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Abstract 

This paper investigates the kinetics of geopolymerisation in an inorganic polymeric binder based on a 

natural pozzolan. The heat released by the exothermic geopolymerisation reaction process is monitored 

under isothermal temperature conditions, maintained in a differential scanning calorimeter using a water 

circulation cell. Calorimetric data are obtained isothermally at 65, 75, and 85˚C with various Na2O/Al2O3 

and SiO2/Na2O molar ratios and in the presence and absence of small amounts of calcium aluminate cement 

(used as an efflorescence control admixture in these binder systems). The first stage of reaction, which is 

rapid and strongly exothermic, is shortened as the temperature increases. The total heat of reaction 

increases in the mixes containing calcium aluminate cement, but the apparent activation energy calculated 

using a pseudo-first order reaction model is lower than without added calcium aluminate cement. At a 

constant overall SiO2/Na2O molar ratio, the apparent activation energy is decreased as the Na2O/Al2O3 

molar ratio increases. Calcium aluminate cement, therefore, reduces the minimum energy required to 

initiate geopolymerisation reactions of this natural pozzolan and facilitates the progress of the reactions 

which lead to formation of a cementitious product.     

 

Keyword: Natural pozzolan, Geopolymer, Calorimetry, Kinetic, Activation energy 

 

1. Introduction 

In order to simulate the temperature distribution in a large volume of concrete material, and also to enable 

full control of the curing of cements in the very early stages of setting and hardening for better durability 

and functionality of the material in service, the heat evolved during hydration of cementitious materials is a 

key performance parameter [1]. The heat release profile during the setting and hardening reaction is also 

http://dx/doi.org/10.1007/s10973-016-5850-7
http://webmail.iust.ac.ir/WorldClient.dll?Session=DUVIRUJ&View=Compose&New=Yes&To=j.provis@sheffield.ac.uk


This is a preprint of an article published in Journal of Thermal Analysis and Calorimetry. The version of 
record is available at http://dx/doi.org/10.1007/s10973-016-5850-7 

 2 

used as a highly sensitive measure of the kinetics of reaction of cement, including the balance between the 

reaction rates of different components present in the cement [2]. 

Cementitious aluminosilicate binders, including the class of materials commonly called geopolymers, are 

materials with great potential in construction and waste management applications due to the high 

performance and low CO2 footprint which can be achieved when using these materials in place of Portland 

cement [3-4]. However, for this technology to be more widely accepted as an alternative to Portland cement 

in applications which require exact control of setting time and rheology, different mechanistic aspects of 

geopolymerisation must be determined [5]. Some geopolymer mixes can offer the advantage of setting 

rapidly under controlled curing conditions while obtaining high final strength, and also provide attractive 

thermal and chemical resistance properties [6]. Natural pozzolans have been used in cement production 

since Roman times, and have been identified as a potential high-volume, low-cost, low-CO2 material for 

use in next-generation cements based both on Portland cement blends and on alkali-activation technology 

[7]. 

Various techniques are needed in the analysis of geopolymerisation in the early stages to enable 

understanding and control of geopolymeric setting behavior. Therefore, regarding the setting process, 

techniques such as calorimetric and rheological characterisation have provided key information [8-10]. 

However the relative contributions of different reaction steps are difficult to isolate from the total 

calorimetric signal. The effects of reaction temperature and calcium addition have been studied by 

isothermal conduction calorimetry (ICC) in the research program conducted by Granizo et al. and by 

Alonso and Palomo [10-12]. Chithiraputhiran and Neithalath [13] studied the reaction kinetics and 

temperature dependence of alkali silicate activated Class F fly ash-slag blends by isothermal calorimetry, 

while Ma et al. investigated the effect of activating solution on reaction rate of alkali-activated fly ash by 

isothermal calorimetry [14]. Zhang et al. also studied the quantitative kinetic and thermodynamics of 

sodium silicate and sodium hydroxide activated metakaolin by isothermal calorimetry [15-16], and used 

these results to quantify the extent of reaction through the use of structural analogies between the 

metakaolin-derived geopolymer binder gels and natural zeolites such as analcime. 

Rahier et al. [8-9, 17] used quasi-isothermal modulated differential scanning calorimetry to observe 

changes occurring in the heat flow and heat capacity during setting of a metakaolin-based geopolymer, and 

combined these measurements with rheological data to provide a link between the heat release taking place 

due to chemical reactions and the macroscopic material properties. Small-angle scattering measurements 

have also been linked to the rheological determination of geopolymer setting and hardening [18]. 

Several additional analytical methods have been employed in the past to characterise the geopolymerisation 

process. Energy-dispersive X-ray diffractometry (EDXRD) can be used to measure the kinetics of 

geopolymerisation, but seems to be most effective during the initial setting period [19], while in situ pair 

distribution function analysis can provide local structural information before and after setting [20] 

However, both of these techniques require access to synchrotron radiation which poses logistical and 

technical challenges. In situ environmental scanning electron microscopy (ESEM) can yield microstructural 

http://dx/doi.org/10.1007/s10973-016-5850-7
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insight up to the point of setting [21]. Nuclear magnetic resonance (NMR) spectroscopy can provide 

detailed information during geopolymerisation, mainly through the use of 27Al as a probe nucleus due to the 

long scan times required for the collection of 29Si spectra, although this technique can sometimes provide 

useful information for immature gel samples [22-24]. An investigation has been done on gepolymerization 

of natural pozzolan in the presence of aluminate source by semi-adiabatic calorimetry. Their results showed 

that the dissolution of reactive species could facilitate the progress of the polycondensation reactions [25]. 

In this work, we study and investigate the rate and extent of geopolymerization reaction, and also the 

apparent activation energy, of natural pozzolan based inorganic polymeric binders. We have also studied 

the effects of variations in chemical composition of the geopolymer mix in the presence and absence of 

calcium aluminate cement, which is added to enhance microstructural development and as an efflorescence 

controlling admixture. 

 

2. Materials and Methods 

The natural pozzolan used in this work was of the pumice type, and was obtained from Taftan mountain in 

the south-east of Iran. The results of chemical analysis by X-ray fluorescence are shown in Table 1. Figure 

1 shows the X-ray diffraction (XRD) pattern (Philips X’pert diffractometer, CuKĮ radiation, 2 º/min, 

divergence and anti-scatter slits 1º each, receiving slit 0.01 mm) of the pozzolan used. The crystalline 

mineral phases present in Taftan pozzolan include the minerals anorthite (a feldspar mineral), cordierite and 

tremolite (amphiboles), and biotite (mica), as well as a small amount of quartz. The XRD data also show a 

small amount of zirconia, probably introduced from the media used during the milling process in 

preparation of the pozzolan. 

 

Table 1. Chemical composition of raw materials (wt.% as oxides, as determined by X-ray fluorescence). 

“Other” includes loss on ignition. 

Component SiO2 Al 2O3 Fe2O3 CaO MgO SO3 K 2O Na2O Other 

Taftan pozzolan 61.6 18.0 4.9 6.7 2.6 0.1 2.0 1.6 2.5 

Calcium aluminate cement (Secar 71) 0.6 70.2 0.2 28.3 0.2 0.1 0.1 0.3 - 

 

http://dx/doi.org/10.1007/s10973-016-5850-7
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Fig. 1. X-ray diffraction data (Cu K radiation) for the Taftan natural pozzolan 
 

The pozzolan was ground in a closed circuit industrial mill to a Blaine specific surface area of 305 m2/kg. 

The particle size distribution was determined by a laser particle size analyzer (Malvern Mastersizer 2000), 

and is presented in Figure 2. Commercial sodium silicate solution (mass ratio SiO2/Na2O = 0.92 and SiO2 

content of 31.36 wt %) and industrial-grade NaOH (99% purity) were used throughout all experiments. 
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Fig. 2. Particle size distribution of the pozzolan 

Four geopolymer mixes, named P1, P2, P3, and P4 as described in Table 2, with two different levels in 

Na2O/Al2O3 (abbreviated as N/A in cement chemistry terminology) and SiO2/Na2O (abbreviated as S/N) 

molar ratios, with and without 6 wt.% calcium aluminate cement (CAC) addition, were prepared. The 

mixtures were all studied at a constant total H2O/Al2O3 molar ratio of 8.5. For calculating N/A ration, the 

total required Na2O was supplied from NaOH and sodium silicate solution and the Al2O3 became from the 

chemical composition of the used pozzolan. For calculating S/N ration, the total required Na2O and SiO2 

were supplied from NaOH and sodium silicate solution. According to our previous work [26], alumina-rich 

mineral admixtures can aid in the control of efflorescence in geopolymer cement based on natural 

pozzolan, and the most effective admixture among those tested previously is used here to investigate its 

effects on the kinetics of geopolymerisation. Calcium aluminate cement (Secar 71 (Kerneos, France), Table 

1) was incorporated into the dry binder mixes at a replacement level of 6% by mass of natural pozzolan. 

 

Table 2. Chemical compositions of the geopolymer binders studied. 

Mix ID S/N molar ratio N/A molar ratio 

P1 0.45 0.61 

P2 0.75 0.61 

P3 0.45 0.77 

P4 0.75 0.77 
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Isothermal measurements were performed using a Perkin Elmer Diamond DSC instrument, equipped with a 

turbulent water cooling head with the coolant temperature held at 25°C using a thermostatted water bath. 

The samples were mixed in small quantities (2.0 g) with a spatula before loading into the sample pan. 

Reusable high pressure stainless steel sample pans (Mettler-Toledo) were used. It was taking less than 3 

minutes to mix the paste, load the sample and start the experiment. The sample (about 30 mg) was heated at 

the maximum rate of the instrument (temperature jump) from room temperature to the isothermal reaction 

temperature of 65̊C, 75̊ C, and 85 ̊C. The instrument was calibrated quasi-isothermally by using the heat 

capacity of a known mass of water at 65 ± 0.5˚C, using 0.5°C temperature steps within this range; the same 

sample pans as were used for the measurements of geopolymer reaction. 

 

3. Results and discussion  

3.1. Heat of reaction 

The heat evolution rates from the geopolymer mixes with and without the efflorescence control admixture, 

as a function of reaction time at temperatures of 65, 75, and 85˚C, are represented in Figures 3 to 10. The 

geopolymerisation of the natural pozzolan tested here is an exothermic process involving different stages 

depending on the mix design and the use of calcium aluminate cement as an admixture. The first stage of 

reaction, which is a very fast and strongly exothermic process, depends on the temperature and is shortened 

as the temperature increases. 

Figures 3 to 6 show the heat evolution rate of the geopolymer mixes without the CAC admixture. As seen 

in these graphics, an exothermic peak appears immediately when activator is mixed with raw material (the 

natural pozzolan, or combination of natural pozzolan with CAC), which can be attributed to the instant 

sorption of activation solution on the surface of raw material particles and the ensuing dissolution of the 

solid aluminosilicate and aluminate precursors. In the dissolution process, the Si–O and Al–O bonds on 

particle surfaces are broken down with the formation of hydrolysed aluminate and silicate species, and 

aluminosilicate oligomers, such as OSi (OH)3-, Al(OH)4-, (OH)3–Si–O–Al–(OH)3- and larger species. The 

rapid deceleration after the first peak indicates that the wetting process and initial reactions are slowing 

down, but the later stages of the dissolution as well as the ongoing polymerisation reactions are still 

continuing to release heat. 

The dissolution products in geopolymer mixes proceed to polymerise into gels as their concentrations reach 

supersaturation with respect to the disordered aluminosilicate geopolymer gel. The polymerisation is 

exothermic and becomes the main contribution to heat evolution at later times. After a period of time for all 

mixes, the process goes into an apparent thermally steady state, during which the freshly formed small gel 

units are probably ongoingly transformed into larger-scale networks by local reorganisation [20], but with a 

rate of heat release too low to measure. The heat release and reaction time depend notably on the raw 

materials, activators, and also reaction conditions. 

As the temperature is increased from 65°C to 85°C, the reaction rate increases in the early stage, and the 

period of rapid heat release is shortened. The dissolution of raw materials is slower at 65°C than at higher 

http://dx/doi.org/10.1007/s10973-016-5850-7
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temperature, and the polymerisation is consequently slower, although the lower temperature also means 

that the concentration required to generate supersaturation in the aqueous phase is lower. When the 

temperature rises to 85°C, larger amounts of Si and Al will be released at the moment when the raw material 

particles first contact the liquid activator, and rapidly reach the concentrations required to polymerise into 

gels. 

In Figures 3 to 6, it is evident that higher reaction temperatures resulted in higher heat release. With 

comparing Figures 3 and 4, which show measured heat evolution rates for two mixes with different S/N 

ratios and a constant N/A ratio, it can be concluded that mix P2 with a higher S/N ratio shows a higher heat 

release than mix P1 with a lower S/N ratio. Also, by comparing Figure 3 with Figure 5, showing the results 

of heat evolution rate for two mixes with different N/A ratios and a constant S/N ratio, it can be concluded 

that mix P3 with the higher N/A ratio shows a higher heat release than mix P1 with a lower N/A ratio. This 

is likely to be related to a higher total extent of reaction being reached in the samples with a higher 

activator dose, as the driving force for dissolution of the solid precursor particles into the alkaline activator 

solution is increased.   

 

 

 
Fig 3. Heat evolution rate versus time at different temperatures for P1 without CAC  
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Fig 4. Heat evolution rate versus time at different temperatures for P2 without CAC 

 

 

Fig 5. Heat evolution rate versus time at different temperatures for P3 without CAC 
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Fig 6. Heat evolution rate versus time at different temperatures for P4 without CAC 

 

Fig 7. Heat evolution rate versus time at different temperatures for P1 with CAC 
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Fig 8. Heat evolution rate versus time at different temperatures for P2 with CAC 

 

 

Fig 9. Heat evolution rate versus time at different temperatures for P3 with CAC 

 

 

0

50

100

150

200

250

0 20000 40000 60000 80000 100000

H
e

a
t 

E
v
o

lu
ti

o
n

 R
a

te
 /
 k

W
 g

-1
 

Time / s 

65 ˚C 

75 ˚C 

85 ˚C 

0

50

100

150

200

0 20000 40000 60000 80000 100000

H
e

a
t 

E
v
o

lu
ti

o
n

 R
a

te
 /
 k

W
 g

-1
 

Time / s 

65 ˚C 

75 ˚C 

85 ˚C 

Exo 

Exo 

http://dx/doi.org/10.1007/s10973-016-5850-7


This is a preprint of an article published in Journal of Thermal Analysis and Calorimetry. The version of 
record is available at http://dx/doi.org/10.1007/s10973-016-5850-7 

 11 

 

Fig 10. Heat evolution rate versus time at different temperatures for P4 with CAC 

 

Figures 7 to 10 show the heat evolution rate of the geopolymer mixes with the CAC admixture. Comparing 

Figure 3 with Figure 7 shows that the addition of even as little as 6% CAC results in different heat 

evolution rates, especially in the early stages, so that two distinct heat release peaks can be seen in the 

initial two hours of the reaction. Each peak can be attributed to chemical effects of the CAC admixture on 

the geopolymerisation reactions. These additional peaks are much less evident (and not at all evident at 75 

or 85°C) in Figures 8, 9 and 10, and the changes in the rate of heat evolution in the first exothermic peak 

between corresponding samples with and without CAC addition do not seem to be fully systematic. 

However, the addition of the CAC does appear to extent the period of significant heat release (i.e. before 

the rate of heat release drops to zero) quite consistently across the full sample set studied, indicating a 

significant impact on the progress of the geopolymerisation reaction. 

As seen in Figs. 4, 5, 8, and 9 which are related to the samples P2 and P3 with and without the CAC, a 

sudden drop in time 35000, 70000, 60000, and 70000 appears, respectively. This fact seems to be an 

interesting phenomenon but more accurate explanations for this phenomena need some more investigations 

with other techniques to be covered completely. 

According to Fernandez-Jimenez et al. [27-28], mixtures of aluminosilicate precursors and alkaline 

activators with CAC yield hydration products which are very different from the usual ones that would be 

expected from CAC. The results of alkali-activation of blends of metakaolin and CAC showed that CAC 

does not undergo normal hydration. While it appears to form a metastable intermediate compound, no cubic 

or hexagonal hydrates or Al(OH)3 were detected in any of the CAC-metakaolin-sodium silicate materials 
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studied [27]. Also, the results obtained by Najafi et al. [26] showed that the addition of CAC gives slight 

changes in the nature of the zeolite-like phases formed in geopolymers based on natural pozzolans, 

introduces the formation of aluminium hydroxide and oxyhydroxide phases in those systems, and also leads 

to the formation of a low-crystallinity Al-substituted sodium-calcium silicate hydrate phase. 

The investigation of Fernandez-Jimenez et al. [28] on the hydration of CAC in highly alkaline media and in 

the presence of sodium silicate showed that the degree of CAC reaction in highly alkaline media is high, 

and accelerates the conversion from hexagonal to cubic hydrates, resulting in formation of siliceous 

hydrogarnet phases from the outset. Such phases were not observed in later-age X-ray diffraction 

measurements when the CAC was used as an admixture in natural pozzolan-based geopolymer systems 

[26]. However it is possible that they are formed as transient products at the very early (and highly 

exothermic) stage of reaction here as the CAC reacts rapidly with the activator as evidenced by the 

additional peaks in Figure 7, and are later consumed in the formation of the geopolymer gel products as the 

natural pozzolan dissolves and supplies additional Si and Al to the reaction process. 

Investigations presented by Ukrainczyk et al. [1] and Krstulović et al. [29] on hydration of CAC with 

microcalorimetry showed that far less is heat liberated in the early stage when cement and water first come 

in contact than is the case for Portland cement. Also, higher water to cement ratio increases the heat 

evolved up to 287 kJ/kg for CAC at early age due to the higher degree of hydration.  

The total (integrated) heat of reaction at each temperature for each geopolymer mix is given in Table 3. The 

data given in Table 3 as ‘reaction time’ refer to the time at which the rate of heat evolution fell to zero (to 

within experimental uncertainty), and provide a measure of the duration of the geopolymerisation process 

in each case. 

 

Table 3. Total heat of reaction (kJ/kg) and reaction time (h) at different temperatures 

Mix ID 

65°C 75°C 85°C 

Total heat of 
reaction 
(kJ/kg) 

Reaction 
time (h) 

Total heat 
of reaction 

(kJ/kg) 

Reaction 
time (h) 

Total heat 
of reaction 

(kJ/kg) 

Reaction 
time (h) 

P1 without 
CAC 

385 29.33 402 26.33 459 25.52 

P1 with CAC 415 28.17 471 25.17 518 23.67 

P2 without 
CAC 

401 25.80 418 22.10 443 20.67 

P2 with CAC 478 29.90 491 26.48 516 25.47 

http://dx/doi.org/10.1007/s10973-016-5850-7
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P3 without 
CAC 

355 29.52 381 23.85 399 21.57 

P3 with CAC 361 28.92 393 25.42 462 23.88 

P4 without 
CAC 

368 29.00 442 26.52 489 24.67 

P4 with CAC 391 28.67 484 27.5 502 25.67 

 
 

Table 3 shows that the total heat of reaction depends significantly on the mix design and increases 

monotonically with the temperature at which the reaction is conducted, and that in mixes containing the 

CAC admixture, the heat release is also higher and the reaction time similar or longer. Also, comparison of 

the geopolymer mixes with different chemical compositions shows some interesting findings. Comparing 

mix P1 with P2, and also P3 with P4 (pairs which each have different S/N ratios and comparable N/A 

ratios), the mixes P2 and P4 with higher S/N ratios achieve higher total heats of reaction. Conversely, 

comparing mixes P1 with P3 and P2 with P4 (pairs with different N/A ratios and comparable S/N ratios) 

show that the mixes with higher N/A ratio, i.e. P3 and P4, have lower total heats of reaction. These results 

can then be used to determine the relative geopolymerisation extents, as the process is entirely exothermic 

and so the heat of reaction provides a useful representation of the extent of geopolymerization [10, 30]. 

Thus, it could be concluded that in the geopolymer mixes studied two important compositional parameters, 

as well as reaction temperature, can affect and control the progress of geopolymerisation reactions. One is 

the chemical formulation of the alkali-activator (represented as S/N molar ratio), and the other is the effect 

of efflorescence control admixture. The investigation of Najafi et al. [26] showed that the positive effect of 

CAC admixture in controlling efflorescence in natural pozzolan based geopolymer mixes could be 

attributed to the alumina released in the geopolymerisation reactions. The additional alumina supplied by 

the calcium aluminate cement admixture leads to an increased extent of crosslinking in the geopolymer 

binder, reduces the mobility of alkalis (which is the key cause of efflorescence in these materials), and also 

generates a hardened geopolymer binder product with markedly improved mechanical properties compared 

to the systems with no admixtures.  

 

3.2. Apparent Activation Energy 

According to D’Aloia and Chanvillard [31], the ‘‘method of equivalent age’’ is based on Arrhenius’ law 

(Eq. (1)), which has shown itself to be the most accurate for describing the kinetic influence of temperature 

on many chemical and physical processes. 

)
RT

E
Aexp(K(T) a                                                                                                                   (1) 

http://dx/doi.org/10.1007/s10973-016-5850-7
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Here, T is absolute temperature (in K); K(T) is the rate constant (which depends on temperature), A is a 

proportionality constant, Ea is the apparent activation energy (J/mol), and R is the gas constant (8.314 J/mol 

K). 

Ea should thus be a parameter which characterises the binder, and which can be found by application of 

Arrhenius’ law to rate constants which are defined based on the kinetics of the reaction. The application of 

such simple assumptions to the case of the formation of any cement-like binder is obviously an 

oversimplification because this process involves a large number of (sequential and parallel) chemical 

reaction processes; a model describing the process of geopolymerisation of metakaolin according to a 7-

step reaction process was presented by Provis and Van Deventer [19, 32], and this was noted to be a 

simplified view of the process. Thus, any activation energy calculated from such analysis must be described 

as ‘‘apparent’’, rather than being a physically meaningful activation energy in a thermo-kinetic sense [31], 

but may still be considered as a useful comparison between binder systems. 

Mechanical and calorimetric approaches have been used for the experimental determination of Ea [31, 33]. 

In calorimetric methods, the heat of hydration is assumed to be proportional to the degree of reaction of the 

binder. This is unlikely to be fully accurate as an assumption throughout the process of geopolymerisation 

(or, similarly, for cement hydration), but the relative heats of formation of the products formed at different 

steps of the process are likely to be similar for binders of the same type but with different mix designs. This 

means that the apparent activation energy may be useful as a measure of the temperature-sensitivity of 

reaction processes when comparing binders which are broadly similar in chemistry. However, the physical 

significance of this calculated Ea value may be limited as a means of comparison with other chemical 

reaction processes or as a means of analysing the mechanism of geopolymerisation, particularly in regard to 

identifying the process as either diffusion or reaction-controlled as is commonly done with Ea values for 

complex chemical processes [34], as it is very much a lumped value including contributions from multiple 

steps and different rate-limiting processes at different stages of the geopolymerisation reaction. 

The time taken to reach 50% of the total heat of reaction is given the symbol t50. It is assumed that the rate 

constant K is an inverse function of t50, so that the ratios of t50 values determined at different temperatures 

can be used instead of K to calculate Ea [30, 33, 35]. So, plotting )
t

1
ln(

50

 against the inverse of 

temperature, a linear relationship will result, with slope 
RT

E
- a . Therefore, it could be possible to calculate 

activation energy and also the constant of the geopolymerization reaction here. Table 4 shows the t50 values 

of the geopolymer binders based on the Taftan natural pozzolan investigated here as a function of mix 

design and temperature, and Fig. 11 shows a plot of )
t

1
ln(

50

against the inverse of temperature for 

geopolymer mix P1 as an example of the calculation of the activation energy from such data. The equation 

of the best linear trend line is incorporated in the graph, and hence the resulting slope can be used to 

calculate the apparent activation energy. Table 5 shows the calculated apparent activation energy of each of 

http://dx/doi.org/10.1007/s10973-016-5850-7
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the mixes studied. 

 

 

 

Table 4. Time taken to reach 50% of final heat release (t50) in the geopolymer binders based on natural 

pozzolan 

t50 (min) at different temperatures Mix  ID  

C˚ 85 C˚ 75 C˚ 65  
38 73 119 P1 without CAC 

35 61 94 P1 with CAC 

36 55 130 P2 without CAC 

43 81 143 P2 with CAC 

50 90 155 P3 without CAC 

48 89 147 P3 with CAC 

49 67 164 P4 without CAC 

41 76 121 P4 with CAC 

 

 

 

Fig. 11. Arrhenius plot, showing )
t

1
ln(

50

against the inverse of temperature, for geopolymer mix P1 
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Table 5. Calculated apparent activation energies of the mixes studied. 

Apparent activation energy (kJ/mol) Mix ID  

57.3 P1 without CAC 

49.6 P1 with CAC 

64.8 P2 without CAC 

60.4 P2 with CAC 

56.9 P3 without CAC 

56.2 P3 with CAC 

61.0 P4 without CAC 

54.4 P4 with CAC 

 

It can be seen from comparison of Tables 3 and 5 that the total heat of reaction increases in the mixes 

containing the efflorescence control admixture, but the apparent activation energy is lower than in the 

mixes without the admixture. At a constant S/N ratio, the apparent activation energy decreases as the N/A 

ratio increases. Also, at a constant N/A ratio, the apparent activation energy is increased as the S/N ratio 

increases. The addition of the CAC also consistently reduces the apparent activation energy of each of the 

geopolymer mixes. 

According to the literature [19, 33, 36-43], results of apparent activation energy obtained for different kinds 

of Portland, blended, and alkali-activated cements are shown in Table 6. Comparison of the results shown 

in Table 6 with the calculated activation energies of the geopolymeric binders based on natural pozzolan 

given in Table 5 shows that the activation energies of alkali-activated binders are lower than those of 

Portland and blended cements. The addition of CAC as an admixture to geopolymer binders may aid in 

achieving a more complete extent of reaction depending on the reaction temperature, as well as its role in 

providing desirable properties for different industrial applications, including high strength and restricted 

efflorescence. In this case, of course, the cost of the admixtures as a fraction of the total price of the product 

should be observed as an important factor which also influences its suitability for general applications. 
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Table 6. Apparent activation energy for different cement compounds 

Observations 
Cement materials 

References Blended cement 
(kJ/mol) 

Portland cement 
(kJ/mol) 

Alkali-activated 
cements (kJ/mol) 

Cement with 50% 
slag 

49.1 44.3 - Roy and Idorn [36] 

Type I and type III 
cement 

49.9 45.2 - Schindler [37] 

Cement with 65% 
slag 

49.3 39.0 - Ma et al. [38] 

Cement with 7.5% 
silica fume 

30.4 39.0 - Ma et al. [38] 

Cement with 40% 
natural pozzolan 

32.6 24.4 - Ezziane et al. [33] 

Cement with 50% 
slag 

49.1 - - Wu et al. [39] 

Cement with 45% 
class C fly ash 

37.5 46.0 - Schindler et al. [40] 

Cement with 45% 
class F fly ash 

30.1 46.0 - Schindler et al. [40] 

Cement with 30% 
slag 

41.9 46.0 - Schindler et al. [40] 

Alkali-activated 
slag 

(SiO2/Na2O=1) 
- - 53.6 Zhou et al. [41] 

Alkali-activated 
slag (4 wt.% 

Na2O) 
- - 57.6 Fernandez et al. [42] 

K-geopolymers 
based on 

metakaolin with 

SiO2/Al 2O3 = 3.0 

- - 31.5 
Provis & van Deventer 

[20] 

Sodium silicate 
activated 

geopolymer based 
on metakaolin with 
SiO2/Na2O = 1.4 

- - 84 Rahier et al. [43] 

Natural pozzolan 
based geopolymer 
with the studied 
compositions 

  49.6 to 64.8 Present Study  

 

Conclusions 

1. The geopolymerisation of natural pozzolan is an exothermic process involving different stages 

depending on its chemical composition and the use of calcium aluminate cement as an admixture.  

2. The first stage of reaction, which is a very fast and strongly exothermic process, depends on the 

temperature and is shortened as the temperature increases. The addition of calcium aluminate 

cement introduces an additional exothermic peak during this time period, which may be linked to 

the formation of a transient hydrate product. 
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3. The total heat of reaction increases in the mixes containing calcium aluminate cement as an 

efflorescence control admixture, but the apparent activation energy is lower than the mixes 

without this admixture.  

4. At a constant SiO2/Na2O molar ratio, the apparent activation energy is decreased as the 

Na2O/Al2O3 molar ratio increases.  
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