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Abstract: Based on the proportional-integral-derivative (PID) corstolicture widely used in
engineering applications, a robust indirect-type iterativenieg control (ILC) method is

proposed for industrial batch processes subject to time-varygegtamties. An important merit

is that the proposed ILC design is independent of the PID tuhaigaims primarily to hold

robust stability of the closed-loop system, owing to the fhat the ILC updating law is

implemented through adjusting the setpoint of the closed-Blp control structure plus

feedforward control to the plant input from batch to bafsttording to the robust H infinity

control objective, a robust discrete-time PID tuning algoriiengiven in terms of the plant
state-space model description to accommodate for timengagiocess uncertainties. For the
batchwise direction, a robust ILC updating law is developeddbasehe two-dimensional (2D)
control system theory. Only measured output errors of oiuered previous cycles are used to
implement the proposed ILC scheme for the convenience ofigabapplication. An illustrative
example from the literature is adopted to demonstrateeffextiveness and merits of the

proposed ILC method.

Keywords: Batch process, iterative learning control (ILC), proportionédgral-derivative (PID),

time-varying uncertainty, robust H infinity control objective
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1 Introduction

Iterative learning control (ILC) method can be adopted tozeekrfect tracking or control
optimization for industrial and chemical batch processesy@ta the use of repetitive operation
information from historical cycles. With the wide applioatof ILC in engineering applications
in the recent years, it has become increasingly appealingvedogderobust ILC methods to deal
with time-varying uncertainties occurring a cycle or cyclde-cycle (batchwise) uncertainties,
because many batch processes, e.g., industrial injectioningoldnd pharmaceutical
crystallization, are slowly varying from batch to batch, whipeating fundamental dynamic
response characteristifls-4]. As surveyed by Bonvin et al [5], Ahn et al [6], and Wang et al [7],
most of existing references have been devoted to timeiamvalinear or nonlinear batch
processes. The developed robust ILC methods have been in gdassdied into two types [7],
one is called direct-type that means the ILC design iategrthe feedback control (responsible
for closed-loop stability and no steady output deviation) andedgfdrward control (responsible
for the setpoint tracking) through the identical closed-looptrodler, and another is called
indirect-type which implies that either the feedback be tffeedforward control could be
implemented through different controllers that may be desigelatively independent.

For the direct-type ILC, the traditional proportional-imsglerivative (PID) controller
including the P-, PI-, PD-, PID-type is mostly used to eteethe integrated control for both the
setpoint tracking and closed-loop stabilization, owing to itplémental simplicity, e.g. the
P-type ILC [8, 9], the PI-type ILC [10, 11], the PD-type ILC [12, 13§ B1iD-type ILC [14, 15].
The achievable robustness and output tracking perform&oeegver, have not yet been fully
explored, in particular for the quantitative performance specifaagi [16]. Based on a
two-dimensional (2D) state-space description of a bptobhess and using the linear quadratic
optimal control criterion in combination vhitthe robust control theory, full-order controller
matrices (with respect to the process model order) wenk tasdevelop robust direct-type ILC
methods to accommodate for a variety of process unceewmififr-21], but at the expense of
controller complexity, computation effort, and memory spdoe storing the historical

information of the cycle and controler state.



For the indirect-type ILC, the control structure is typicatbmposed of two loops, one loop
constructed in terms of a conventional controller like P2l @nother loop used for adjusting the
setpoint or the process input similar to a feedforward control@maBased on the internal model
control (IMC) structure, a learning setpoint design was propo22{ltp robustly track the
setpoint profile against the process input delay uncertadytycomparison, a P-type learning
algorithm was presented to adjust the setpoint in combinatidntie model prediction control
(MPC) method for tracking the desired profile, which wascessfully used to the control of
artificial pancreatic beta-cell [23]. Based on the convealid®|D control structure, a parallel
learning-type PID was added to improve the setpoint tracking penficenaithout sacrificing the
closed-loop stability [24]. Aalternative anticipatory-type ILC (A-ILC) was developedathjust
the setpoint in terms of the PID control loop for roktuatking of the desired profile [25]. The
robust stability condition of a learning-type setpoint desigterms of a Pl control loop as
analyzed in the recent paper [26]. A quadratic criterion wasepted to analyze the ILC
convergence in terms of a MPC structure for time-varyimgar systems [27]. The achievable
tracking performance of an indirect-type ILC scheme agsessed by estimating the minimum
output variance bound [28]. Combining with the feedback cod#sign, a two-step ILC design
[29] was proposed to adjust the process input for improvingothput tracking performance

against load disturbance and process uncertainties. For highminear processes such as

crystallization processes, hierarchical ILC and nonlineaCNtAsed ILC methods [30, 31] were

proposed to track the desired setpoint profile against atbhich uncertainties.

In this paper, an indirect-type ILC design is proposed base¢beowidely used PID control
structure to accommodate for time-varying process uncertintiéth a state-space model
description of the process together with norm-bounded unmtégta a robust PID tuning
algorithm is first given in terms of the H infinity control ebfive, which is primarily responsible
for holding the closed-loop system robust stability and redgteutput deviation. Then, an ILC

scheme consisting of the learning controllers to adjust sfpoint and the feedforward

controllers to adjust the process input is proposed to realmest tracking against time-varying

uncertainties and load disturbance, which is thereforéerdifit from the conventional




indirect-type ILC scheme. Accordingly, the PID tuning and the ILSigiecan be made relatively

independent of each other in the proposed control schemanamadflexibility is introduced to

devise the control system robust stability and trackedormance, respectively. By establishing

the sufficient conditions inetms of linear matrix inequality (LMI) constraints for maimtang
robust stability of the PID control loop and the robust cogesce of the ILC scheme,
respectively, the PID and ILC controllers are derivechglwith an adjustable robust H infinity
performance level. The effectiveness of the proposed meithatkmonstrated throughna
illustrative example from the literature. For clarity, th@guais organized as follows: Section 2
briefly describes a batch process with time-varying uncemairiiy using a state-space model
with norm-bounded uncertainties, and then introduces the propodieect-type ILC scheme
based on the conventional PID control structure. Correspglgdia robust PID tuning method is
proposed in terms of the robust H infinity control objectimeSection 3. By formulating the
learning setpoint strategy and feedforward control in the frame ofsy2Bm, section 4 presents
the proposed ILC design by establishing the sufficient LMI d@nmh to hold the 2D system
asympotic stability. Section 5 shows an illustrative example to destniate the effectiveness and
merits of the proposed ILC method. Conclusions are drawn inoBeg:ti

Throughout this paper, the following notations are usgl:™ denotes anxm real matrix
space. For any matridP e R™™, P>0 (or P>0) means P is a positive (or semipositive)
definite symmetric matrix, in which the symmetric elememts indicatecoy *’. P’ denotes
the transpose ofP. diag[} denotes a block-diagonal matrix. For any vectorand matrix
P>0, denoteVP(X)=||X||i,=xTPx. The identity or zero vector (or matrix) with appropriate

dimension is denoted by | or O . For a 2D signal, z(i,j) , If

||z(i,j)||2:\/Zi”:oij=0||z(i,j)||2 <oo for any integersn and m, then z(i, j) is said to be in

the L,[0, «) space of all square integrable functions.

2 Problem formulation

A batch process with time-varying uncertainties is gelyeddscribed by the following

observable canonical discrete-time state-space model,



Xt+Lk+1)=[A, +AAt K+ DKtk + 1)+ B, + Bk + DU ¢k + D+ o k+ 1)
P i1yt k+1)=Cx(t,k+1), O<t<T,; (1)
x(0,k+1)=x(0), k =0,1,- .

where t and k denotes the time and batch indices, respectively, kad indicates the

current batch (or cycle)x(t,k +1) e R™ denote the state variables(t,k+1)eR™ the control

inputs, y(t,k+1)eR™ the process outputs. Denote by _and B__the nominal state matrices,

and by AAt,k+1)_and AB(t,k+1)_time-varying uncertainties that are not repetitive from

cycle to cycle and practically specified asA\(t,k +1)= AAG®, ()M, AB(t,k+1)=AB0, (t)AB,,

where AA, AA,, AB, and AB, are constant matrices, ar@' (t)®,(t)<1, i=1,2. Denote
by T, the time period of each cycle, and0) is the initial resetting condition of each cycle.
Note that other process uncertainties such as from impuétar and output measurement may
also be lumped intoAA(t,k +1) and AB(t,k+1) for analysis.

The control objective is to determine a control law dihat the system output can track the
desired output profile (or target output trajectory) as eclas possible against the process
uncertainties and/or load disturbance.

To design an indirect-type ILC scheme, we define the outputiertbe current cycleK+1)
by

e(t, k+1) Y. () — At k+1) (2)
where Y,(t) denotes the desired output profile, apt,k+1) the real output in the current

cycle. Correspondingly, the time integral @{t, k+1) is denoted by> e(t, k+1), i.e.

Te(t, k+1):zt:e(i, k+1), O<t<T, 3)

By comparison, we define the setpoint tracking error inctimeent cycle by

e(t k+D)U y(t,k+1)— y(t,k+ 1) 4)

where y.(t,k+1)_denotes the setpoint command in the current cycle, whiclfesedit with the

desired output profiley,(t) ,_in that it is adjusted real-time in an indirect-typ«€ Ischeme for

tracking Y. (t).
The time integral ofe,(t, k+1) is denoted by> e(t, k+1). It folows that

-4-



Ye(tk+D)=Ye(t-1k+ D+ g(t ke 1L, 0<t<T, (5)

Moreover, we define a batchwise error function by

STEk+)0 fEk+D-f (k) (6)

where f may denotex, y,, u, e, e, or o, respectvely.
It folows from (1) usiag the definitionsin (2) and (6) that
e(t k+1)= et K— & Xt k+ 1) (7)
SXt+Lk+D)=[A +ME K +DPx €k + 1)+ B, +ABEKk+Dputk+ ot k+ 1 (8)

where

a(t,k+1)=[AALK+1)—AAE K)KEK)+[ABEK+1)-ABEK Ut K)+swtk+1)  (9)

It is obvious that @ (t,k+1)= O_for any non-repeatable parameter uncertainties and \iaitied

process conditions from batch to batch, and therefore canelbed as a non-repeatable load

disturbance to deal with.

Based on the conventional PID control structure, the propodsé@edtrtype ILC scheme is

shown in Figure 1, as outlined by the dash-line box, where the leaontglers, L, L,, L,

are set to adjust the setpoint command, i.e.

yv.(t,k+1) =y, t.K)+Let+Lk)+ Loe (t— Lk+ I LY e t— 1k+ 1 (10)

where y.(t,k) denotes the setpoint input in the previous cycle, &ud-1,k) the one-step

ahead output error in the previous cycle. It folows from, (%), and (6) that

se(t-Lk+1)=e(t- 1 k+ 1 e (& Lk (11)
sYea(tk+D)=0Ye(t-1 k+ I+ (t k- 1 (12)

It is seen from (10f12) that the tracking errors o&(t+1,k), e(t—1,k), e(t k), and

2.e(t-1,k)_in the previous cycle are used to construct the ILC updadawgadded to the

setpoint command in the current cycle, relatively inddeen of the closed-loop PID control

structure shown in Figure 1.

In Figure 1, the feedforward controllers;;, F,, F,, are used to adjust the process input,



ut,tk+D)=u,(tk+D)+ Fe(tkt I+ Ee(t+L k 1 B> e(+ Lk 1 (13)

where u,, is the PID control outpufThe setpoint tracking errors at the current moment and

one-step ahead moment, and the error integral in the cuyel® are used to construct the

feedforward control in the proposed scheme.

Hence, the proposed ILC scheme (outlined by the dash-line rodsgure ) and the

closed-loop PID control can be designed separaishietaied in the following two sections.

3 Robust PID tuning

According to the process state-space description in (1),ntitiog the batch index for
brevity due to its irrelevance to the PID tuning in the proposedalaatheme shown in Figure 1,

a PID control law is generally expressed in the folowiagnf

Upp () = k&(+ k2 &)+ k[ € #1)— €) (14)

where k , k, and k, are the proportional, integral, and derivative parameters IDf P
respectively. Note that because(t+1) cannot be measured at the current moment for
implementing u(t) , the differential signal ofe(t+1)— gf) is practically substituted by
e()-gt-1), [g)+€t-2)-2€ t1)]/2, or adding a low-pass filter for execution but at the
expense of somewhat performance degrad4g8@h

By introducing an auxiliary state variablé e(t), we establish the augmented control

X(t+1) B A 0 X(t) é |
Teol % tlzaallofor|o)e0

SR e

system description,

(15)

where A=A +AAt) and B=B_+AB(t).

Substituting (2) withY,(t) =0 (which has no influese to the closed-loop stabilityinto
(14) in terms of the nominal process model described by(i€) AAt)=0 and AB(t)=0)
yields,

Usp (1) = (1 +k,CB,) (K, + K) () +(1 + KCB) " kX ¢ £1)+ (1 + KCR)™ k( C— A) X} (16)

-6-



Let

k,=( +k.CB,)"(k,+k) (17)
k =(1 +k,CB,) "k (18)
Izd = (I +k,CB,) "k, (19)

Then, substituting (14) and (17)-(19) into (15) yields the didsep system,

[x(t+1)}:{A+B[l€d(C|—An)—iépq BRM X(t) }Hwa)
2 €(1) —-C | || 2e(t-1)| |0

yo=[c O]{z :((tt)—l)}

(20)

For tuning the PID controller to maintain the control systebust stability, the H infinity

control objective is adopted here, ie.

(O, <700 (D), (21)

where y,, denotes the robust performance level.

To achieve the H infinity control objective, we give thdofeing theorem,

Theorem 1. The PID control system in (20) subject tméivarying process uncertainties shown
in (1) is guaranteed robustyyable with a H infinity control performance levej,, if there
exist B,>0, P,>0, matricesB,, R, R,, and positive scalars;,, &,, such that the

following LMI holds,

P+e®, 08 +e,0, D, T D, 0 0 0 |
* -P 0 PH'C RD,, W],
* * 7ol 0 0 0
VPiD <0 (22)
* * * ~7pio| 0 0
* * * * _81| 0
* * * * * _gzl

where Dg:[l O]T’ H=[I q, q)Alz[A'ziT’ ar, q)Azz[A'z‘an! A'_A‘ZPU]’ (DBl:[Ang: a’,

P, =[ABR, ABR] ,



o [P R] [_[APu+B.R AP BR
* , —CR, + Fijrz - CR+ B,

by parameterizing

[k(Cl -A)-KC KkI=[R R] P (23)
Proof: See the Appendix I.

It can be seen from (17)-(19) and (23) that the PID pammenay be retrieved by
prescribing the derivative parameter(%),, that is, whenk, is specified, the other parameters

can be obtained using (1%s
k =k(l +kCB,) (24)
k, =k (I +kCB,) -k (25)

Note that lettingk, =0 leads to a PI controller, which is preferred for prataggplication
owing to the implemental simplicity.

To achieve good robust control performance, the Pl (by letkipg 0) or PID controller can
be determined by performing the following optimization program,

Minimize 7, (26)

AA(t), AB(t)

In fact, a smaller value of,, leads to a more aggressive control action and vice versa.
Therefore, a trade-off should be made between the achievableolcperformance and the
control action generated by the designed Pl or PID coetrolh consideration of that the
closed-loop controller is primarily used for maintaining thetadrsystem robust stability, it is
preferred to take a PI controller for implementation d¢ksa controller can be derived from the
above optimization program, compared to a PID controller whiequires a practical
implementation of the ideal derivative action that rdagrade the closed-loop robust stability or

control performance.

4 Robust indirect-type ILC design

To develop a robust indirect-type ILC metha®D system model is constructed to describe

the process dynamics along both the time and batchwisetiaing®c for the purpose of

-8-



synthetically analyzing the 2D stability against processedainties and load disturbanca.

preliminary knowledge of a 2D system stability is presensedeipw.

Consider a 2D Roesssrsystem[33],

X"(i+1j) CJAHAMAL A+M, x"(.j)
X'(i,] +1) - A+ DA At Mol x(L))

y@nzwchP“Jq @7)

}w(i,j)

x'(i,])

i,j=0,1,2;- .

where x"eR"™ is the horizontal state vectox’ e R™ the vertical state vectory the system
output, @ load disturbance,AA,, AA,, AA,, and AA, denote the state matrices
uncertainties. The boundary conditon of the Roeéssesystem is denoted by
R =[[¥'0, DI", [x'6,0)] ] -
Lemma 1 [26]: If there exist positive definite matrices} >0 and P, >0, such that the
following LMI holds

APA-P<0 (28)

where

A21+AA21 A22+AA 22

then the 2D Roessér system in (27) witho=0 is asymptotically stable. In addition, if

x"(0, )= 0, there exists a positive scalgs < (0,1) such that

ivpz[xv(i,j +1)] <pi\/%[x ‘i,j)., Vvi>0, Vl,>0 , vx'(i,0). (29)

According to the proposed ILC scheme shown in Figure 1, it folloove f(4) (6), and (7)

that
y.(t K+1)—y,(t,k)=Se,(t, k+ L+ C5 X(t,k+ 1) (30)

Substituting  (30)into  (10) vields
oe(t k+)= Le(t+Lk)+ Loe(t- Lk+ It Lo2 e (- Lk+ 1} & x(t.k+ 1 (31)




Then, substituting (31hto (12) obtains
o2e(tk+l)=Le(t+LK)+ Loe(t—-Lk+ I (+ Lp> e (- Lk+ 1) & xt,k 1 (32)

Substituting the PID control law of (14) witk(t+1)— &f) replaced bye(t)— g t—1) into

(13), we obtain

u(t,k+)=ke(t k+ D+ kX e(t k- I+ k[e(t k- 1) e(+ 1, k 1)]
+he (k+ B Re € k- H RX ¢ € 1k 1) (33
= k+k+k+FR etk I G-k R € Ik B k+ RY g & 1k

Note that the ideal derivative term in (14) is substituted by aipah&brm of e(t)— g t—1)
for obtaining (33). Other practical forms may also be adoptedetove u(t,k+1) and are

omitted herein.

Correspondingly, it follows that
su(t,k+1)=(k, +k +k +F)se(t ki D+ (- kY e(t1, k- D (k+ EPY e(+ 1L k 1 (34)

Based on the robust PID design given in Section 2, by substituting (&), and (34) into

(8), we obtain
Sx(t+1k+ B ALBk gk +k #F Caxik{, 1)
+B K +k+k ¢+ F Dett k)
+B K +k+k #F D) HF -k dg t— k+ 1) (35)
+B K +k+k g F)L+F,+kloXe(t-1, k+1)
+a tk+ 1)

where A=A +AM(t Kk +1) and B=B_+AB(t,k+1).
Consequently, the predicted output error can be derived in t&rn(ig) as
e(tr1,k+ 1¥ e+ 1k-9C x4 1k 1)

= CA+CB k+ k+fk+,F6C x)+K (,
+1 CBKk+k+k«F Let X1
—-CB k+ k+ kt(F L+ E-5K e-t1) k
—CB K,+k+k#F ) HF+k dye - Ik+ !
—Cw t(k+ 1)

(36)

Therefore, a 2D system description of the proposed ILC schambecformulated by

-10 -



ox(t+1,k+1) oxt k+1)

se(tk+l) |_o| de(t-Lk1) | ()
oxe(t k+1) sxe(t-1,k+1)) "
e(t+1, k+1) e(t+ 1, k)

SX(t,Kk+1) 37)

oe(t-1,k+1)
oxe(t-1,k+1)
e(t+1,k)

ct,k+1)=G

where G=[0 0 0 I], D,=[I O O -C']",

A-B(k, +k; +ky+F)C Bl(k,+ K + ky+ F) L+ F,— k]

o - 5
_C L,
~CA+CB(k, +k +k,+ F)C —CB(k+ k+ k+ F) L+ F,— K]
L5>[(kp+ki+kd+F1)L3+ Fo+ k] E(kp+ k+k,+F) L,
L L,
| +L L,

—CB[(k,+k +k+ F) L+ Fy+ k] | —CB(k, +k+k,+F)L

Note that ¢(t,k+1)=e(t+1,k)_can be regarded as the controlled variable to be minimized

against process uncertainties, possibly varied initial praomsgitions from batch to batch, and

load disturbance. That is to say, the robust 2D control titgecan be determined in terms af

batch process control specification [21] as

N]_:Tp Ny, =0

Jgp = z Z (7|11c||§(t k+1)||§ —7ic ||w(t, k+ 11|§)< 0 (38)
t=0 k=0
By defining
ox(t,k+1)
X"(t,k)=| se(t-1L,k+1) |, x'(t,k)=e(t+ 1, K (39)

sYe(t-1, k+1)

the 2D system in (37) can be viewed as a typical Rosssgstem in the form of (27).
Hence, analyzing the robust stability of the proposed ILC schemeiisa¢ent to that of the
2D system in (37). The following theorem is given to asse s®thest stability and determine the

ILC controllers:

-11 -



Theorem 2: The 2D control system in (37) subject to time-varying processriaicBes

described by (1) is guaranteed robustible with a H infinity control performance levey, . ,

A A

if there exist @ >0, Q,>0, Q,>0, Q,>0, matricesF,, F,, L, L,, L,, and positive

scalas ¢, &,,such thatthe following LMI holds,

Q+e0Q,,Q0 +60, QL 1T D, 0 0 0
* -Q 0 QG FQ;Z FQTBZ
* el 0 0 0 <0 (40)
* * * il 0 0
* * * * _ 51' 0
* * * * * —, [

where Q=diad Q Q Q @ .D,=[I 0", H=[I 0, Q.,=[AA", 0,0, -AA'C'T,
Q,=[AA,Q0Q 0, Q,=[AB], 0,0, —AB/C"T,

Qe =[—A§2(kp+ k+Kq+F)C, ABJ(k + ki+ ky+ F) L+ F - K,

AB, [, + ki + kg + Fy gt Fot ki1, AB, (6 + ki K+ F)L

AQ, — B (k,+k; +k,+F)CQ, B,(k,+ k+ kst F) L+ B.F+~ BkQ,
= —cQ L2
-CQ L
|—CAQ +CB,(k+ k+k+F)CQ —-CB(k+ k+ k+ F) L- CB,F+ CBkQ @)
B, (k,+k +k,+F)L,+ B Fa+ B.kQ, B.(k,+ kit ket F)L, |
L, L,
Q,+ L [,
—CB, (k,+k+k,+F),-CB F,~ CBkQ, Q- CB( k+ k+ k+ R
by parameterizing
I-1 = I:1 4_11
L, =LQ; (42)
L =LQ;'
F,=FQ!
{ 2 AzQz (43)
F; = F3Q;1

Proof: See the Appendix II.
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Note that the feedforward controlleF, , is prescribed for solving the LMI condition in (40).
To facilitate the feasibility of the LMI conditiomi(40), the choice off, should be made to
keep all the eigenvalues oy —B (k,+k;+k,+F)C inthe unit circle in the z-transfer plane,
Le.
4| =|eiglA, — B, k,+k +ky+F)C] <1, i=12,..n,. (44)

A

In fact, all the feedforward controllerss,, F,, F,, corresponding toF,, F,, F, in (40)
that may be viewed as slack variables to facilitate ki feasibility, are used to increase the
flexibility of the indirect-type ILC in the proposed cortszheme shown in Figure 1, for the
purpose of robust tracking the desired output profile against process taioges and load
disturbance.

To obtain the optimal robust tracking performance, the ILC contsatien be determined by
performing the following optimization program,

Minimize (45)
Yic

AA(t), AB(t)
Similarly, by specifying the learning controllerd, , L,, L,, which determine the
convergence rate of the ILC scheme, the achievable rpetsrmance can be assessed through

the LMI condition in (40), and so is for the allowable@¥ss uncertainty bounds denoted by

AA(t,k +1) and AB(t,k+1). Note that the allowable variation of initial processditions from

batch to batch can also be assessed through the LMI ioonihit (40) by lumping the variation

bound into the magnitudelX, ) of the disturbance as shown in (8hd (37)
5 Illustration

Consider a typical batch process, injection molding, agiestuin the references [10, 26]

which consists of three main stages: filling, packing/ingidand cooling. For the packing stage,

a key process variable to be controlled is the nozzle pmssinich should follow a desired

profile to preserve product quality. During the cyclic opiera the transition from filling to

packing may cause uncertain initial value of the nopréssure and perturbation in the load,

which hinders the conventional direct-type ILC such a@3-wpe from reliable application. In

contrast, the conventional PID control structure canngrrane the control performance from
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cycle to cycle. Based on open-loop tests and analysis, a modhel o6zzle pressure response to

the hydraulic valve input signal was identified [10] as

_ 1.239¢5%¥ 1~ 0.928 5%g)>
P(Z):  ytk+D)= ES%r — 0928 S9)
1-1.607¢ 5%y '+ 0.6086( 5%)

ut,k+ D)+ o t.k+ 1)

where the percentages in parentheses indicate the pgaeramesturbations in the worst case of

cyclic operation.

For application of the proposed method, we evthe above model in the following

state-space form,

x(t+1,k+1)= ({—(1)2(;336 j+AA)x([ K+ 1+ [_ 2'222l+&§ Y€ k+ 1}{ la)( k+ 1

yt,k+1)=[1, Ox ¢ k+ 1)

AA(t){oc;oosgo;ij() (1: 1 q[s1) o‘ 0.0804 }
-0. () d [0 1 0 st) - 0.0304
Aé(t){ o.0625()}‘1 afst) ol o.oazl
—0.04645¢) | 0 1 0 s51) - 0.046

where 5(t)_is a time-varying factor along either the time or batahwdgection and|s(t)|<1.

By performing the optimization procedure in (26), we obtainnth@mal H infinity robust
performance level,y,, =1.28. To avoid over aggressive control signal, we takg =5 to
solve the LMI condition in (22), obtaining the PI controliparameters,k, =1.288¢ and
k =0.033¢. For the ILC design, it can be easily verified that thegeaof F, €[-1.3, 0.1 can
ensure all the eigenvalues of, —B, (k,+k;+k,+F,)C located in the unit circle in the
z-transfer plane. We choosg, =-0.5 to perform the optimization procedure in (40), obtaining
the minimal H infinity robust performance levey, . =110, and correspondinglyl, = 0.177€,
L,=0, L,=-0.025 F,=0,and F,=-0.0097.

The target profie Y,) takes the folowing form as adopted in the cited refere{b@s26],

200, 0<t < 100;
Y, ={200+5¢ - 100), 10&t< 120;
300, 120<t<T, = 20C

For ilustration, the following cases of process uncertsinéiee tested.
-14 -



Case 1. Time-invariant process uncertainties. In this cagé(t) and AB(t) are assumed
to be fixed as their upper bounds. The tracking results are showguireF2 (a) and (b), while the

output tracking error in terms of the following criterionpistted in Figure 3,
TP
ATEK) =D |e(t K|/ T,
t=1

It is seen that perfect tracking is reached through 2B <Yy the proposed method after an
initial run of the PID tuning, compared to the cited paper [2bkv needed almost 50 cycles to
realize perfect tracking. Moreover, there exists no steadgut tracking error in each cycle,

owing to using the output tracking error in the currepgtlecfor 2D ILC design as shown in (37)

Case 2. Time-varying uncertainties and disturbance. Assume thgbrtdfeess state transfer
matrices becomes time-varying wit¥(t)| <0.1, together with non-repetitive load disturbance,
o(t,k+1)=sinf+0 k)) where (k) is a random variable uniformly distributed in the ranfie o
[0,27] as assumed in the cited paper [26]. Since the closed-loop slystames a stochastic
process, we perform 100 Monte Carlo tests, each of which ireclLl@8 cycles. The averaged
results of ATE are plotted in Figure 4, in comparison with those of rdf3, 26]. It is seen that
the closed-loop system maintains robust stability well in biathtime and batchwise directions
by the proposed ILC method, thus demonstratingitin be reliably used for robust tracking of
the desired profile and on-line optimization against badelbatch process uncertainties and load

disturbance.
6 Conclusions

For industrial batch processes subject to time-varying taioges from batch to batch, a
robust indirect-type ILC method has been proposed based orotiventional PID control
structure. In the proposed control scheme, either the clospdPID controller or the ILC

updating law can be designed relatively independabing with the feedforward controllers

added to increase the control flexibility, which is theref different from the standard

indirect-type ILC structure studied in the literaturea @accommodate for the time-varying

uncertainties, a robust PID design has been given based on the robusityidoftrol objective.

For implemental simplicity, it is preferred to use a Pl colgraf such a controller can be derived
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from the LMI conditions established for maintaining ttlesed-loop robust stability. For the
batchwise direction, an ILC scheme consisting of anlegrsetpoint strategy and a feedforward
control added to the process input has been developed based omiwaieatj2D system
description of the batch process and the LMI conditmmméllated in terms of the robust H
infinity control objective for robust convergence. Only swad output errors of current and
previous cycles are used to implement the proposed ILC schemfiee convenience of practical
application. The application to an illustrative examptent the literature has demonstrated the

effectiveness and merits of the proposed ILC method.
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Appendix |

Proof of Theorem 1
Define the following Lyapunov-Krasovskii inequality of &taenergy to guarantee the
asymptotic stability of the closed-loop system shawr{20),
Vo[R(t +D] VRO <y [ o ~ 7o e D [ (A1)
where R(t) =[x"(t), Xe&(t-1)']", and 7., is the robust performance level as shown in (21).
Considering thate(t)=—Cx ) by letting Y, (t) =0, and X(t) =[I, O]X(t) , we have
e(f) =—-CHX? (A2)
where H has been shown in (22).
By substituting (20) into (Al), we obtain
=<0 (A3)

where ¢ =[X"(t), @ (t)]", D,=[I 0], and

~ | A+Blk,(Cl -A)-kC] Bk,
A= —C |

(A4)
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s;{ﬂp[% Dg]—r_yg'lDHTCTCH O} (A5)

DgT * Ve !

By the Schur complement, it can be derived (A&) is guaranteed by

-P T D 0
* _ T
P 0 PHC -0 (A6)
* * ~Vepl 0
* * * _}/PIDI
where
f_| AR+ Bk(C - A) -k CI P+ BkF, AR+ BY C- A= kT Ry ~ékl% (A7)
—CR,+ R, -CB+ B
Note that I" can be reformulated as
f =T +(DA1®1(t)(DA2 + q)Bléz(t)(D B2 (A8)
where T , &, , ®,, , &, , and &, have been shown in (22),

R=[k(Cl - A)-kCI R+ kP, and R, =[k(Cl - A)-kCl P+ kP
The following lemma is used herein for analysis.

Lemma 2 [34]: Let A, D, E, and F be real matrices of appropriate dimensions with
|F||<1, the following inequality holds for any scalar> 0,

DFE+E F O <¢DD +¢*E E (A9)

Using Lemma 2 and the Schur complement, it can be seefAlais guaranteed by (22) in

Theorem 1. This completes the proof. O

Appendix |1

Proof of Theorem 2

The robust 2D control objective in (38) can be rewritten as

N; =Ty N, > Ny =Ty N, >
Jr= Y. O il k+ D - @t k+ D +AV)-> > AV<0  (Al0)
t=0 k=0 t=0 k=0

where AV is a Lyapunov-Krasovskii functiomsed for analysis of 2D asymptotic stabilty, i.e.
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X" (t +1,k)} _V{xh (t ,k)} (ALD

AV =V,
x'(t,k+1) X' (t,k)
Using the boundary conditons from an initial resettingoa@th process operation, i.e.
0X(0,0)=06x(0,1)=6x (1,0= O;
0€,(0,0)=0€,(0,)=0¢€(1,0x O;

5>e(0,00=5>e(0,1)=6> (L0 O
e(0,0)= €(0,1)= e(1,0)= O.

(A12)

it can be easiy veriffied usingQ=diad Q Q Q @ that

N1:Tp N, >0 N1:Tp N, —>

Yo Av=> > {le[ax(t +1Lk +1)]-Vq [x ¢ Kk +D)]+V o [&(t.k +1)]
o o —Vo, 6&,(t—1Lk+D)]+V, [6 X e (t, k+1)]-V, [6 X e t-1, k+1)]
+Vo, € (+ k+ I}V, € €+ 1k )]

N, >0 N, —00

- ; Vo [6X(N, +1,k +1)]+ ;) Vo, [6e (N, k+1)]

N, —o0

£ 3V, 36 (N ket D+ 3V, fe(t+1, N, + 1)] (A13)
>0

Therefore, a sufficient condition to ensudhe control objective in (Al0is that

Ve st k+); - e Jo €. k+ 1), +AV < © (A14)

By substituting the 2D system description in (37) éhtll) into (Al4), we obtain
EE,E<0 (A15)

where & =[[x"(t,K)]", [X'(t K]", @'(t)] . and

P -7tG'G 0
52{ T}Q[‘P DW]{Q T } (A16)
D., Vel
By the Schur complement, it can be derived (Adt5) is guaranteed by
-Q II D, 0
* _ T
Q 0 QG <0 (A17)
* el 0
* * * el

where
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M=11+Q,,0,(1)Q,, +Q.0,1)Q,, (A18)

where I1, Q,,, Q,,, Qg ,and Qg, have been shown in (40).
Using Lemma 2 in Appendix | and the Schur complementart loe seen thgtAl7) is

guaranteed by (40) in Theorem 2. This completes the proof. O
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Figure 1 Block diagram of the proposed PID based indirect-type ILC scheme
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Figure 2 Tracking performance for case 1
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