
Geotechnical Research
Volume 2 Issue 1

Instability of dilative sand
Chu, Wanatowski, Leong, Loke and He

Geotechnical Research, 2015, 2(1), 35–48
http://dx.doi.org/10.1680/gr.14.00015
Paper 14.00015
Received 30/08/2014; accepted 27/01/2015
Published online 27/02/2015
Keywords: failures/granular materials/strength and 
testing of materials

Published with permission by the ICE under the CC-BY license.  
(http://creativecommons.org/licenses/by/4.0/)

35

A type of pre-failure instability that occurs for medium loose to dense sand under fully drained conditions is studied 

in this paper. It is observed experimentally that when a specimen is sheared along a drained stress path involving a 

decrease in the effective mean stress, it becomes unstable after the stress path crosses an instability line (IL). The IL 

specifies a minimum stress ratio under which instability may occur. It is not unique but changes with the void ratio 

of the soil and the applied effective stresses. The instability occurring under drained conditions is different from that 

under undrained conditions. The differences and similarities between the two types of instability are pointed out. 

Practical implications of the study in analysing the failure mechanisms of granular soil slopes under various drainage 

conditions are discussed.

Instability of dilative sand

Notation
de1/dt axial strain rate
dev/de1 strain increment ratio
(dev/de1)i dev/de1 imposed to specimen
(dev/de1)s the maximum dev/de1 obtained in a drained test
e void ratio
ec e at the end of consolidation
ecr e at critical state
ed e at the end of drained shearing
ef e at failure
eIL e at the onset of instability
M effective stress ratio (= q/p¢)
Mcs slope of critical state line
Mf slope of failure line
MIL slope of instability line
ML slope of constant stress ratio line
p¢ mean effective stress (=(s ¢1 + 2s ¢3)/3)
q deviator stress (=(s1 – s3))
e1 axial strain
ev volumetric strain (compression positive)
s1¢ effective major principal stress
s3¢ effective minor principal stress
y state parameter (= e - ecr)

Introduction
Failure of geotechnical structures can be initiated by instability of 

soil. The term instability as used in this paper refers to a behaviour in 

which large plastic strains are generated rapidly due to the inability 

of a soil element to sustain a given load or stress. Instability is 

normally considered to have taken place when the stress state of 

a soil element satisfies a failure criterion, as in the conventional 

stability analysis. Instability may also occur prior to attaining the 

failure stress state. A typical example is static liquefaction, which 

occurs before the effective stress path reaches the failure line (FL) 

or the steady state line (SSL). So far, this so-called pre-failure 

instability has been studied mainly for saturated loose sand under 

undrained conditions (e.g. Andrade, 2009; Bobei et al., 2009; 

Chu and Wanatowski, 2008; Daouadji et al., 2010; di Prisco and 

Imposimato, 1997; Gajo et al., 2000; Ishihara, 1993; Lade, 1992; 

Lade and Pradel, 1990; Lade and Yamamuro, 2011; Lade et al., 

1987, 1988; Leong et al., 2000; Monkul et al., 2011; Sawicki and 

Swidzinski, 2010; Seed, 1987; Wanatowski and Chu, 2007, 2012; 

Zhao and Zhang, 2014). However, there are several cases in which 

failure occurs under drained rather than undrained conditions. 

Using a fully instrumented model slope of a loose granular material, 

Eckersley (1990) observed that the failure in his model tests was 

initiated under essentially static, drained conditions, and the pore 
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water pressure increases in his model tests were only a consequence 

of the failure. In all his model tests, flow slides occurred in slopes 

that were gentler than the angle of repose of the sand. In re-analysis 

of the failure of the north dike of Wachusett dam, Olson et al. 

(2000) concluded static liquefaction under a completely drained 

condition to be the likely failure mechanism. Therefore, there is 

a need to investigate the instability mechanisms of sand under 

drained conditions.

Although flow slide and liquefaction have been observed to occur 

mainly in relatively loose or contractive sand, there are cases where 

failure occurs in relatively dense or dilative sand. The first such a 

case was mentioned by Casagrande (1975). He described a natural 

phenomenon, which in the European Alps is known by the name 

Muren, in which large masses of dense granular talus liquefy and 

flow down a valley and suggested that dilation of soil was involved in 

the failure process. Several other cases were reported by Been et al. 

(1988), Fleming et al. (1989) and Terzaghi (1957). Been et al. (1987) 

also argued that the Nerlerk berm failure case (Lade, 1993; Sladen 

et al., 1985) might have occurred for dilative sand, which lies below 

the SSL. Based on field observations, Fleming et al. (1989) have 

classified flow failure into two categories: the contractive and dilative 

flow slides. A well-documented case where flow slide occurred 

in dense sand was the Mississippi riverbank failure presented by 

Hadala and Torrey (1989) and Torrey and Weaver (1984). It has 

been concluded unambiguously by Hadala and Torrey (1989) and 

Schofield (1980) that the failure in the above case was not caused 

by static liquefaction or instability under undrained conditions, and 

this is confirmed by the laboratory tests. Although some explanations 

as to the causes of failure have been proposed (Hadala and Torrey, 

1989; Schofield, 1980; Torrey and Weaver, 1984), the instability 

mechanisms of dilative sand have not been well established.

More recently, further studies on instability for different soils and 

different conditions were carried out. A topic that has drawn interest 

is the influence of fines on the instability and static liquefaction of 

sands (Lade and Yamamuro, 2011; Rahman and Lo, 2014; Rahman 

et al., 2014; Zhao and Zhang, 2014). Compared with clean sand, 

sands with fines or silts are more compressible, which leads to a 

liability to pre-failure instability and static liquefaction (Bobei et al., 

2009; Lade and Yamamuro, 2011; Rahman and Lo, 2014; Rahman 

et al., 2014). Instability for unsaturated soil also received research 

interest (Buscarnera and Nova, 2011; Farooq et al., 2004; Zhao and 

Zhang, 2014). It was found that the instability of unsaturated soil 

along wetting path depends on the stress ratio and net confining 

pressure. Instability in an unsaturated sand occurs at higher suction 

when it is subjected to a higher stress ratio or a higher net confining 

pressure (Zhao and Zhang, 2014). Experimental studies on the 

instability of soil were also carried out under a water seepage 

condition, which can simulate the water infiltration into soil slopes 

(Lourenço et al., 2011). The constant shear drained (CSD) tests on 

soil specimens with increasing pore pressure in the upstream and 

free drainage in the downstream show pre-failure instability in the 

form of a rapid increase in axial strain before reaching the critical 

state line (CSL; Lourenço et al., 2011).

It should also be pointed out that numerical modelling of soil instability 

incorporating Hill’s instability criterion (Hill, 1958) has been carried 

out by several research teams to capture the phenomenon of soil 

instability (Andrade, 2009; Buscarnera and Whittle, 2013; Lignon 

et al., 2009). Other numerical tools, especially discrete element 

methods (e.g. Nicot et al., 2011), were also adopted to explain the 

mechanism of pre-failure instability of granular materials. However, 

full understanding of pre-failure instability and, in particular, the 

ability to predict its occurrence, has not yet been achieved. 

Slope failures are often caused not only by an increase in external 

load but also by a reduction in the effective mean stress, which 

is due to, for example, water infiltration into slopes (Leroueil, 

2001; Zhu and Anderson, 1998). The Aberfan coal tip disaster 

in the UK, which killed 144 people (Bishop, 1973), is one of the 

examples. As suggested by Brand (1981), when investigating the 

failure mechanisms of slopes, the stress–strain behaviour of the 

soil along stress paths that simulate water infiltration should be 

studied. Such stress paths may be idealised as paths with constant 

shear stress, but decreasing mean effective stress, or the so-called 

constant shear-drained (CSD) tests performed under constant 

deviator stress (Anderson and Riemer, 1995; Anderson and Sitar, 

1995; Brand, 1981; Zhu and Anderson, 1998). The instability 

behaviour of contractive sand along the CSD stress paths has been 

studied by several researchers (Anderson and Riemer, 1995; Chu 

et al., 2003; Daouadji et al., 2010; Darve et al., 2004, 2007; Orense 

et al., 2004; Wanatowski et al., 2010; Zhu and Anderson, 1998). 

However, only a few studies have been carried out to investigate 

how dilative sand responds to this type of stress paths (Chu et al., 

2003; Darve et al., 2004; Wanatowski et al., 2010). There are also 

failure cases of dilative slopes that occurred under other than fully 

drained conditions (Adalier and Elgamal, 2002; Been et al., 1988; 

Fleming et al., 1989; Kokusho, 2003; Sento et al., 2004). These 

failure types cannot be simulated under fully drained or undrained 

conditions. 

The objectives of this paper are to emphasise that dilative sand 

can become unstable under drainage conditions in which water 

infiltrates into the soil mass and to discuss the most important 

factors that govern the instability of dilative sand.

Material tested
A marine-dredged sand was used for this experimental study. The 

sand was used for land reclamation of the Changi International 

Airport in Singapore. It was dug out from the seabed on the central 

eastern coast of Sumatra Island, administrated by Riau and Bangka-

Belitung provinces of Indonesia, both adjacent to Singapore. The 

grain size distribution curve of the sand is shown in Figure 1. 

The basic properties of the sand are given in Table 1. The loose 

specimens were prepared by a moist tamping method in which the 

sand was pre-mixed to a moisture content of 5% and was saturated 

after the formation of the specimen. The dense specimens were 

prepared by pluviating sand into water. The nominal dimension of 

the specimen was 100 mm in diameter and 200 mm in height. A 
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summary of the drained instability tests presented and discussed in 

this paper is given in Table 2.

Testing arrangement
The experiments were carried out using a fully automated triaxial 

testing system as illustrated in Figure 2. A digital pressure volume 

controller (DPVC) with a remote feedback module was used to 

control the axial load by way of a hydraulic actuator. Another 

DPVC was used to control the confining stress. A third DPVC 

was used to control the back pressure by way of the base of the 

specimen and measure the volume change at the same time. The 

pore water pressure at the top of the specimen was measured by a 

pressure transducer. For the details of the testing arrangement, see 

the works of Leong et al. (2000) and Chu and Leong (2001).

Results

Instability line and instability under 
undrained conditions
Firstly, the results of some isotropically consolidated drained (CD) 

and undrained (CU) tests on loose sand are presented in Figure 3(a) 

to define the FL and the instability line (IL). The FL determined for 

loose sand is the same as the CSL or the SSL (Chu, 1995; Leong 

et al., 2000; Wanatowski and Chu, 2007). The IL is defined by the 

peak points of the effective stress paths of the undrained tests (Lade, 

1992, 1993). The zone in between the FL and IL defines the zone 

of potential instability. It is known that that the IL is not unique but 

is affected by the void ratio of the soil, as shown in Figure 3(b). 

The IL is also affected by the effective confining stress. However, 

within a limited stress range, a linear IL can be defined as shown in 

Figure 3(a). The slope of the IL will be denoted as MIL in this paper.

When sand is dilative, that is, when the void ratio of sand is smaller 

than the void ratio at critical state, the specimen becomes dilative 

and a peak is no longer obtainable. In this case, the effective stress 

path in an undrained test will increase monotonically and approach 

a constant stress ratio line (CSRL) as shown in Figure 4. Chu et 

al. (2003) showed that a yield surface determined by CD tests on 

dense sand coincides with the CSRL obtained from the CU tests. 

Therefore, the CSRL can be used to determine the yield surface 

for dense sand. Chu et al. (2003) also reported that the CSRL is 

not sensitive to void ratio change, although generally the denser 

the soil, the higher the CSRL (Loke, 2004). Similar results were 

also reported by Chu and Lo (1993, 1994), Mooney et al. (1998), 

Tsukamoto et al. (1998) and Wanatowski et al. (2010). The CSL and 
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Figure 1. Grain size distribution curve of Changi sand

Type Mean 
size: mm

Uniformity 
coefficient

Specific 
gravity

Maximum 
void ratio

Minimum 
void ratio

Fines 
content: %

Shell 
content: %

Marine 
dredged 
sand

0·3–0·35 2·0 2·60 0·916 0·533 0·4 14

Table 1. Basic properties of the tested sand

DR39 DR40 ISTD08 ISTD09

After consolidation

ec 0·657 0·647 0·668 0·663
q/p¢ 0 0 0 0
s3¢: kPa 150 150 100 200

Before reduction of cell pressure

ed 0·654 0·644 0·664 0·660
q/p¢ 1·21 1·31 0·97 0·57
s3¢: kPa 149 148 98 198

At the onset of instability

eIL 0·659 0·649 0·695 0·708
q/p¢ 1·64 1·66 1·40 1·40
s3¢: kPa 83 91 61 61

Table 2. Test conditions at different stages for dense specimens 
sheared along the CSD path
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the FL obtained from CD tests on specimens with comparable void 

ratios are also shown in Figure 4. It can be seen that the CSRL lies 

in between the FL and the CSL. The slopes of the FL and the CSRL 

obtained from Figure 4 are Mf = 1·63 and ML = 1·5, respectively.

Based on Figures 3(b) and 4 and other similar test results, the 

slope of each IL, MIL, is plotted in Figure 5 against e – ecr, where e 

is the void ratio at the instability point, and ecr is the void ratio at 

the critical state at the same effective mean stress. It can be seen 

that the MIL levels off when the soil becomes extremely dense or 

loose.

Instability of contractive sand under drained conditions
It has been shown by several researchers that a loose sand specimen 

will become unstable under an undrained condition when the stress 

state applied to the specimen is within the zone of instability (Chu 

et al., 2003; Darve et al., 2004; Lade, 1992; Leong et al., 2000; 

Sasitharan et al., 1993). An example for the tested soil is shown 

in the work of Chu et al. (2003). A loose sand specimen can also 

become unstable under drained conditions when the specimen is 

sheared along a CSD path. This has been discussed in detail in 

the work of Chu et al. (2003). The test results are summarised in 

Figure 6. The stress ratio at which the specimen becomes unstable, 

MIL, increases with the decrease in void ratio. For more information 

on Figure 6, see the work of Chu et al. (2003). 

Instability of dilative sand under drained conditions
Two tests, DR39 and DR40, were conducted on sand specimens 

with the consolidated void ratios of 0·657 and 0·647, respectively. 

The effective stress paths followed in the two tests are presented in 

Figure 7. After isotropic consolidation, the specimens were firstly 

sheared drained to points A (for DR39) or A¢ (for DR40). Starting 

from point A (or A¢), a CSD path was imposed with the mean 

stress reduced while the deviator stress was kept constant under 

a fully drained condition. The axial and volumetric strains plotted 

against time and the axial and volumetric strains plotted against 

mean effective stress curves are shown in Figures 8 and 9 for tests 

DR39 and DR40, respectively. It can be seen from Figures 8(a) 

and 9(a) that the axial strain started to increase abruptly at points 

B and B¢ for tests DR39 and DR40, respectively, signifying the 

onset of instability. The volumetric strain, ev, also began to develop 

rapidly at point B (or B¢), respectively. It should be noted that the 

volumetric strain was in dilation. This observation is different from 

that for loose sand where the volumetric change is in compression 

(Chu et al., 2003). 

To examine the stress state at point B (or B¢) where instability 

starts to develop, the CSL, the CSRL and the FL are plotted in 

Figure 7. The FL is drawn as the envelope to the two stress paths. 

As instability started at point B (or B¢), the line passing through 

point B (or B¢) defines the IL, which coincides with the CSRL (see 
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Figure 7). The slope of this IL is higher than that of the CSL but 

lower than that of the FL. It can also be seen from Figures 8(b) 

and 9(b) that large yielding starts to develop at points B and B¢. 
Therefore, points B and B¢ are also two yield points for tests DR39 

and DR40, respectively. This explains why the IL and the CSRL are 

the same for these two tests.

Another two CSD tests, ISTD08 and ISTD09, are conducted 

on specimens with consolidated void ratios of 0·668 and 0·663, 

respectively (Figure 10). As shown in Figure 10(a), the two tests 

are conducted along the same CSD path, but starting from two 

different initial stress states (points A and A¢). The axial strain and 

volumetric strain plotted against time curves are shown in Figures 

10(b) and 10(c) for the two tests, respectively, from which the onset 

of instability points can be determined as points B and B¢. It can be 

seen from Figure 10(a) that points B and B¢ are almost the same. 

Using these points, the IL can be defined as shown in Figure 10(a). 

The IL is located above the CSL but below the FL.

Discussion

Physical meaning
Instability as defined in this paper refers to behaviour in which 

large plastic strains are generated rapidly. For large plastic strain 

to develop, the soil must be in a yielding state. Therefore, yielding 

is the necessary condition for instability. This has been explained 

by Lade (1992) for the instability occurring for loose sand under 

undrained conditions. The IL, in fact, is associated with the yield 

surface and defines the conditions in which plastic yielding can 

take place (Chu et al., 1993, 2003; Imam et al., 2002; Lade, 1992; 

Wanatowski et al., 2010). As such, the zone of instability is defined 

without specifying the drainage condition. In fact, the instability 
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conditions of loose sand occurring under both undrained and 

drained conditions are defined by the same zone of instability, as 

shown in Figure 6 and discussed in detail by Chu et al. (2003) and 

Wanatowski et al. (2010).

As mentioned in the Introduction, instability will not occur under 

undrained conditions for dilative sand. This is because when a 

dilative specimen is sheared under an undrained condition with the 

deviator load maintained constant, the pore water pressure will be 

reduced and the resulting effective stress moves inside the yield 

surface and thus a sustained plastic strain will not be generated.

When a dilative specimen is sheared under a drained condition along 

a CSD path, the effective stress path moves toward the FL. Once 

the stress path crosses the IL, that is, cuts the yield surface, plastic 

strain will be generated. Therefore, the instability that occurred 

for dilative specimens along the CSD path is also associated with 

plastic yielding. This explains why in tests DR39 and DR40, the 

onset of instability points, B and B¢, are also the yield points as 

can be seen from Figures 8(b) and 9(b) for tests DR39 and DR40, 
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respectively. For dense sand, the yielding condition appears to 

be defined by the CSRL, which assembles the yield surface, as 

shown in Figure 4. Therefore, the CSRL defines the stress ratio at 

which dilation and the associated large plastic yielding will start to 

develop. This explains why the onset of instability points B and B¢ 
coincides with the CSRL.

Although yielding is the necessary condition for instability to 

occur, it is not sufficient. In other words, plastic yielding does not 

necessarily cause a soil specimen to be unstable. Yielding means 

the development of a large strain for a small change in stress. It 

does not imply that the specimen will become unstable, which is 

characterised by a sudden increase in the strain increment rate, de1/

dt. Therefore, it cannot be assumed that yielding is automatically 

the condition for instability. Whether instability can occur along a 

given stress path needs to be established separately.

Instability lines
The effective stress paths of the four instability tests DR39, DR40, 

ISTD08 and ISTD09 are presented in Figure 11 together with the 

CSL, the FLs and the ILs. It can be seen from Figure 11 that for 

dilative sand, the ILs are all above the CSL and the slope of the IL 

increases with the decrease in the void ratio of sand. It should be 

noted that the slope of the FL is not fixed but increases with the 

decrease in the void ratio, as the friction angle of dilative sand is 

dependent on the void ratio.

Combining the data obtained from instability tests on both 

contractive (Chu et al., 2003) and dilative sand, a relationship 

between the stress ratios of the ILs and the void ratios of soil at 

the onset of instability can be established in Figure 12. All the tests 

were conducted under the same effective confining stress (150 kPa), 

except ISTD08 and ISTD09. By connecting these points (shown by 

squares), an instability curve representing the change of the slope of 

IL with the void ratio at instability (eIL) can be obtained, as shown 

in Figure 12. The void ratio and the effective stress ratio at the onset 

of conditional instability obtained from all the CSD instability tests 

are also plotted in Figure 12 as points for comparison. The data 

for loose to medium loose and medium dense to dense specimens 

are marked differently by diamonds (i.e. loose) and triangles (i.e. 

dense) in Figure 12. It can be seen from Figure 12 that a rather good 

agreement between the instability points and the instability curve is 

achieved, particularly for the dilative sand. It proves that the CSRL 

can be used to define the IL for dilative sand.

As shown in Figure 12, the instability conditions defined for soils 

with void ratios greater or smaller than the void ratio at the critical 

state are quite different. The slope of the IL, MIL, decreases abruptly 

when the void ratio becomes slightly greater than the void ratio at 

the critical state. On the other hand, when the void ratio is getting 

smaller than the void ratio at the critical state, MIL only increases 

marginally. This is consistent with the experimental observation that 

for medium loose to medium dense sand, the CSRL does not seem 

to change much with the void ratio (Mooney et al., 1998; Tsukamoto 

et al., 1998), although generally speaking, the slope of the CSRL 

should increase with the decrease in the void ratio. It should also be 

pointed out that within a certain stress range, the stress ratio of the 

CSRL is not affected by the initial stress state and the stress history 

prior to an undrained path, as established by Chu and Lo (1994) 

and Kato et al. (2001). It can also be seen from Figure 12 that the 

instability curve seems to approach asymptotically some limiting  

q/p¢ values when the sand becomes very loose or very dense. 

From the data available, q/p¢ at instability would be approximately 

constant and equal to 0·8 for e > 0·95 and 1·50 for e < 0·7. 

Differences in instability for contractive and 
dilative sand
Although instability is observed to occur for both contractive (or 

loose) and dilative (or dense) sand, the types of instability can be 
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different. First, for contractive sand, instability can occur under 

either drained or undrained conditions, whereas for dilative sand, 

instability cannot occur under undrained conditions. It needs to 

be pointed out that the undrained instability is different from the 

drained instability, as discussed in detail by Chu et al. (2003). The 

instability that occurs under undrained conditions is a runaway type 

because once runaway instability is initiated, the pore water pressure 

and the axial strain rates increase dramatically and the soil specimen 

collapses almost instantly. In other words, the runaway instability 

cannot be stopped (Chu et al., 2003; Wanatowski and Chu, 2012). 

The instability under drained conditions is not a runaway type and 

has been called conditional instability by Chu et al. (2003). This 

is because the soil specimen does not collapse instantly during a 

drained instability test. Furthermore, instability under drained 

conditions can only take place along a stress path with a reduction 

in the mean effective stress. Therefore, for dilative sand, only 

conditional instability will occur under drained conditions, and this 

type of instability is different from the runaway type of instability 

occurring for contractive sand, for example, static liquefaction 

behaviour. Therefore, contractive sand can become unstable, but it 

does not imply that dense sand can liquefy as loose sand. The term 

‘instability’ as defined in this paper carries a broader meaning than 

liquefaction or collapse of soil. In addition to runaway type of failure, 

the conditions where strain increases suddenly at an accelerating 

rate should also be established and considered in stability analysis.

Because the conditions for both types of instability are the same for 

loose sand, when a conditional instability occurs under a drained 

condition, it may evolve into a runaway instability if the drainage 

is insufficient to dissipate all the pore water pressure, for example, 

during an earthquake. This was observed in some of the tests. The 

drained collapse behaviour reported by Sasitharan et al. (1993) may 

belong to this type, in which ‘a slight increase in pore water (6·7 kPa) 

followed by a catastrophic undrained failure or collapse of the 

sample’ was observed. Similar observations were made by Eckersley 

(1990) from his model tests. He reported that static liquefaction had 

occurred for loose sand under essentially static, drained conditions 

(Eckersley, 1990). The flow slides in Eckersley’s experiments were 

initiated by slow water level increases, that is, along a stress path 

with a reduction in effective mean stress. Therefore, the flow slides 

in these model tests are likely caused by drained instability. Eckersley 

(1990) also reported that excess pore water pressures were developed 

after the start of flow slides. This pore water pressure building up was 

likely caused by the inability to dissipate fully the pore water, which 

was generated as a result of large volumetric strain development. The 

drained instability also offers an explanation for the failure of the 

north dike of Wachusett dam, where the failure is considered to occur 

under a completely drained condition (Olson et al., 2000). 

It can also be explained now why under drained conditions instability 

was not observed in the tests reported by Lade et al. (1987), Chu 

(1991), and Leong et al. (2000). That is because those tests were 

conducted under a fixed stress state rather than along a stress path 

with reduction in the effective mean stress (i.e. the CSD path).

Other drainage conditions
It has been explained in previous sections that dilative sand does not 

become unstable under undrained conditions, but it may become 

unstable under fully drained conditions. It needs to be emphasised, 

however, that there are failure cases of dilative sand that occurred 

under other than fully drained conditions (e.g. Adalier and Elgamal, 

2002; Sento et al., 2004; Torrey and Weaver, 1984). The possibility 
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of dilating behaviour of soil masses prior to slope collapse has been 

reported in several case studies. For example, Been et al. (1987) argued 

that the Nerlerk berm failure case might have occurred for dilatant 

sand, which state lies below the SSL. Several other cases of flowslide 

in dilatant sand have been presented by Been et al. (1988). Fleming 

et al. (1989) also reported that the Salmon Creek landslide in Marin 

Country, California, exhibited dominantly dilative transformation 

from solid landslide to liquid debris flow. Although some explanations 

for the causes of this and other failures have been proposed (Been et 

al., 1988; Hadala and Torrey, 1989; Schofield, 1980), the instability 

mechanisms of dilative sand have not been fully explained. 

When dilative sand in a slope is subjected to conditions in which pore 

water pressure and volume of soil mass can change simultaneously, 

pre-failure instability can become possible, even though drainage 

conditions in such cases are neither completely undrained nor fully 

drained. These drainage conditions can be simulated experimentally 

by strain paths with the strain increment ratio (dev/de1) precisely 

controlled (Chu, 1991; Chu and Leong, 2001; Chu et al., 1993, 2015; 

Lancelot et al., 2004; Sivathayalan and Logeswaran, 2007; Vaid and 

Eliadorani, 1998; Wanatowski and Chu, 2011; Wanatowski et al., 

2008). When dev/de1 > 0 is imposed on dense sand, the pore water 

pressure will reduce and instability will not occur. However, when 

an adequate dilative dev/de1 is imposed, the pore water pressure will 

increase and instability becomes a possibility.

An example of instability test IST01, conducted on medium dense 

(i.e. dilative) sand, in order to illustrate that pre-failure instability 

can occur under dilatancy rate-controlled conditions, is shown in 

Figure 13. 

The effective stress path obtained from test IST01 is plotted in 

Figure 13(a). The CSL and the FL obtained from drained triaxial 

tests on loose and dense Changi sand are also shown in Figure 13(a). 

The slopes of the CSL and the FL are Mcs = 1·35 and Mf = 1·63, 

respectively (Chu et al., 2003; Wanatowski and Chu, 2007). As shown 

in Figure 13(a), the specimen in test IST01 was first sheared along a 

drained path from pc¢ = 150 kPa to a stress ratio of q/p¢ = 1·13. After 

that, the external loads, that is, the axial load and the cell pressure, 

were maintained constant to conduct an instability check along a 

strain path of dev/de1 = –0·67. Under these conditions, instability 

occurred at point B, and the axial strain and the pore water pressure 

increased suddenly, as shown in Figure 13(b). After occurrence 

of such instability, it was no longer possible to maintain the axial 

load constant, and thus the deviatoric stress dropped significantly, 

as can be seen in Figure 13(a). Physically, it was observed that the 

specimen collapsed suddenly, that is, pre-failure instability had 

occurred. This behaviour resembles the instability that occurs in 

loose sand under undrained conditions. This observation shows that 

dense sand, despite exhibiting strain hardening behaviour under an 

undrained condition, can become as vulnerable as loose sand when 

it is subjected to a dilative strain path.

It needs to be pointed out that the instability shown in Figure 13 was 

not only due to the control of a negative strain increment ratio but 

also due to the stress state upon the instability check, as reported 

by Chu et al. (1993) and Chu and Leong (2001). Furthermore, the 

observed instability was not due to strain localization or rate/time 

effect, as explained by Chu et al. (1993) and Wanatowski and Chu 

(2011). This type of pre-failure instability can only occur when 

appropriate conditions are met (i.e. adequate strain increment ratio 

and stress state).

It is well known that when sand of different void ratios is sheared 

under a drained condition, the volumetric strain behaviour will 
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be different. If the sand is loose, the volumetric strain will be 

contractive. On the other hand, if the sand is dense, it will dilate. A 

drained test defines the volumetric strain response of sand to a zero 

pore water pressure change condition. In other words, in order to 

keep the pore water pressure constant, the volume of the sand will 

have to change in the way as measured in a drained test. In a drained 

test, loose sand needs to contract, that is, to discharge water, to keep 

the pore water pressure constant. On the other hand, when volume 

change, that is, water discharge, is not allowed in an undrained 

test, the pore water pressure will increase. As a consequence, the 

effective confining stress will reduce, and the shear resistance will 

decrease accordingly. Static liquefaction or runaway instability will 

occur. Similarly, in a drained test, dense sand needs to dilate, that 

is, to absorb water in order to keep the pore water pressure constant. 

Under an undrained condition, water is not allowed to flow into the 

specimen, and hence the pore water pressure inside the specimen 

will reduce. This is why pre-failure instability does not occur in 

dense sand under undrained conditions. However, if a large enough 

dilatancy rate is imposed to force the specimen to dilate more than 

the sand would under a drained condition, extra water will have to 

flow into the specimen to generate the required dilation. As a result, 

positive pore water pressure will be developed. The dense specimen 

will become unstable under a dilatancy rate-controlled condition in 

a similar way to the loose sand under an undrained condition. 

In a more general instability framework, the occurrence of runaway 

instability is affected by three main factors: (1) drainage conditions 

that can be simulated by the strain increment ratio imposed on the 

specimen (dev/de1)i; (2) the void ratio of the soil; and (3) the initial 

effective stress ratio. As discussed in detail by Chu et al. (1993), Chu 

and Leong (2001) and Wanatowski and Chu (2011), the instability 

condition for both loose and dense sand can be expressed by the 

differences between the strain increment ratio imposed during a 

strain path test, (dev/de1)i, and the strain increment ratio of the soil, 

(dev/de1)s, measured in a drained test.

As discussed earlier, the effect of the stress ratio on the instability 

behaviour of loose sand under undrained and fully drained 

conditions is specified by the IL shown in Figure 3(a). In recent 

studies, Chu et al. (2015) and Wanatowski and Chu (2011) 

demonstrated that the effective stress path obtained from a dilative 

strain path test on medium dense sand is very similar to that of 

the undrained test on loose sand. Therefore, a method similar to 

that under undrained and drained conditions may also be used to 

determine an ‘IL’ under dilatancy rate-controlled conditions by 

connecting the peak points of the effective stress paths obtained 

from dilative strain path tests (Chu et al., 2015; Wanatowski and 

Chu, 2011). Such a line determined for dense sand under dilatancy-

controlled conditions can be referred to as the ‘peak stress line’. 

However, the effective stress ratio has to be sufficiently high 

to induce instability (Chu and Leong, 2001; Chu et al., 2015; 

Wanatowski and Chu, 2011).

Similar to the IL determined under undrained conditions, the peak 

stress line determined under dilatancy rate-controlled conditions is 

associated with the yield surface and defines the conditions in which 

large plastic yielding can take place. As such, the zone of instability 

can be defined for specific drainage conditions if an appropriate 

strain increment ratio, dev/de1, is imposed on specimens. Pre-failure 

instability can occur under any drainage conditions as long as 

the effective stress path can lead the stress state into the zone of 

potential instability. This behaviour is verified by the experimental 

data reported by Chu and Leong (2001), Chu et al. (2015) and 

Wanatowski and Chu (2011).

Conclusions
Experimental data, presented and discussed in this paper, 

demonstrate that dilative sand can become unstable under drainage 

conditions in which water infiltrates into soil mass. The factors 

governing the instability of dilative sand were discussed. The 

following conclusions can be derived from this study.

 ■ For loose to medium dense sand, pre-failure instability in 

the form of a rapid and sustained increase in the axial strain 

rate can occur under fully drained conditions. Unlike the pre-

failure instability of loose sand under undrained conditions, 

such pre-failure instability is not a runaway type in which 

the pore water pressure and the axial strain rate increase very 

rapidly and the soil specimen collapses almost instantly. The 

pre-failure stability of sand under fully drained conditions 

can be restored by changing the stress conditions imposed. 

Furthermore, the average strain rate developed in this type of 

instability is smaller than that developed during a runaway 

type of instability. To differentiate this type of instability from 

the runaway type, it has been called ‘conditional’. 

 ■ The conditional instability occurs when a specimen is sheared 

along a stress path with decreasing mean effective stress and 

when the stress path crosses the IL. 

 ■ The slope of the IL changes with the void ratio. For loose 

sand, the IL determined for conditional instability is the 

same as that for runaway instability. For medium loose to 

medium dense sand, the ILs for the two types of instability 

are different. 

 ■ The conditional instability may provide a better explanation 

for failures of slopes in which the drainage condition is more 

appropriately assumed to be drained rather than undrained. For 

instance, a drawdown in water table or dredging at the toe of 

a slope may cause the reduction of mean stress and lead to the 

conditional instability. 

 ■ The pre-failure instability can occur under a dilatancy 

rate-controlled condition, that is, when the soil dilates. 

Furthermore, the conditions for the occurrence of pre-failure 

instability are defined based on the yielding conditions. 

Thus, the zone of instability can be determined regardless 

of the drainage conditions. The occurrence of pre-failure 

instability under generalised drainage conditions can be 

predicted using the frameworks developed by Chu et al. 

(1993, 2003) and Lade (1992, 1993) for undrained and 

drained conditions. Based on these frameworks, the peak 
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stress line can be determined by connecting the peak points 

of the effective stress paths determined from a series of 

dilative strain path tests conducted at different effective 

confining pressures. The validity of the peak stress line for 

predicting pre-failure instability of sand under dilative strain 

paths is verified by the experimental data reported by Chu 

and Leong (2001), Chu et al. (2015) and Wanatowski and 

Chu (2011).
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