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Abstract: To facilitate monitoring crystal size distribution (CSD) duringrgstallization process by using
anin-situ imaging system, a sparsity-based image analysis mistpogposed for real-time implementation.
To cope with image degradation arising fromsitu measurement subjetd partide motion, solution
turbulence, and uneven illumination backgroundthe crystallizer, sparse representation of a real-time
captured crystal image developed based on usiagin-situ image dictionary establish@dadvance, such
that the noise componerits the captured imageanbe efficiently removed. Subsequently, the edofea
crystal shapen a captured image are determihnin terms of the salience information defined from the
denoised crystal images. These edges aretaskmive a blur kernel for reconstruction of a denoised image.
A non-blind deconvolution algorithnis given for the real-time reconstruction. Consequently, image
segmentation can be easily performed for evaluation of CSD. The éryage dictionary and blur kernels
are timely updateth terms of the imaging conditiois improve the restoration efficiencin experimental
study on the cooling crystallizatioof o-type L-glutamic acid (LGA)is shown to demonstrate the
effectiveness and meuof the proposed method.

Keywords: Crystallization process, crystal size distribution, real-time monitoringgé&manalysis, sparse

representation, salience edge

1. Introduction

Monitoring the crystal size distribution (CSD) during a crystallizafioocessis very important for
control optimization to obtain the desired product quality and production effinith the rapid
development of process analytical technology (PAT) in the past cm few real-time measurement
methods have been explored for measuring CSD based on using the laser diffractionlttaByund
attenuation (UA), and focused beam reflectance measurement (FBRM) technfBogiésin particular
FBRM has been increasingly applied for on-line monitoring of crystal size distribetioed as cord length
distribution[5, 6], whichis mainly effective for spherical particles. However, these technologies caifgrot of
two-dimensional details of crystal size or shapg.cBmparison, high-speed optical imaging devices have
also been gradually adopted for crystal size measurement and shape identificdt@recent yeai, 7].

Realtime image analysisdstherefore become intensively appealed for monitoring crystallization pescess



Based on using an invasive or non-invasive imaging system for monitoringtallezgtion processa

small number of real-time image analysis methods were explored for measysitaj size or CSEilBy
using a non-invasive imaging system, Larsen gBapresented a model-based object recognition algorithm
to extract crystal size information for the a-glycine crystallization process from the captured imadges

synthetic image analysis method was developed for in-situ crystal type identifi@aticsize measurement

in the recent paper [10By comparison, an invasive imaging system named particle vision and measurement

(PVM) was adopted to develop a comprehensive image andlyi§ion the crystal size of monosodium
glutamate during crystallization. In addition, a flow-through cell imaging deviceuse to estimate CSD
[12], based on crystal image segmentation using the wavelet transform and fuzzyn<Cahestering

strategy.The device was further extended to take in-situ crystal images from twengcular directions

[13], such that a faster image analysis algorithm was proposed to classidlepaahd count the particle

sizes. A multivariate image analysis method was combined avilassical image technique fam-situ

estimation of CSD [14]. To address the problem of out-of-focus particles provoking degradewd) ifonmi-

situ_monitoring, Presles et dIL5] developedan optimization strategy into the image analysis to acquire

better particle characterizationfo effectively extract the moving particle information for on-line

measurement of particle size, Chen et al. [16] proposed a fast image proaéssitigm for correction of

imaging illumination and binarization in a two-phase flow. To tackle thegrezed challenge of estimating

the crystal growth rate from real-time captured insagdew advanced image processing techniques were

presented to estimate the crystal length distribution specifically for needieesbeystals [17]. Agimelen et

al. [18] adopted the mean aspect ratio of all the particles in the captoage by PVM to reduce the

computation effort for particle size estimation. However, little work badn devoted to improve the

captured image quality against the influence from the solution turbulencenamddrying illumination

background with respect to the crystallization progress, which should bsagedifor effective particle

extraction and CSD estimation during the crystallization process.

To eliminate the influence from particle motion, solution turbulence, uneveninition background,

and imaging noise, it is necessary to restore the true crystal ifrageshe captured images in a fast

manner. A synthetic sparsity-based image analysis strateqy is therefore priopts®gaper for real-time

monitoring of CSD with high efficiency and accuraEyrstly, the noisén a captured crystal image is filtered

out by using an image dictioryaestablished in advance. Then the edges of a crystal shape in the captured
image are determined in terms of the salience information defined from the detwystl images. These
edges are used to determine the blur kernel for reconstruction of a denoised Tmais end, image
segmentatioris proceeded for evaluation of CSD subject to uneven illumination backgrouperifental

results are shown to demonstrate the proposed image analysis method for in-situ measuremefar@nCSD

L-glutamic acid (LGA) crystallization process.



2. Image analysis
Analysis of real-time crystal image aims at obtaining the detailsS&l. The whole process of image
analysis strategy for real-time CSD measuremeshown inFig.1, including imag preprocessing, image

restoratiopand image segmentatiomhich are presented in the following subsections, respectively.

2.1 Image preprocessing
In general, the size of a captured image depends on the resolutionméging system. Typically,
when the size o& captured image becomes largarlonger processing time is needed dorline image

analysis. To alleviate the time delay, an efficient method based on the weamemmf[w] is adopted for

downsizing the captured images while maintaining necessary informatioealeime analysis. Givean
original image f (X,y) with the sizeM xN, a two-dimensional discrete method is used for the wavelet

transform based on the biorthogonal wavelet fun 111¢91|| Denote byMm the row, byn the column, and by

J the scale. The discrete wavelet transform féx,y) is defined by

A ,m,n)=ﬁ22 F (Y00, (,)
x’;l y;l (1)
AGMM= 3D (YW, 69,1 =H Y D)
where
(Dj,m,n(X’ y) = 2”2(0(21 X— m12 y_ m) (2)
Vimn (V) =2"%y' (2 x-m,2 y-m), i={H vV D}

wherey| (% Y), i={H,V,D} are used to identify three directional edges including horizontal, vertical
and diagonal directions, respectively. Then the original imbgey) is decomposed into four parts at the

scale]: a low frequency componerf, (j,m,n) which is used for approximatin§(x,y), and three high

frequency component8,, (j,m,n) to be removed.

2.2 Imagegrestoration

Generally, a crystallization process is involved with solution agitatidthodgh a high-speed camera
can be used to reduce the capture time for imaging, solution turbulence interteresaiviime imaging,
causing difficulty to discern the outlines of crystals. To deigth whe problema restoration algorithm is
proposed to remove noise and blurs from the captured images, in orderitatdattie subsequent image
segmentation and CSD measurement.

The key idea of image restoration is to establish a degradation modebter the crystal images from
the captured images, and then asmathematical method of solving the inverse problem to obtain the
optimal approximation of the original image. Due to that the related paramatieliive noise and blur
kernel) could not be known in advance, a blind restoration mashexplored here, including degradation
model construction, image filtering, dictionary learning, salient edge astim blur kernel estimation,

image deconvolution, as detailed in the following subsections.


http://dict.youdao.com/search?q=deconvolution&keyfrom=E2Ctranslation
http://dict.youdao.com/search?q=deconvolution&keyfrom=E2Ctranslation

2.2.1 Degradation model construction

It is assumed that in a capédrcrystal image with a short time exposure, the blur kernel is space-
invariant. That is, the degradation mogegimplified as
Y=k*X +v (3)
whereY is a corrupted (i.e. captured) imagk, a blur kernel, X a clean image: convolution operation
andV an additive noise.
Since there are three unknown variablethéxmodel, it is proposed to iteratively solve them fi@nin
terms of
{Y =F +v @
F=kxX
In case the captured crytal images are vague and noisy due to solution turballemgevith blurred
image edge, a multi-scale scheme is suggestedimprove the estimation accuracy of blur kernel. The
unknown edge imag® X and blur kernek are iteratively estimated by establishing an image pyramid
model froma coarse scale (low resolution) tofine scale (high resolution) witfVF . Fig.2 shows the

flowchart of the proposed restoration method basedalsparse representation.

2.2.2 Imagefiltering

For image filtering, the guided filtering algorit@ is adopted, and the guided image may be taken
as a denoised image. When a deedimage is used, the guided filtering function is considered as an edge-
protection filter, which presees the image edge information. Moreover, the edge feature of the crystal
image is distinguished by the guided filtering for better identification. Fagukie guided filtering, suppose

the pixel p, in the input image and the pixgl in the output image satisfying
G=aR+A4, Viea (5)
wherek is the index of the local square windawy which is taken a$1x 51in the input image(e, , £,)

are thecoefficientsin @, which are determined by
(ar, f)=argminy (@, p + 5 — R J +ec’) ©)
ko Pk iem,
where & is a tuning parameter which is taken as 0.01 in this work.

It follows from the filtering methg0]|that

iz 2_ 7
a)l iG(K)K F)I /'lkn(
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(7)
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B = P — Ot (8)



where 4, and of are the mean and variance of the input image, , | @ | is the total number of pixels in
o, , and

1

m ieay

P« = R (9)

The output image is therefore obtained by

g = S (10)

m ico,
2.2.3 Dictionary learning

The goal of dictionary learning is to obtain the denoised infagghown in Eq4) in terms of the
sparse representatiofin important merit of dictionary learning is the robustness against an adaiiiseV
that is, learning from noisy images may proviaelesired noise-free image dictionary. Inspired by th
developed methgi®1]| an effective dictionary learning algorithm of K-SVD is givesbalow,

Firstly, denote byy anoriginal image and by the denoised image,denoising model in the sparse

domairn[21]|is established by

{aij, } argmmﬁ IF-Y f+ Zy” W dF>. Ad -RF 3 (11)

i,j=1 ij=1
where dij aresparse representations of all the patches composing the original ifvabe dictionary,M

the size of dictionaryRR; a matrix that extracts the, j) patch The first term at the right-side @f.1)
denotes the global proximity betweé&h and F , the second term ia sparsity constraint with the

coefficients ; ; The third ternis related to the denoised imagfe, eachpatch denoted b, = R F of size
Jnx/n has a sparse representation witrounded error.
Then,a block coordinate-relaxation method is performed to up@ateusing a windowed orthonormal
matching pursuit (OMI@ ie.
d; =argming; |id |+ |pd-1 3 (12)

Finally, the image dictionarg updated using the K-SVD methgiel]| Iteration between the above two

steps builds up a dictionary learning algorithm. Once converged, the etkinoége F is computed by

[;mz R Rj (1Y+Z F?Ad.JJ (13)

i,j=1 ij=1
2.2.4 Salient edge estimation

Owing to that CSD is measured from the image edges of the crysialgzaiit is necessary to use the
salient structure information of a denoised imagestimate the blur kernel. By extracting the structure

information and filtering out the texture details from the denoised infageblur kernel estimation is



obtaired in terms ofan effective salient structure. Filgt the salient structures are extracted by using a so-

called relative-total-variation methgd3][ The objective function for the input image and the resulting

structure imagesS is takenas

S:argrrsﬂn{% ||F—SE|+XZ[ D, S() + D.X() ]} (14)

LS@)+e LS(>)+e
wherei and ] are indices of the 2D pixel$N and N pixel coordinates). a weight, ands a small
positive value usetb avoid division by zero. Moreoveg; ; is a specified Gaussian weighting function with

the standard deviatiorr relating to the spatial scale of the window, dagS(i) and L, S(i) are total

variations in theM and N directions for pixel in the window, defined by

D.S()= > 1@,

jeR()

LS = 2, 9,;10,S) |

jeR()

(15)

Secondly, the edges of a denoised image should be sharpened for effective estimidti®nvork, the

shock filtering modeg]24]|is used to improve the clarity of image edges.

Thirdly, the image edg& F is estimated by usinggradient method based on a discrete filter, i.e.
VF=[V.SV,.§ (16)
whereV,, =[1,-1] andV, =[1,-1]".
2.2.5Blur kernd estimation

For an original edge image denotedBfF that may be blurred, image restoration is expressed by
VF = k*VX (17)

whereyy is unknown clean gradient image in the high frequency lansithe blur kernel.

For iteration,a regularization function ot /L,|[25]|is used to estimate the imadeX; in theith

scale, the optimization objective function is defined as

A VX Il
VX =argmin— |k *VX. —VFE +—" =
i gVXi 2 Ikl i i El ”VXI H (18)

where VE, andk: are the original edge image and the blur kernel iri thescale {<i <S, whereS is the

index of the finest scale), amtl is used to make a compromise between the regularization and the scalar

data.

Wwith ||VX. |, determined by the previous iteration, @) can be transformeidto the following form

[25]




VX, =argmin’ [k VX ~VF, [+ NX, | (19)

The fast iterative shrinkage threshold algorithm named as R[3@)fis adopted for the inner iteration

to solve the above minimization program.

Moreover, the blur kernek; is updated by solving the following minimization,
 =argmin”. |k VX ~VF f+ K | (20)

An unconstrained iterative re-weighted least-squares (IRLS) method is used tinsabeve problem

and the conjugate gradient method is used to ensure the convergence |@2 TRLS

For the multi-scale operationf successive approximation, whéfX. and k. are computed by
performing n, interations in the th scale, they are upsampled as the initial image and blur kernel of the fine
scale {+1) by using the bicubic interpolation. Whered;; is downsampled from the original edge image
VF . The size ratidgs taken as,/2 between the two adjacent scales in the multi-scale pyramid. Herein the
size of VX is taken the same as thatéF , and the scale numb@& is deermined by the blur kernel size
in the first scale (e.g. an initial blur kernel si8x 3). Note that the number of iteration is definedas

Ik =K"* k<& > 1 (21)
where ¢ =107 is taken in this work.

In addition, owing to that there are a lot of independent particles in a caphagel, the blur kernei

should be optimized to remove the noise. A nonlinear filtering m{tm]]ijsing a bilateral filter for noise

removing and edge preserving is used to optimize the blur kieynéls a resultthe final blur kernelk is
obtained by optimizings.
2.2.6 Image deconvolution

After obtaining the blur kerngk , an image non-blind deconvolution algorithm base generalized

iterated shrinkage algorithi29]|is used to obtain the clean imade by restoring the blurred image

with blur kernelk .
Considering that the blind restoration process may spend much time for ondige jorocessing, the

dictionaries and blur kernels are updated timely in terms of the mgnagnditions during crystallization, i.e.

real-time image quality. In this paper, two assessment parameters (Terfengtesh([30]|and mean gray

value) are introduced to describe real-time image quality, that &n Wbth of thee assessment parameters
vary drastically (e.glchange ratg 10%) between the current moment and the last updating moment for

real-time monitoring, the dictionary and blur kernel will be updatednfiage restoration. For the imaye

Tenengrad function with the Sobel opergfil]|is defined by




D(1) =X > \lamn)+1:(m.n) (22)
where M denotes the rowl the column I, and |, are respectively the convolution of the input image
Y(m,n) with the sobel mask§,, andS,, i.e.

{Im =Y(M,n)*S, 23)

[, =Y(M,n)*S,
2.3 Image segmentation

To cope with uneven or low-contrast illumination background of captured crystal iniatpse

enhancements conducted to strengthen the region of interest (ROI), namely, crystal partidiech

facilitates the subsequent image segmentation. The multi-scale retinexhaigWiSR)|[31]|is therefore

adopted to deal with images with poor visibility or low resolution, whichdedonstrated superiority over
previous methods.

After image enhancement, the minimum cross entropy segmentation aI is\performed, where
the optimal threshold” is determined by computing the minimum cross entropy. Each segmented image is
then used to extract the outlines of valid particles and remove the imaggdua. Finally, a binary image

I, is obtained by

0, X(m,n)<t

(™, n):{L X(m,n)>t 9

Through image segmentation, crystal sizes are computed by using the edafigle methg@33]

Note that the particle length and width are counted as the length and witith lmést fit rectangle for the
contour ofa particle image. In this work, the length is considered as the key size&sfareStimation with
respect to the crystal shapeswefandp-form for LGA.

3. Experimental study
3.1 Experimental setup

A cooling crystallization experiment of -type LGA was carried out based on using a non-invasive
imaging system to demonstrate the efficiency of the proposed sparsity-basedimalyges method for real-
time CSD measurement. The experimental set-up for capturing the crystal imalgegnsirsFig.3. The
crystallizer was composed af4L jacketed glass vessel,4-paddle agitator (PTFER temperature probe
(Pt100), and a thermostatic circulator (product no.Julabo-CF41). The LGA solutbstitheld water were
used for experiment. A non-invasive imaging instrument including two higkdspemeras made by Hainan
Six Sigma Intelligent Systems Ltd. (product no. Stereo Vision Crystal-G) wpkoyed to take real-time
crystal images during the cooling proce8sLED light was used for illumination. Wo high-resolution
cameras (NoUI-2280SE-C-HQ) with CCD sensors were made by IDS Imaging Development Systems

GmbH, which is able to take maximum 6 images per second. These images were inodfAEGAMth the

-8-



pixel resolution of 2448x2050The non-invasive imaging system was installed closely outside the

cylindrical crystallizer.The camera flange focal distance was taken as 14.27 cm, and the shutter type was set

asglobal with an exposure time of 0.11ms optical grid plate of of millimeter scale is used to adjust the

focal length of the imaging system for in-situ measuremanaddition, a digital microscope L(eica DM
2500, LAS_v4.4was used for CSD validation.

3.2 Image analysisresults

Real-time images were captured at the sequential time points subjeattitite pmnotion, solution
turbulence and uneven illumination background during the cooling crystallizatioasprodote that the
illumination intensity was gradually reduced with the increment of aiysturing crystallizationFig.4a
shows a captured image subject to the LGA solution agitation at a paiddhg stpeed of 250 rpm and

uneven illumination. It is seen that the contours of particle shapes werelgdlerred.It should be noted

that the focal length of the imaging system had been properly adjustedrémime no image blurring under

no agitationof the crystallizer, while the image distortion was negligible for in-situ measmt.

The proposed image preprocessing and restoration methods were implementeddptuitesl images.

Fig.4bshows the performance of image restoration on the captured intageseen that the influence from

particle motion, solution turbulence and uneven illumination background is almost aidninat

For comparison, the develepblind deconvolution methof25] was also used for the same capdure
image. The comparison result is showrfig.5 It is seen that most of the particles have been well restored
by the proposed restoration method. In contrast, the edges of some partizidgead by the yellow circle
are less distinct by using the cited meth@8] as shown irFig.5h Moreover, the blur kernel is estimated

with a smaller number of discrete noisy points as shown by Fig.5¢c, compared to éirstdbly the cited

method [25] as shown by Fig.5d. The commonly used quantitative indicators of image quality [30]

Tenengrad, Brenner, and energy gradient, are computed for comparison. The results are lisked. ifitheab

larger is the better), indicating further improved image quality is obtained by the propstbed m

For the restored image shownFig.4b,the pixel intensity with respect to the image width and length is
plottedin Fig.6a which indicates that the crystal image is heavily subject to unewagirignbackground,
causing difficulty to the subsequent image segmentation. The result of iemogincemens shown in

Fig.6b,demonstrating that most of the particles are highlighted compared to theabdgirestored image

shown in Fig.4Then the proposed segmentation method is apfaigite image with uneven pixel intensity,
obtaining the segmentation result showiig.6¢

Due to the fact that particles are inevitably subject to breakage and agglomaitating the

crystallization process, tiny particles including those arising from paricdakage, together with the

agglomerated particles, should not be counted for properly estimating the Ci8D fiier crystallziation

process. It is therefore necessary to sieve out valid particles from theedestmge to ensure effective

estimation of CSD. The patrticle sieving method developed in the recent papisrddl©pted to extract valid

particles from the segmented image, as shown in Fig.6d, by specifying the minimnioearref pixels larger




than 100 for each particle (to exclude tiny particles) and the concave-convex degreghagh®&iZ5 (to

exclude agglomerated particles).
Note that the total time spent for the image restoration by the propushdd coded by MATLAB

(version 2013a) was smaller than 3 seconds in terms of a computer configir&PWitof Intel 3.40 GHZ

andRAM of 8.00G, based on the established blur kernels and dictionary learning. The tibfersparticle

sieving and computation of CSD is smaller than 1 second based on the image restoration.

3.3 CSD estimation results

To demonstrate the effectiveneasfsthe proposed sparsity-based image analysis for real-time monjtoring

another offline measurement using an electric microscope was performed.tBefaal-time experiment of
CSD estimation, the LGA solution was first heated up to 75°C and the tempesaiiheld for one hour to
guarantee that all the LGA solutes were completely dissolved. The solutionenastiied down to 45°C at
afast cooling rate of 0.8°C/min. The crystal seeds were poured intolth®is@t the temperature 45°C, of
which the CSD was measured beforehand with an electric microscope for comparison. In-sitesimvage
captured within 15 seconds after the seeding. Note that the crystal lesgibution remained almost
unchanged during the short time interval. Subsequently, a slow cooling raté@fi& was maintained in
the experiment. Totally after 60 minutes;situ images of the crystal solution were once again captured
within another 15 seconds. Then the crystals were immediately sampled from the aystadliziried for
offline measurement by using an electric microscope. It was found thavénaged changing rates of
Tenengrad function and mean gray value for real-time image anlysis from thmibggio the end of
experiment were about -24% and -53%, respectively. Correspondingly, the dicti@matribkir kernels for
image restoration were appatdgndifferent with respect to the crystal growth process. Hence, the experiment
is suitable fodemonstratinghe effectiveness of the proposed method for on-line monitoring.

Fig.7 shows the image analysis results of LGA CSD in length given by the proposed medhibe: a
offline measurement. The CSDs were counted based on almost 500 particles fronagbe daptured
within 15 seconds around=0min andt=60min, respectively. Iis seen that the analysis results are very

similar by using theetwo methods. To clarify the similarity, define the relative eaLk, -norm distance

(abbreviated by, ND) between two vector@ andb in an ascending or descending order by

14a-h|
ELpp =Y o3
WO =N (g | (25)

The relative erroref mean size (MS), standard deviati®D}, and L, ND for the LGA CSD in length
by using the proposed method in contrast with the offline measurement are liStedlen2 whereT1
denotest =0min, and T2 $ t =60min. The results demonstrate that the image analysis results given by the

proposed real-time method are very close to those of the offline measurement.
4. Conclusions

-10-



A synthetic image monitoring method baseda@parse representation has been proposed for real-time
CSD estimation duringa crystallization process, which can accommodate for poor imaging conditions
including particle motion, solution turbulence, and uneven illumination backgrountm@ge restoration
method is propad to restore the corrupted images captured faonon-line norrinvasive imaging system
for monitoring crystal growth. By introducingvd assessment parameters of real-time image quality, the
image dictionary and blur kernels are timely updated to improve the restocatality while saving the
processing time. A non-blind deconvolution algorithm has been giverdbtime reconstruction, such that
image segmentatiocanbe conveniently condustl to estimate CSD. Experiment results have demonstrated
that the proposed sparsity-based image analysis can be effectively used fionereabnitoring of CSD
very close to the offline measurement by using an electric microscope. Nevertihalessld be noted that
two-dimensional analysis of CSD has certain limitation to refteet growth of faceted crystal#t is
therefore desired to develop a three-dimensioe@instruction strategy for CSD estimation in the future

work.
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Table 1 Comparisorof image quality via quantitative indicators

Quantitative indicators  Tenengrad Brenner Energy gradient
Fig.5a 53.97 346.91 227.80
Fig.5b 53.13 318.58 214.95

Table 2 Relative errors of CSD between the proposed real-time measurantethe offline measurement

Relative error (%)

CSD data MS SD L.ND
T1 1.91 5.57 3.18
T2 5.31 12.82 9.37

Average 3.61 9.20 6.27

Image preprocessing

.

Image restoration

v

Image segmentation

.

CSD measurement

End

Fig. 1. The flow chart of image analysis
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Fig. 2. The restoration procedure facaptued crystal image
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Fig. 4. Crystal image restoration: (a) capuimage; (b) restored image.

(b)

(c) (d)
Fig. 5. Comparison of image processing results: (a) the proposed mdthdiae plind deconvolution method [25]; (c)
the blur kernel by the proposed method; (d) the kel by the blind deconvolution method [25].
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Fig. 6. Image segmentation result under uneven illumination background (@pRof pixel intensity; (b) enhanced

image; (c) segmented image; (d) valid particles extracted from the segnmeatgd i
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Fig. 7. Analysis of LGA CSD in length: (a) result & 0min by the proposed method; (b) result atOmin by offline

measurement; (c) result it 60min by the proposed method; (d) result at60min by offline measurement
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