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We give an overview of the main ideas involved in the development of Homotopy Type

Theory and the Univalent Foundations of Mathematics programme. This serves as a

background for the research papers published in the special issue.

1. Introduction

This special issue is devoted to a new area of research, generally known as homotopy

type theory, which connects type theory and homotopy theory, and to the Univalent

Foundations of Mathematics programme, formulated by Vladimir Voevodsky, which seeks

to develop a new, computational foundation of mathematics on the basis of type theories

which include axioms (such as the Univalence Axiom) motivated by homotopy theory.

Type theory originated within mathematical logic in the work of Russell, who used

the notion of a type in order to resolve the paradoxes that arise from the unrestricted

formation of collections. Since then, thanks to the work of several logicians and the-

oretical computer scientists (including Church, de Bruijn, Curry, Howard, Scott and

Martin-Löf), type theory has evolved into a rich, independent discipline and has found

significant real-world applications. In particular, type theories have been implemented in

computer systems (such as Coq and Agda) which have been used for the formalization

of large mathematical proofs (Gonthier et al. 2013) and the verification of the correct-

ness of computer programs (Leroy 2009). The fundamental feature that distinguishes
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type theories from set theories is that, while in set theories all mathematical objects

are treated indescriminately as sets, within type theories they are classified using the

primitive notion of a type, in a way that is analogous to that in which expressions are

classified into data-types in programming languages. Indeed, a type theory can also be

seen as a programming language with a rich typing mechanism, capable of expressing

sophisticated software specifications, and the development of some modern programming

languages has been guided by exploiting this very fact.

Homotopy theory, on the other hand, is a branch of algebraic topology which is gener-

ally concerned with the problem of classifying topological spaces up to a suitable notion

of equivalence (e.g. weak homotopy equivalence), making precise the idea that one is a

continuous deformation of the other. The subject has a long history, which is far too rich

and complex to be summarized here. Suffice it to say that, over the years, many notions

and techniques that arose originally in homotopy theory have found important appli-

cations in many other areas of mathematics. For example, ideas from homotopy theory

have been fundamental in the recent creation of derived algebraic geometry (Lurie 2004;

Toën and Vezzosi 2005) and higher-dimensional category theory (Joyal 2008; Lurie 2009;

Rezk 2001). A crucial role in this cross-fertilization has been played by Quillen’s seminal

work (Quillen 1967), which developed an axiomatic approach to homotopy theory based

on structures now generally called Quillen model categories. Roughly speaking, a Quillen

model category is a category equipped with additional structure (e.g. a distinguished

class of maps playing the role of weak homotopy equivalences) which allows one to re-

produce in a general context some of the classical development of homotopy theory. This

general development can then be instantiated in any of the numerous examples of Quillen

model categories that exist in mathematics.

The first indication of a connection between type theory and homotopy theory was

the discovery by Hofmann and Streicher that Martin-Löf type theory admits an inter-

pretation in the category of groupoids (Hofmann and Streicher 1998). This model was

later generalised in two different, although related, ways. On the one hand, Awodey and

Warren discovered that Martin-Löf’s type-theoretic rules for identity types can be in-

terpreted in any Quillen model category (Awodey and Warren 2009) (subject to subtle

conditions which were investigated further by Warren (Warren 2008) and by van den

Berg and Garner (van den Berg and Garner 2012)). The discovery of this new class

of models arose from the basic observation that, if we think of types as spaces and of

elements of types as points, then it is natural to think of proofs of equalities between

two elements of a type (as given by elements of identity types) as paths connecting the

two points. Accordingly, families of proofs of equalities can be regarded as homotopies

(which are suitable families of paths). At around the same time, Voevodsky discovered

that the type theory underpinning the Coq proof assistant has a model in the category

of simplicial sets, in which types are interpreted as Kan complexes (Voevodsky 2009).

Simplicial sets is one of the most fundamental examples of a Quillen model category, and

the specific interpretation given to identity types by Voevodsky agrees with the general

one given independently by Awodey and Warren. The discovery of these homotopical

models is important because it gives us a clear, precise, topological intuition for working

with constructive type theories, for which no natural models were previously available.
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On the basis of this work, several other researchers began to explore the topic in depth.

In particular, it was soon shown by Gambino and Garner how the syntactic category

associated to Martin-Löf type theories can be equipped with a weak factorisation system

(a structure closely related to that of a Quillen model category) (Gambino and Garner

2008) and by van den Berg and Garner and, independently, by Lumsdaine, that every

type can be equipped with the structure of a weak ω-groupoid (van den Berg and Garner

2011; Lumsdaine 2010). Around the same time, Voevodsky introduced the Univalence

Axiom and started to develop a new approach to the formalisation of mathematics in

type theory, using the proof assistant Coq. A paper describing the current state of this

groundbreaking and influential library, along with the associated Coq files themselves, is

part of this special issue. Further impetus for the development of the subject was recently

given by a special thematic program on Univalent Foundations, organized at the Institute

for Advanced Study in Princeton in the academic year 2012/13 by Awodey, Coquand,

and Voevodsky. Several of the papers in this special issue were written during that year

by participants in the program, recording some of the advances made during that time.

2. The special issue

The papers in this special issue can be divided roughly into three thematic groups. The

first group, comprising the papers by Ahrens, Kapulkin and Shulman; by Pelayo, Vo-

evodsky and Warren; by Rijke and Spitters; and by Voevodsky, is most closely concerned

with the development of the Univalent Foundations programme. In particular, the paper

by Voevodsky gives an overview of the fundamental definitions in this approach, includ-

ing that of equivalence, and of several fundamental constructions. Readers can use this

paper and the accompanying Coq code as a good introduction to the subject. The other

papers in this group deal with the development of more specialized topics, namely, the

development of various topics in category theory, set theory and algebra under the new,

univalent approach.

A second group of papers, which includes the papers by Barras, Coquand and Huber;

by van den Berg and Moerdijk; by van Oosten; and by Shulman, is concerned with the

investigation of models of type theories. Very briefly, the contents of these contributions is

as follows: Barras, Coquand and Huber undertake a constructivisation of the simplicial

model of Voevodsky; this work serves as an important step toward a closely related,

cubical approach under active curent investigation (Bezem, Coquand and Huber 2014).

In their paper, van den Berg and Moerdijk investigate Martin-Löf’s types of well-founded

trees, or W-types, in the simplicial model of homotopy type theory. The homotopical

aspects of the effective topos, a topos built using ideas from realisability, are the topic of

van Oosten’s contribution. Shulman produces the first models of the Univalence Axiom

in settings other than Voevodsky’s original one of simplicial sets, via a general procedure

from homotopy theory.

Finally, a third group consisting of the papers by Avigad, Kapulkin and Lumsdaine

and by Herbelin, focuses on the definition within homotopy type theory of structures

inspired by classical homotopy theory, namely homotopy limits and semi-simplicial sets,

respectively.
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Many of the papers in this volume have accompanying files consisting of formaliza-

tions of the main results for the Coq proof assistant. These files are available in a

special repository maintained by Cambridge University Press, which can accessed here:

linktothespecialissuewebpage.

We believe that these papers, in combination with the book (HoTT 2013), present a

good overall view of the current state of the art of the subject.

3. Open problems

We conclude these introductory remarks with a few comments on the main, current

outstanding issues in the field, as an invitation to prospective researchers, and for the

sake of establishing some benchmarks for the record. A leading conjecture of Voevodsky

concerns the constructive character of the univalence axiom. Roughly speaking, it states

that the addition of that axiom to the system of type theory does not spoil the good

computational properties of the latter, in that the normalization algorithm can be modi-

fied to yield a routine of “normalization up to homotopy”. Some partial results, including

ones by Harper and Licata (Harper and Licata 2012) and by Shulman (see the paper in

this issue), have been promising, but a full proof is still outstanding. The truth of this

conjecture, if established, is expected to have applications in the theory of computation

as well as in the design of future proof assistants better suited to the implementation of

univalent foundations.

A second direction for further research concerns higher inductive types, which have

been introduced and used with great success in the book (HoTT 2013), for everything

from the smooth introduction of quotients in type theory, thus giving an alternative to

setoids, to the calculations of some higher homotopy groups of spheres. But the computa-

tional character of these constructions, too, remains largely unknown. Moreover, although

a good stock of examples have now been produced, and experts have developed precise

techniques for dealing with them, a general theory of the kind available for conventional

inductive types is stlll lacking.

Much current work is also devoted to the semantics of homotopy type theory, especially

in connection with the possibility of modelling type theory using cubical sets, following

the seminal preprint (Bezem, Coquand and Huber 2014). Preliminary results toward a

constructive interpretation, which could lead to a solution of Voevodsky’s conjecture and

other results, appear to be quite promising.

Finally, toward strengthening the connection to contemporary homotopy theory and

higher category theory, the precise relation between homotopy type theory and the notion

of an ∞-topos (e.g. in the sense of (Lurie 2009)) remains to be spelled out; for example,

the apparent equivalence of the univalence axiom in the former with the notion of object

classifier in the latter is tantalizing. Again, experts in the field have a good, working

understanding, but a general theory of the kind available for extensional type theory and

ordinary toposes is still lacking.

Of course, there are many other fascinating topics and problems under current inves-

tigation. Some of them will undoubtedly turn out to be very difficult; but in a subject

as young and, apparently, deep as this one, there are doubtless also still some delectable
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low-hanging fruits. Moreover, the next advance may well come, not from the solution of

one of these “open problems”, but from an entirely unexpected and surprising direction,

just as did the subject itself.
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