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Abstract 
Low power (< 10 W m-2) ultrasound spectroscopy has been used for many years for the 
characterisation of food colloids with respect to particle size distribution, adiabatic compressibility, 
particle solvation and dissolution, crystal nucleation and solid content. Whilst high power (>1 kW 
m-2) ultrasound methods are well-known to impact on fat crystallization and structuring, they have 
many drawbacks, causing off-flavours through product oxidation and a metallic taste probably 
associated with sonotrode wear. Furthermore, process development with power ultrasound is hit 
and miss, applications being largely empirical and poorly understood. We have recently shown 
that well-controlled and understood crystal nucleation control can be obtained using well-defined 
low power, quasi-continuous ultrasound and acoustical pressure fields, opening up a new field of 
application in food processing for ultrasonics. 
 

1 Introduction 
The use of low power ultrasonics in food science extends over nearly forty years and in this 
author’s case can be traced back to 1981[1]. Acoustical analysis of food structure including 
objective measures of human sensory perception is now a lively topic[2][3][4][5]. High power 
applications can be traced back to 1959[6]. 
 
The application of ultrasound techniques to fat crystallization and structuring can be traced back to 
work by Miles and Fursey in Bristol[7] which was then further developed in Leeds in conjunction 
with Eric Dickinson and Julian McClements[8]. A recent view of where Eric Dickinson pointed me 
to through his development of the subject of food colloids can be found in[9].  Work in the area has 
continued continuously since then and developments are summarised in two recent papers[9][10].  
 
This review is mostly confined to developments in the past five years. 
 
Ultrasound in food science may conveniently be divided into two areas[11]: low power (< 10 W m-

2) for material characterisation and high power (>1 kW m-2 and > 10 kW m-2 for cavitation in 
aqueous systems) for material modification and processing. However, it has recently been shown 
that under some special circumstances, even low power ultrasound may be material altering[10].  
 
A recent review of ultrasound in food technology[12] gives a comprehensive, albeit uncritical, 
overview covering applications in filtration, freezing and crystallization, de-frosting and thawing, 
de-foaming, degassing, de-aeration, cutting, drying, tempering, bleaching, cooking and 
sterilization, extraction, mixing, de-polymerization, de-moulding, extrusion, meat tenderization, 
brining, pickling, marinating, emulsification, homogenization and enzyme inactivation. A better 
although less cited review is that by Awad et al[13] which also addresses low power ultrasound 
applications and theory. The processing effects described in these reviews are achieved mostly in 
an empirical manner through a range of sometimes contradictory processes associated with power 
ultrasound creating stable and transient cavitation[14]; free radical production and intense shear 
are also associated with bubble collapse in transient cavitation.  
 
Below we consider the relationship between fat crystallization and fat structure and consider the 
role of both high power and low power ultrasound in the control of fat crystallization and structure. 
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2 The Relationship between Fat Crystallization and Fat Structure 
The macroscopic structure of foods containing fats such as margarine, fatty spreads, butter, 
mayonnaise and ice cream may be viewed as the emergence of different structures at different 
scales. At the smallest scale, that of individual molecule surrounded by similar molecules, all 
objects are in motion and without a fixed position relative to each other. Even here things are not 
so simple, for example if we take the case of water each water molecule as it tumbles around sees 
on average a structured environment with a higher density of molecules co-ordinating with each of 
the hydrogens. here, the crystalline unit cell, the individual crystal habit and the morphology 
associated with many separate crystals forming a space filling network which imparts rigidity and 
structure on the product. During the manufacture of a fatty spread an oil-in-water emulsion is first 
produced in which crystal nucleation is initiated. The transformation from the disordered liquid 
state to an embryonic then stable solid nucleus was recently discussed in [10] and what appears 
there will not be repeated here.  
 
Distinguishing the point at which a solid state has emerged in an oil or any saturated solution (The 
solid state of a pure material may be regarded as emerging from a saturated solution of itself) has 
created a great deal of discussion and here ultrasound has a lot to offer. The speed of sound in 
any material can be described by the relationship: 
 ܿ ൌ ටܯ ݐ݊ܽݐݏ݊ܿ ܿ݅ݐݏ݈ܽܧ ൗߩ ݕݐ݅ݏ݊݁ܦ   

In solid material the elastic constant comprises a bulk modulus K and a rigidity modulus G. ܿ ൌ ඨሺܭ  Ͷൗ͵ ሻܩ ൘ߩ  

In a fluid such as water ܭ ൎ ͳͲଵ Pa whilst even in food gels ܩ ൎ ͳ െ ͳͲ Pa. So the speed of 
sound in fluids is well described by the Wood Equation ܿ ൌ ටܭ ൗߩ ൌ ටͳ ൗߩߢ  

Where ț is the adiabatic compressibility. 
It is not only the density that undergoes a first order transition through the liquid-solid phase 
transition but also the adiabatic compressibility (G increases from a few Pa to the same order as 
K). Since the speed of sound can be measured routinely in a manufacturing process to 5 
significant figures (in-line density measurements are not so easy to make and the changes in 
density are smaller) very accurate determinations of the initial appearance of solid nuclei from a 
cocoa butter melt can be made (See also Figure 4 below). Some time ago we measured the effect 
of cocoa butter seed crystals on cocoa butter crystallization and the impact of these seed crystals 
on the chocolate tempering process is still widely ignored throughout the chocolate confectionery 
industry despite its impact being well-known, albeit poorly understood [15][16,17]. Yet, removal of 
the seed crystals from the melt suppresses nucleation of the required Form V. 
Thus far our discussion has confined itself to the first stage (1) in Figure 1. 
 
As shown in Stage (2) of  Figure 1 initially the crystals grow individually out of the oil droplets they 
begin to stick to each other (Figure 1 – (3)) and the emulsion inverts as the solid structure fills 
space and the water becomes dispersed as small droplets  within a continuous fat matrix (Figure 1 
– (4)), locking them away from microbial and mould growth and imparting on the resulting material 
a soft solid structure with desirable organoleptic properties. 
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Scale increasing from (1) ~ nm through (2) micrometers and (3) millimetres to (4) centimetres 
Figure 1Emergence of structure as scale increases from the molecule through a single crystal and interacting crystals to a solid 
structure containing liquid 

 
In chocolate, the creation of the correct polymorph is essential to the production of a stable 
product with a long shelf life and attributes such as glossiness, mould release, snap, cooling in the 
mouth and a sharp melting point. Ultrasound offers many opportunities to study these processes 
at the various scales at which they occur and current methods for doing this are reviewed in 
Section 4. 
 
Recently a lot of attention is being given to the stereochemistry of fats and its implications for 
structuring[18,19]. 

3 High power ultrasound control of fat crystallization and 
structuring 

 
A useful diagram is provided below in Figure 2 from Johannsson et al[20] gives some idea of the 
power levels involved in applications of power ultrasound.  
 
Fundamental studies of power ultrasound are few and far between (but see [21] and [20]) which is 
a disadvantage because high power ultrasound induced cavitation is a complex process (See 
Section 3.1 below), difficult to characterise and control. Transient cavitation fields behave 
chaotically and generate high levels of free radicals in aqueous systems, leading to often 
undesired oxidative effects[20] which have led to the abandonment of many otherwise promising 
food industrial applications. The chaotic behaviour of cavitation fields arises from a huge acoustic 
mismatch between the bubbles produced and the acoustic field, leading to growth and collapse of 
the cavitating field in difficult to predict ways. Where sonotrodes are used, wear of the sonotrode 
introduces contamination of the food with the sonotrode material.  



 
Figure 2 Empirical delineation of power-frequency combinations deployed in various applications of ultrasound (reproduced with 
permission from Ultrasonics Sonochemistry, Volume 28, January 2016, Pages 346–356. 

A contradiction arises because on the one hand the high shear and the production of free radicals 
promotes desired processes such as sterilization, on the other hand in sono-crystallization of fats, 
free radical production leads to highly undesirable oxidation and oxidative rancidity. In addition, 
acoustic radiation forces operating independently of cavitation and also at lower powers create 
streaming and particle fractionation effects.  
 

3.1 Sono-Crystallization 
The well-known impact of sono-crystallization is also contradictory, small changes in power can 
result in a change from the nucleation of crystals to their melting. We have shown that even a 
stably oscillating bubble can nucleate crystallization[22–24], if the insonifying power is slightly 
increased, the crystals so created can then be melted! 
 
Despite recent research into power ultrasound applications in food being very active with over 25 
papers per year being published over the past five years, the disadvantages of high power 
ultrasound are rarely referred to although anecdotal evidence provided to the author by industrial 
scientists from a number of companies suggest the abandonment of a number of large projects for 
the reasons given above; the use of power ultrasound in the processing of chocolate and cocoa 
butter being a case in point. Power ultrasound is not used to anything like the extent expected 
from recent reviews[3]; in a recent comprehensive review of the production and refining of oils and 
fats; only one reference could be found to the use of ultrasound and that was to do with the de-
gumming of oil[25].  
 

4 Low power control of fat crystallization and structuring 

4.1 Ultrasound velocimetry 
Low power ultrasound involves the use of pulsed or quasi-continuous ultrasound pressure waves 
between about 20 KHz and 200 MHz at power levels below 10 W m-2. This level is well below the 
level used even for diagnostic ultrasound shown in Figure 2 and is off the scale in that Figure. To 
put this in perspective, The first commercial instrument designed for the monitoring and control of 
fat crystallization was built in conjunction with Unilever and was called the Cygnus Ultrasound 
Velocity Meter or UVM. This device uses a technique called pulse echo whereby a single 
transducer both generates the ultrasound pulse and detects it. The pulse travels a known distance 
and its time of flight is measured digitally, so that the speed of sound is calculated automatically by 
dividing distance by time. The distance is accurately determined by filling the cell with de-ionised 



water in which the speed of sound is well known. Accurate measurement of temperature is 
important because the temperature coefficient of the speed of sound in water is 3 m s-1 K-1. 
Ultrasound velocimetry can be expected to give an accuracy of better than 1 m s-1 and a precision 
10X better than that, so it is the temperature control which is the most important determinant of 
accuracy and the four wire RTD provides an accuracy of around 0.2 K. 
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Figure 3 Diagram of the Cygnus UVM ultrasound velocity meter 

Very high precision, repeatable measurements of crystallizing emulsions can be used with this 
system and an example is given in Figure 4 to Figure 6. 

 
Figure 4 Temperature dependence of the ultrasonic velocity of a 5-wt-% n-hexadecane-in-water emulsion stab ilised by 0.5 wt-% 
Caflon phc060 during cooling and heating at a constant rate of 1 K/min.[26] 

 



 

Figure 5  Illustration of emulsion stab ility through repeated crystallisation and melting of the emulsion in Figure 4. The velocity of 

sound is plotted against time whilst the emulsion is repeatedly cooled from 35 to 0 oC and then heated back to 35 oC.[26] 



 
Figure 6 Temperature dependence of the solid content determined from the ultrasound velocity 
data in Figure 4 [26] 
 

This device and ones similar to it are extensively used in our laboratory to study nucleation 
kinetics, solid fat content in emulsions and crystallizing fats and this work is extensively reviewed 
in [9]. It is important to be aware that once crystals sinter and networks appear the acoustical 
theory is not so well defined since an additional parameter called the frame modulus appears[27], 
nevertheless, the point at which the system begins to gel can easily be identified through 
departures from the normal acoustical behaviour of independent, non-interacting, crystals. 
 
Ultrasound velocimetry is a also powerful method for following powder dissolution and the 
subsequent solvation of powder[28][29] and we have recently used this to study the dissolution of 
powders containing fluorescent compounds which cannot be followed using Ultra-Violet turbidity 
measurements. 
 

4.2 Ultrasound attenuation spectroscopy  
A comprehensive description of ultrasound attenuation spectroscopy can be found in [30]. In the 
case of the Malvern Ultrasizer which we use extensively to measure particle size in concentrated 
oil-in-water and fat-in-water emulsions the frequency extends between 2 MHz and 120 MHz and 
the ultrasound attenuation is measured as a function of frequency to give the attenuation 
spectrum. The spectrum can then be inverted, with sufficient knowledge of the physical properties 
of the material, to give a particle size distribution without dilution and under stirred conditions, 
which reports particle sizes between 10 nm and 1 mm. For example, we have sized whole milk, 
separately sizing the protein particle size distribution and that of the milk fat globules[31][32]. 
Attempts to use this technique to size crystals during growth have not been overly successful 
despite considerable effort [33–41]because the phase transition itself introduces an additional 
attenuation term, over and above the scattering terms[30] [42](thermal and visco-inertial) currently 
included in the inversion models. As a result, empirical methods of analysis were resorted to which 
suffered from the complicated and variable interaction between the ultrasound field and the 



crystallising material, we now know that the quasi-continuous acoustic fields can modify the crystal 
nucleation process[43] and Section 4.3.1 below, 
 
An advantage that ultrasound attenuation spectroscopy enjoys over light scattering techniques is 
its ability to measure concentrated systems and in stirred conditions, so that the emergence of 
structure can be followed over time. We are currently using this technique extensively to follow 
aggregation processes in milk. 

4.3 Ultrasound control of fat crystallization 
The problem with most studies of the impact of power ultrasound in food processing is that the 
physics (as opposed to the food science) is largely ignored, the most expected from a 
characterisation of the acoustic field being its frequency and the electrical power setting and 
sometimes even these elementary parameters are omitted. A few studies measure the heat flow 
by calorimetry and there have been attempts to map the field distribution. Others have used 
indicators such as alpha-amylase to chemically map the distribution of the cavitation impact[44] 
[21] . It is the chaotic nature of the transient cavitation which is the biggest obstacle to accurate 
field definition which is a pre-requisite for any good engineering design of a process. Acoustically 
the situation is greatly complicated by the fact that the insonifying acoustic frequencies are 
transformed into harmonics, subharmonics and partial harmonics through the complicated motion 
of the bubble surface, resulting in an entire spectrum of frequencies despite the input of a single 
frequency. 
Ultrasound may have an impact at all the scales in Figure 1.  

4.3.1 Scale (1) Figure 1 Low Power Quasi-Static Ultrasound 
The phrase ‘low power quasi-static’ means power levels well below the cavitation threshold whose 
frequency remains constant over many cycles of the insonifying field as opposed to frequency 
varying or pulsed systems where only a very few cycles of sound are deployed at any one 
frequency. We have recently shown that these quasi-static fields have the potential to control 
nucleation and offer great promise because the method is underpinned by a mathematical model 
well founded in physics, although what has been published so far is far from the last word on the 
subject[43].  
 
At the molecular scale, ultrasound (both high and low power) may influence nucleation [10], at low 
power the effects are predictable due to the rectification of heat transfer from a quasi-static 
pressure field changing the energy barrier to nucleation. The effect of high power, whilst 
undeniable, is far less predictable and in practice can only be developed empirically, this being the 
case over all length scales.  
 
Low power pulsed ultrasound velocimetry (Section 4.1) has the potential to monitor the nucleation 
process simultaneously with the application of a low-power quasi-static ultrasound field, providing 
precision control over the nucleation process with the potential to transform fat crystallisation 
processes. 
 

4.3.2 Scales (2) to (3)  Figure 1 
In the early stages of crystal growth, post nucleation, low power quasi-static ultrasound is unlikely 
to have any effects. Once crystal growth ensues the heat evolved raises the temperature, reducing 
undercooling and removing the energy barrier to crystal growth which pumping from the quasi -
static acoustic field reduces or increases[10]. 
 
High power ultrasound has the potential to disrupt the sintering of crystals and secondary 
nucleation[9], breaking up crystal networks and altering the morphology and final structure of the 
product (Scale 4). However, the disadvantages of high power ultrasound have prevented this 
approach in fatty systems. It is possible that sub-cavitational fields can be used to achieve such 
desired modification of the networks with power levels at the lower end of Figure 2.  



 
Again such material altering ultrasound processes may be combined with low power ultrasound 
monitoring techniques (Section 4.1) to give precise control over the later stages of the evolution of 
structure in fat containing systems. 

5 Conclusion 
Here we have discussed the application of ultrasonics in food science with a particular emphasis 
on the control of fat crystallization and structuring. It is shown that, despite considerable effort (25 
publications per year for the past five years) power ultrasound has had little impact on the control 
of fat crystallization and structuring. The reasons for this are (a) the complex and poorly 
understood detailed physics involved; (b) generation of free radicals promoting oxidation of fats; 
(c) high shear associated with bubble collapse in transient cavitation which gives rise to wear of 
sonotrode and processing equipment, causing contamination of product and (d) the complex 
interaction between an oscillating bubble surface in stable cavitation, crystal nucleation and crystal 
growth. For this reason, it is suggested that future developments will take place at power ranges 
well-below those likely to produce cavitation or probe wear. 
 
Low power ultrasound material characterisation techniques (Sections 4.1and 4.2) avoiding quasi-
static excitation have the potential to transform the processing of fats, providing information on the 
early stages of crystal nucleation and growth, although providing only qualitative information in the 
later stages of the development of structure[27]. A recent development in ultrasound technology 
deploying Golay coded sequences to encode the generated acoustic signal offer promise for the 
future because the coding involves a continually altering frequency which allows much lower 
output powers due to improved signal to noise[45]. 
 
Whilst ultrasonic attenuation spectroscopy has great potential for sizing and particle 
characterisation concentrated systems such as oil-in-water and water-in-oil emulsions and can 
certainly be used where crystal growth is confined to the dispersed phase, the emergence of a 
frame modulus once crystal networks form are likely to restrict the technique to measurement up 
to including the emergence of a shear modulus associated with gelation or a crystal network. 
 
Low power quasi-static ultrasound devices are likely to have a big impact in future due to the 
possibilities they offer for nucleation control. The future for high power ultrasound in fat 
crystallization and structure is likely to be confined to the early stages in the processing of fats and 
oils such as the de-gumming process, where later refining steps can ameliorate the negative 
effects of cavitation and equipment erosion. However, intermediate power, sub-cavitational 
ultrasound may permit the modification of morphology and structure in the later stages of 
crystallisation. 
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