computation; (b) Normal computation: the red line segments denote the normals of 
every point;(c) Point clouds located on the Gaussian map; (d) Coarse segmentation using region growing; (e) Coarse segmentation 
results from different views.  
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Figure 13: Fine segmentation from point clouds of indoor scene. 

 
Figure 10: Coarse segmentation of window. (a) Point clouds of window; (b) Curvature computation; (c) Normal computation, the red 
line segments denote the normals of every point; (d) Point clouds located on the Gaussian sphere; (e) Segmentation using region 
growing; (f) Coarse segmentation results of window from different views.  
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