
This is a repository copy of Robust PID based indirect-type iterative learning control for 
batch processes with time-varying uncertainties.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109321/

Version: Accepted Version

Article:

Liu, T, Wang, XZ and Chen, J (2014) Robust PID based indirect-type iterative learning 
control for batch processes with time-varying uncertainties. Journal of Process Control, 24 
(12). pp. 95-106. ISSN 1873-2771 

https://doi.org/10.1016/j.jprocont.2014.07.002

© 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  ↗

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Robust PID based indirect-type iterative learning control for batch 

processes with time-varying uncertainties 
 

Tao Liu a, *, Xue Z. Wang b, Junghui Chen c 

 
a Institute of Advanced Control Technology, Dalian University of Technology, Dalian, 116024, P. R. China 

b Institute of Particle Science and Engineering, School of Process, Environmental and Materials 

Engineering, University of Leeds, Leeds LS2 9JT, UK 

c Department of Chemical Engineering, Chung-Yuan Christian University, Chung-Li , 320, Taiwan 

* Corresponding author. Tel: +86-411-84706465; Fax: +86-411-84706706 

E-mail addresses: liurouter@ieee.org (T. Liu), x.z.wang@leeds.ac.uk (X. Wang),  

jason@wavenet.edu.tw (J. Chen) 

 

 

Abstract: Based on the proportional- integral-derivative (PID) control structure widely used in 

engineering applications, a robust indirect-type iterative learning control (ILC) method is 

proposed for industrial batch processes subject to time-varying uncertainties. An important merit 

is that the proposed ILC design is independent of the PID tuning that aims primarily to hold 

robust stability of the closed-loop system, owing to the fact that the ILC updating law is 

implemented through adjusting the setpoint of the closed-loop PID control structure plus a 

feedforward control to the plant input from batch to batch. According to the robust H infinity 

control objective, a robust discrete-time PID tuning algorithm is given in terms of the plant 

state-space model description to accommodate for time-varying process uncertainties. For the 

batchwise direction, a robust ILC updating law is developed based on the two-dimensional (2D) 

control system theory. Only measured output errors of current and previous cycles are used to 

implement the proposed ILC scheme for the convenience of practical application. An illustrative 

example from the literature is adopted to demonstrate the effectiveness and merits of the 

proposed ILC method. 

Keywords: Batch process, iterative learning control (ILC), proportional- integral-derivative (PID), 

time-varying uncertainty, robust H infinity control objective 
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1  Introduction 

Iterative learning control (ILC) method can be adopted to realize perfect tracking or control 

optimization for industrial and chemical batch processes, owing to the use of repetitive operation 

information from historical cycles. With the wide application of ILC in engineering applications 

in the recent years, it has become increasingly appealing to develop robust ILC methods to deal 

with time-varying uncertainties occurring in a cycle or cycle-to-cycle (batchwise) uncertainties, 

because many batch processes, e.g., industrial injection molding and pharmaceutical 

crystallization, are slowly varying from batch to batch, while repeating fundamental dynamic 

response characteristics [1-4]. As surveyed by Bonvin et al [5], Ahn et al [6], and Wang et al [7], 

most of existing references have been devoted to time- invariant linear or nonlinear batch 

processes. The developed robust ILC methods have been in general classified into two types [7], 

one is called direct-type that means the ILC design integrates the feedback control (responsible 

for closed- loop stability and no steady output deviation) and the feedforward control (responsible 

for the setpoint tracking) through the identical closed- loop controller, and another is called 

indirect-type which implies that either the feedback or the feedforward control could be 

implemented through different controllers that may be designed relatively independent.  

For the direct-type ILC, the traditional proportional- integral-derivative (PID) controller 

including the P-, PI-, PD-, PID-type is mostly used to execute the integrated control for both the 

setpoint tracking and closed- loop stabilization, owing to its implemental simplicity, e.g. the 

P-type ILC [8, 9], the PI-type ILC [10, 11], the PD-type ILC [12, 13], the PID-type ILC [14, 15]. 

The achievable robustness and output tracking performance, however, have not yet been fully 

explored, in particular for the quantitative performance specifications [16]. Based on a 

two-dimensional (2D) state-space description of a batch process and using the linear quadratic 

optimal control criterion in combination with the robust control theory, full-order controller 

matrices (with respect to the process model order) were used to develop robust direct-type ILC 

methods to accommodate for a variety of process uncertainties [17-21], but at the expense of 

controller complexity, computation effort, and memory space for storing the historical 

information of the cycle and controller state. 
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For the indirect-type ILC, the control structure is typically composed of two loops, one loop 

constructed in terms of a conventional controller like PID, and another loop used for adjusting the 

setpoint or the process input similar to a feedforward control manner. Based on the internal model 

control (IMC) structure, a learning setpoint design was proposed [22] to robustly track the 

setpoint profile against the process input delay uncertainty. By comparison, a P-type learning 

algorithm was presented to adjust the setpoint in combination with the model prediction control 

(MPC) method for tracking the desired profile, which was successfully used to the control of 

artificial pancreatic beta-cell [23]. Based on the conventional PID control structure, a parallel 

learning-type PID was added to improve the setpoint tracking performance without sacrificing the 

closed- loop stability [24]. An alternative anticipatory-type ILC (A-ILC) was developed to adjust 

the setpoint in terms of the PID control loop for robust tracking of the desired profile [25]. The 

robust stability condition of a learning-type setpoint design in terms of a PI control loop was 

analyzed in the recent paper [26]. A quadratic criterion was presented to analyze the ILC 

convergence in terms of a MPC structure for time-varying linear systems [27]. The achievable 

tracking performance of an indirect-type ILC scheme was assessed by estimating the minimum 

output variance bound [28]. Combining with the feedback control design, a two-step ILC design 

[29] was proposed to adjust the process input for improving the output tracking performance 

against load disturbance and process uncertainties. For highly nonlinear processes such as 

crystallization processes, hierarchical ILC and nonlinear MPC based ILC methods [30, 31] were 

proposed to track the desired setpoint profile against batch-to-batch uncertainties. 

In this paper, an indirect-type ILC design is proposed based on the widely used PID control 

structure to accommodate for time-varying process uncertainties. With a state-space model 

description of the process together with norm-bounded uncertainties, a robust PID tuning 

algorithm is first given in terms of the H infinity control objective, which is primarily responsible 

for holding the closed-loop system robust stability and no steady output deviation. Then, an ILC 

scheme consisting of the learning controllers to adjust the setpoint and the feedforward 

controllers to adjust the process input is proposed to realize robust tracking against time-varying 

uncertainties and load disturbance, which is therefore different from the conventional 
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indirect-type ILC scheme. Accordingly, the PID tuning and the ILC design can be made relatively 

independent of each other in the proposed control scheme, and more flexibility is introduced to 

devise the control system robust stability and tracking performance, respectively. By establishing 

the sufficient conditions in terms of linear matrix inequality (LMI) constraints for maintaining 

robust stability of the PID control loop and the robust convergence of the ILC scheme, 

respectively, the PID and ILC controllers are derived along with an adjustable robust H infinity 

performance level. The effectiveness of the proposed method is demonstrated through an 

illustrative example from the literature. For clarity, the paper is organized as follows: Section 2 

briefly describes a batch process with time-varying uncertainties by using a state-space model 

with norm-bounded uncertainties, and then introduces the proposed indirect-type ILC scheme 

based on the conventional PID control structure. Correspondingly, a robust PID tuning method is 

proposed in terms of the robust H infinity control objective in Section 3. By formulating the 

learning setpoint strategy and feedforward control in the frame of a 2D system, section 4 presents 

the proposed ILC design by establishing the sufficient LMI conditions to hold the 2D system 

asymptotic stability. Section 5 shows an illustrative example to demonstrate the effectiveness and 

merits of the proposed ILC method. Conclusions are drawn in Section 6. 

Throughout this paper, the following notations are used: n m  denotes a n m  real matrix 

space. For any matrix m mP  , 0P  (or 0P ) means P  is a positive (or semipositive) 

definite symmetric matrix, in which the symmetric elements are indicated by ‘* ’. TP  denotes 

the transpose of P . { }diag  denotes a block-diagonal matrix. For any vector x  and matrix 

0P , denote 
2

( ) T
P P

V x x x Px  . The identity or zero vector (or matrix) with appropriate 

dimension is denoted by I  or 0 . For a 2D signal, ( , )z i j , if 

2

2 0 0
( , ) ( , )

n m

i j
z i j z i j

 
     for any integers n  and m , then ( , )z i j  is said to be in 

the 2[0,  )L   space of all square integrable functions.  

2  Problem formulation  

A batch process with time-varying uncertainties is generally described by the following 

observable canonical discrete-time state-space model,  
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:P

m m

p

( 1, 1) [ ( , 1)] ( , 1) [ ( , 1)] ( , 1) ( , 1)

( , 1) ( , 1),   0 ; 

(0, 1) (0),    =0,1, .

x t k A A t k x t k B B t k u t k t k

y t k Cx t k t T

x k x k

              


    
  

     (1) 

where t  and k  denotes the time and batch indices, respectively, and 1k   indicates the 

current batch (or cycle). ( , 1) xnx t k   denote the state variables, ( , 1) unu t k   the control 

inputs, ( , 1) yny t k   the process outputs. Denote by mA  and mB  the nominal state matrices, 

and by ( , 1)A t k   and ( , 1)B t k   time-varying uncertainties that are not repetitive from 

cycle to cycle and practically specified as 1 1 2( , 1) ( )A t k A t A      , 1 2 2( , 1) ( )B t k B t B      , 

where 1A , 2A , 1B , and 2B  are constant matrices, and ( ) ( )T
i it t   I , 1,2i  . Denote 

by pT  the time period of each cycle, and (0)x  is the initial resetting condition of each cycle. 

Note that other process uncertainties such as from input actuator and output measurement may 

also be lumped into ( , 1)A t k   and ( , 1)B t k   for analysis. 

The control objective is to determine a control law such that the system output can track the 

desired output profile (or target output trajectory) as close as possible against the process 

uncertainties and/or load disturbance.  

To design an indirect-type ILC scheme, we define the output error in the current cycle ( 1k  ) 

by  

r( , 1) Y ( ) ( , 1)e t k t y t k                          (2 ) 

where rY ( )t  denotes the desired output profile, and ( , 1)y t k  the real output in the current 

cycle. Correspondingly, the time integral of ( , 1)e t k  is denoted by ( , 1)e t k  , i.e. 

0

( , 1) ( , 1)
t

i

e t k e i k


    , p0 t T                      (3) 

By comparison, we define the setpoint tracking error in the current cycle by 

s s( , 1) y ( , 1) ( , 1)e t k t k y t k                          (4) 

where s( , 1)y t k   denotes the setpoint command in the current cycle, which is different with the 

desired output profile, rY ( )t , in that it is adjusted real-time in an indirect-type ILC scheme for 

tracking rY ( )t . 

The time integral of s( , 1)e t k  is denoted by s( , 1)e t k  . It follows that 
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s s s( , 1) ( 1, 1) ( , 1)e t k e t k e t k        , p0 t T                (5) 

Moreover, we define a batchwise error function by 

( , 1) ( , 1) ( , )f t k f t k f t k                            (6) 

where f  may denote x , sy , u , e, se , or  , respectively. 

It follows from (1) using the definitions in (2) and (6) that  

( , 1) ( , ) ( , 1)e t k e t k C x t k                           (7) 

    m m( 1, 1) [ ( , 1)] ( , 1) [ ( , 1)] ( , 1) ( , 1)x t k A A t k x t k B B t k u t k t k                (8) 

where   

( , 1) [ ( , 1) ( , )] ( , ) [ ( , 1) ( , )] ( , ) ( , 1)t k A t k A t k x t k B t k B t k u t k t k               (9) 

It is obvious that ( , 1) 0t k    for any non-repeatable parameter uncertainties and varied initial 

process conditions from batch to batch, and therefore can be viewed as a non-repeatable load 

disturbance to deal with. 

Based on the conventional PID control structure, the proposed indirect-type ILC scheme is 

shown in Figure 1, as outlined by the dash- line box, where the learning controllers, 1L , 2L , 3L , 

are set to adjust the setpoint command, i.e.   

s s 1 2 s 3 s( , 1) ( , ) ( 1, ) ( 1, 1) ( 1, 1)y t k y t k Le t k L e t k L e t k               (10) 

where s( , )y t k  denotes the setpoint input in the previous cycle, and ( 1, )e t k  the one-step 

ahead output error in the previous cycle. It follows from (4), (5), and (6) that 

s s s( 1, 1) ( 1, 1) ( 1, )e t k e t k e t k                        (11) 

s s s( , 1) ( 1, 1) ( , 1)e t k e t k e t k                        (12) 

It is seen from (10)-(12) that the tracking errors of ( 1, )e t k , s( 1, )e t k , s( , )e t k , and 

s( 1, )e t k   in the previous cycle are used to construct the ILC updating law added to the 

setpoint command in the current cycle, relatively independent of the closed- loop PID control 

structure shown in Figure 1. 

In Figure 1, the feedforward controllers, 1F , 2F , 3F , are used to adjust the process input, 

i.e.  
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PID 1 s 2 s 3 s( , 1) ( , 1) ( , 1) ( 1, 1) ( 1, 1)u t k u t k F e t k F e t k F e t k              (13) 

where PIDu  is the PID control output. The setpoint tracking errors at the current moment and 

one-step ahead moment, and the error integral in the current cycle are used to construct the 

feedforward control in the proposed scheme. 

Hence, the proposed ILC scheme (outlined by the dash- line box in Figure 1) and the 

closed-loop PID control can be designed separately, as detailed in the following two sections. 

3  Robust PID tuning  

According to the process state-space description in (1), by omitting the batch index for 

brevity due to its irrelevance to the PID tuning in the proposed control scheme shown in Figure 1, 

a PID control law is generally expressed in the following form, 

PID p i d( ) ( ) ( ) [ ( 1) ( )]u t k e t k e t k e t e t                      (14) 

where pk , ik , and dk  are the proportional, integral, and derivative parameters of PID, 

respectively. Note that because ( 1)e t  cannot be measured at the current moment for 

implementing ( )u t , the differential signal of ( 1) ( )e t e t   is practically substituted by 

( ) ( 1)e t e t  , [ ( ) ( 2) 2 ( 1)] / 2e t e t e t    , or adding a low-pass filter for execution but at the 

expense of somewhat performance degradation [32].  

By introducing an auxiliary state variable, ( )e t , we establish the augmented control 

system description, 

       

 

( 1) ( )
( ( ) ( )

( ) ( 1)

( )
( )

( 1)

x t x t BA
u t t

e t e tC

x t
y t C

e t


          

                     


       

0
00

0

I

I
          (15) 

where m ( )A A A t   and m ( )B B B t  . 

Substituting (2) with rY ( ) 0t   (which has no influence to the closed- loop stability) into 

(14) in terms of the nominal process model described by (1) (i.e. ( ) 0A t   and ( ) 0B t  ) 

yields, 

1 1 1
PID d m p i d m i d m d m( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( )u t k CB k k e t k CB k e t k CB k C A x t           I I I I  (16) 
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Let  

1
p d m p i

ˆ ( ) ( )k k CB k k  I                           (17) 

1
i d m i

ˆ ( )k k CB k I                                  (18) 

1
d d m d

ˆ ( )k k CB k I                                 (19) 

Then, substituting (14) and (17)-(19) into (15) yields the closed-loop system, 

 

d m p i
ˆ ˆ ˆ( 1) ( )[ ( ) ]

( )
( ) ( 1)

( )
( )

( 1)

x t x tA B k C A k C Bk
t

e t e tC

x t
y t C

e t


         

                 


       

0

0

II

I
       (20) 

For tuning the PID controller to maintain the control system robust stability, the H infinity 

control objective is adopted here, i.e. 

PID2 2
( ) ( )e t t                                 (21) 

where PID  denotes the robust performance level. 

To achieve the H infinity control objective, we give the following theorem,  

Theorem 1:  The PID control system in (20) subject to time-varying process uncertainties shown 

in (1) is guaranteed robustly stable with a H infinity control performance level, PID , if there 

exist 11 0P  , 22 0P  , matrices 12P , 1R , 2R , and positive scalars 1 , 2 , such that the 

following LMI holds,  

1 A1 A1 2 B1 B1 g

A2 B2

PID

PID

1

2

*

* *
0

* * *

* * * *

* * * * *

T T

T T T T

P D

P PH C P P

 







        
    
 

 
 

 
 

  

0 0 0

0

0 0 0

0 0

0

I

I

I

I

      (22) 

where g [ ]TD  0I , [ ]H  0I , A1 1[ ,  ]T TA   0 , A2 2 11 2 12[ ,  ]A P A P    , B1 1[ ,  ]T TB   0 , 

B2 2 1 2 2[ , ]B R B R    ,  
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11 12

22*

P P
P

P

 
  
 

, m 11 m 1 m 12 m 2

11 12 12 22
T

A P B R A P B R

CP P CP P

  
       

 

by parameterizing   

1
d m p i 1 2

ˆ ˆ ˆ[ ( ) ] [ ]k C A k C k R R P  I                     (23) 

Proof:  See the Appendix I. 

It can be seen from (17)-(19) and (23) that the PID parameters may be retrieved by 

prescribing the derivative parameter(s), dk , that is, when dk  is specified, the other parameters 

can be obtained using (19) as  

i i d m
ˆ ( )k k k CB I                                  (24) 

p p d m i
ˆ ( )k k k CB k  I                           (25) 

Note that letting d 0k   leads to a PI controller, which is preferred for practical application 

owing to the implemental simplicity.  

To achieve good robust control performance, the PI (by letting d 0k  ) or PID controller can 

be determined by performing the following optimization program, 

PID
( ), ( )

Minimize  
A t B t


 

                                                              (26) 

In fact, a smaller value of PID  leads to a more aggressive control action and vice versa. 

Therefore, a trade-off should be made between the achievable control performance and the 

control action generated by the designed PI or PID controller. In consideration of that the 

closed- loop controller is primarily used for maintaining the control system robust stability, it is 

preferred to take a PI controller for implementation if such a controller can be derived from the 

above optimization program, compared to a PID controller which requires a practical 

implementation of the ideal derivative action that may degrade the closed- loop robust stability or 

control performance.  

4  Robust indirect-type ILC design  

To develop a robust indirect-type ILC method, a 2D system model is constructed to describe 

the process dynamics along both the time and batchwise directions, for the purpose of 
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synthetically analyzing the 2D stability against process uncertainties and load disturbance. A 

preliminary knowledge of a 2D system stability is presented as below. 

Consider a 2D Roesser’s system [33], 

                     

11 11 12 12

21 21 22 22

1 2

( 1, ) ( , )
( , )

( , 1) ( , )

( , )
( , )  

( , )

, =0,1,2, .

h h

v v

h

v

A A A Ax i j x i j
i j

A A A Ax i j x i j

x i j
y i j C C

x i j

i j


         

             
     

 




           (27) 

where 1nhx   is the horizontal state vector, 2nvx   the vertical state vector, y  the system 

output,   load disturbance, 11A , 12A , 21A , and 22A  denote the state matrices 

uncertainties. The boundary condition of the Roesser’s system is denoted by 

ˆ( ) [ (0, )] ,  [ ( ,0)]
Th T v Tx t x j x i    . 

Lemma 1 [26] :  If there exist positive definite matrices, 1 0P   and 2 0P  , such that the 

following LMI holds  

                                      0TA PA P                                    (28) 

where  

11 11 12 12

21 21 22 22

A A A A
A

A A A A

  
     

, 1 2{ ,  }P diag P P  

then the 2D Roesser’s system in (27) with 0   is asymptotically stable. In addition, if 

(0, ) 0hx j  , there exists a positive scalar (0,1)  such that 

             
0 0

2 2
0 0

[ ( , 1)] [ ( , )]
I I

v v
P P

i i

V x i j V x i j
 

   ,  0j  , 0 0I   , ( ,0)vx i .        (29) 

According to the proposed ILC scheme shown in Figure 1, it follows from (4), (6), and (7)

that 

 s s s( , 1) ( , ) ( , 1) ( , 1)y t k y t k e t k C x t k                       (30) 

Substituting (30) into (10) yields 

s 1 2 s 3 s( , 1) ( 1, ) ( 1, 1) ( 1, 1) ( , 1)e t k Le t k L e t k L e t k C x t k                   (31) 
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Then, substituting (31) into (12) obtains 

s 1 2 s 3 s( , 1) ( 1, ) ( 1, 1) ( ) ( 1, 1) ( , 1)e t k Le t k L e t k L e t k C x t k                I   (32) 

Substituting the PID control law of (14) with ( 1) ( )e t e t   replaced by ( ) ( 1)e t e t   into 

(13), we obtain 

p s i s d s s

1 s 2 s 3 s

p i d 1 s 2 d s i 3 s

( , 1) ( , 1) ( , 1) [ ( , 1) ( 1, 1)]

                   ( , 1) ( 1, 1) ( 1, 1)

                 ( ) ( , 1) ( ) ( 1, 1) ( ) ( 1, 1)

u t k k e t k k e t k k e t k e t k

F e t k F e t k F e t k

k k k F e t k F k e t k k F e t k

          

        
             

  (33) 

Note that the ideal derivative term in (14) is substituted by a practical form of ( ) ( 1)e t e t   

for obtaining (33). Other practical forms may also be adopted to derive ( , 1)u t k  and are 

omitted herein. 

Correspondingly, it follows that 

p i d 1 s 2 d s i 3 s( , 1) ( ) ( , 1) ( ) ( 1, 1) ( ) ( 1, 1)u t k k k k F e t k F k e t k k F e t k                   (34) 

Based on the robust PID design given in Section 2, by substituting (31), (32), and (34) into 

(8), we obtain 

                    

p i d 1

p i d 1 1

p i d 1 2 2 d s

p i d 1

( 1 , 1 ) [ ( ) ] ( , 1 )

                          ( ) ( 1, )

                          [( ) ] ( 1, 1)

                          [(

x t k A B k k k F C x t k

B k k k F Le t k

B k k k F L F k e t k

B k k k F

 



       

    

       

    3 3 i s) ] ( 1, 1)

                          ( , 1)

L F k e t k

t k





    

 

   (35) 

where m ( , 1)A A A t k    and m ( , 1)B B B t k   .  

Consequently, the predicted output error can be derived in terms of (7) as 

                   

p i d 1

p i d 1 1

p i d 1 2 2 d s

( 1 , 1 ) ( 1 , ) ( 1 , 1 )

                   [ ( ) ] ( , 1

                        [ ( ) ] ( 1 ,

                        [ ( ) ]

e t k e t k C x t k

C A C B k k k F C x t k

C B k k k F L e t k

C B k k k F L F k e t k







      

      

     

      

I

p i d 1 3 3 i s

1)

                        [( ) ] ( 1, 1)

                        ( , 1)

CB k k k F L F k e t k

C t k







        

 

   (36) 

Therefore, a 2D system description of the proposed ILC scheme can be formulated by  
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s s
w

s s

s

s

( 1, 1) ( , 1)

( , 1) ( 1, 1)
( )

( , 1) ( 1, 1)

( 1, 1) ( 1, )

( , 1)

( 1, 1)
( , 1)

( 1, 1)

( 1, )

x t k x t k

e t k e t k
D t

e t k e t k

e t k e t k

x t k

e t k
t k G

e t k

e t k

 
 


 







      
          
       
        


 
      
   
   

           (37) 

where [ ]G 0 0 0 I , w [ ]T TD C 0 0I ,  

p i d 1 p i d 1 2 2 d

2

2

p i d 1 p i d 1 2 2 d

p i d 1 3 3 i p i d 1 1

3 1

3 1

p i d 1 3 3 i

( ) [( ) ]

( ) [( ) ]

[( ) ] ( )

         

[( ) ]

A B k k k F C B k k k F L F k

C L

C L

CA CB k k k F C CB k k k F L F k

B k k k F L F k B k k k F L

L L

L L

CB k k k F L F k

         


   

          

       


     

I

I p i d 1 1( )CB k k k F L







    

 

Note that ( , 1) ( 1, )t k e t k     can be regarded as the controlled variable to be minimized 

against process uncertainties, possibly varied initial process conditions from batch to batch, and 

load disturbance. That is to say, the robust 2D control objective can be determined in terms of a 

batch process control specification [21] as   

1 p 2
2 21

BP ILC ILC2 2
0 0

( ( , 1) ( , 1) ) 0
N T N

t k

J t k t k   
 



 

                 (38) 

By defining 

                       s

s

( , 1)

( , ) ( 1, 1)

( 1, 1)

h

x t k

x t k e t k

e t k





 
    
    

, ( , ) ( 1, )vx t k e t k                (39) 

the 2D system in (37) can be viewed as a typical Roesser’s system in the form of (27).  

Hence, analyzing the robust stability of the proposed ILC scheme is equivalent to that of the 

2D system in (37). The following theorem is given to assess the robust stability and determine the 

ILC controllers: 
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Theorem 2:  The 2D control system in (37) subject to time-varying process uncertainties 

described by (1) is guaranteed robustly stable with a H infinity control performance level, ILC , 

if there exist 1 0Q  , 2 0Q  , 3 0Q  , 4 0Q  , matrices 2F̂ , 3̂F , 1̂L , 2L̂ , 3L̂ , and positive 

scalars 1 , 2 , such that the following LMI holds,  

1 A1 A1 2 B1 B1 w

A2 B2

ILC

ILC

1

2

*

* *
0

* * *

* * * *

* * * * *

T T

T T T

Q D

Q QG P P

 







        
    
 

 
 

 
 

  

0 0 0

0

0 0 0

0 0

0

I

I

I

I

     (40) 

where 1 2 3 4{ ,  ,  ,  }Q diag Q Q Q Q , g [ ]TD  0I , [ ]H  0I , A1 1 1[ ,  ,  ,  ]T T T TA A C   0 0 , 

A2 2[ , , , ]A   0 0 0 , B1 1 1[ ,  ,  ,  ]T T T TB B C   0 0 ,  

B2 2 p i d 1 2 p i d 1 2 2 d

2 p i d 1 3 3 i 2 p i d 1 1

ˆ ˆ( ) ,  [( ) ],  

ˆ ˆ ˆ           [( ) ],  ( )

B k k k F C B k k k F L F k

B k k k F L F k B k k k F L

           
          

 

m 1 m p i d 1 1 m p i d 1 2 m 2 m d 2

1 2

1 2

m 1 m p i d 1 1 m p i d 1 2 m 2 m d 2

m p i d 1 3 m 3 m i 3 m p i d 1 1

3

ˆ ˆ( ) ( )

ˆ

ˆ

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( )

ˆ ˆ
         

A Q B k k k F CQ B k k k F L B F B k Q

CQ L

CQ L

CA Q CB k k k F CQ CB k k k F L CB F CB k Q

B k k k F L B F B kQ B k k k F L

L

         



  


          

       

1

3 3 1

m p i d 1 3 m 3 m i 3 4 m p i d 1 1

ˆ ˆ

ˆ ˆ ˆ( ) ( )

L

Q L L

CB k k k F L CB F CB kQ Q CB k k k F L






 
          

   (41) 

by parameterizing   

1
1 1 4

1
2 2 2

1
3 3 3

ˆ

ˆ

ˆ

L LQ

L L Q

L L Q







 
 
 

                                   (42) 

1
2 2 2

1
3 3 3

ˆ

ˆ
F F Q

F F Q





 



                                   (43) 

Proof:  See the Appendix II. 
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Note that the feedforward controller, 1F , is prescribed for solving the LMI condition in (40). 

To facilitate the feasibility of the LMI condition in (40), the choice of 1F  should be made to 

keep all the eigenvalues of m m p i d 1( )A B k k k F C     in the unit circle in the z-transfer plane, 

i.e.  

m m p i d 1eig[ ( ) ] 1i A B k k k F C       , 1,2, , xi n .          (44) 

In fact, all the feedforward controllers, 1F , 2F , 3F , corresponding to 1F , 2F̂ , 3̂F  in (40) 

that may be viewed as slack variables to facilitate the LMI feasibility, are used to increase the 

flexibility of the indirect-type ILC in the proposed control scheme shown in Figure 1, for the 

purpose of robustly tracking the desired output profile against process uncertainties and load 

disturbance.  

To obtain the optimal robust tracking performance, the ILC controllers can be determined by 

performing the following optimization program, 

ILC
( ), ( )

Minimize  
A t B t


 

                                                              (45) 

Similarly, by specifying the learning controllers, 1L , 2L , 3L , which determine the 

convergence rate of the ILC scheme, the achievable robust performance can be assessed through 

the LMI condition in (40), and so is for the allowable process uncertainty bounds denoted by 

( , 1)A t k   and ( , 1)B t k  . Note that the allowable variation of initial process conditions from 

batch to batch can also be assessed through the LMI condition in (40) by lumping the variation 

bound into the magnitude (wD ) of the disturbance as shown in (9) and (37). 

5  Illustration 

Consider a typical batch process, injection molding, as studied in the references [10, 26], 

which consists of three main stages: filling, packing/holding, and cooling. For the packing stage, 

a key process variable to be controlled is the nozzle pressure, which should follow a desired 

profile to preserve product quality. During the cyclic operation, the transition from filling to 

packing may cause uncertain initial value of the nozzle pressure and perturbation in the load, 

which hinders the conventional direct-type ILC such as a P-type from reliable application. In 

contrast, the conventional PID control structure cannot improve the control performance from 
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cycle to cycle. Based on open- loop tests and analysis, a model of the nozzle pressure response to 

the hydraulic valve input signal was identified [10] as 

1( ) :P z   
1 2

1 2

1.239( 5%) 0.9282( 5%)
( , 1) ( , 1) ( , 1)

1 1.607( 5%) 0.6086( 5%)

z z
y t k u t k t k

z z


 

 

  
    

   
 

where the percentages in parentheses indicate the parameter perturbations in the worst case of 

cyclic operation. 

For application of the proposed method, we write the above model in the following 

state-space form, 

:P

 

1.607 1 1.239 1
( 1, 1) ( ) ( , 1) ( ) ( , 1) ( , 1)

0.6086 0 0.9282 0

( , 1) 1,  0 ( , 1)

x t k A x t k B u t k t k

y t k x t k


      

                       
   

   

0.0804 ( ) 0 1 0 ( ) 0 0.0804 0
( )

0.0304 ( ) 0 0 1 0 ( ) 0.0304 0

t t
A t

t t

 
 

       
                 

 

0.062 ( ) 1 0 ( ) 0 0.062
( )

0.0464 ( ) 0 1 0 ( ) 0.0464

t t
B t

t t

 
 

       
                 

 

where ( )t  is a time-varying factor along either the time or batchwise direction and ( ) 1t  . 

By performing the optimization procedure in (26), we obtain the minimal H infinity robust 

performance level, *
PID 1.28  . To avoid over aggressive control signal, we take PID 5   to 

solve the LMI condition in (22), obtaining the PI controller parameters, p 1.2889k   and 

i 0.0336k  . For the ILC design, it can be easily verified that the range of 1 [ 1.3,  0.1]F    can 

ensure all the eigenvalues of m m p i d 1( )A B k k k F C     located in the unit circle in the 

z-transfer plane. We choose 1 0.5F    to perform the optimization procedure in (40), obtaining 

the minimal H infinity robust performance level, *ILC 110  , and correspondingly, 1 0.1776L  , 

2 0L  , 3 0.029L   , 2 0F  , and 3 0.0097F   . 

The target profile (rY ) takes the following form as adopted in the cited references [10, 26],  

r

p

200, 0 100;

200+5( 100), 100 120;

300, 120 200.

t

Y t t

t T

  
   
   

 

For illustration, the following cases of process uncertainties are tested. 
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Case 1. Time- invariant process uncertainties. In this case, ( )A t  and ( )B t  are assumed 

to be fixed as their upper bounds. The tracking results are shown in Figure 2 (a) and (b), while the 

output tracking error in terms of the following criterion is plotted in Figure 3, 

p

p
1

ATE( ) ( , ) /
T

t

k e t k T


  

It is seen that perfect tracking is reached through 20 cycles by the proposed method after an 

initial run of the PID tuning, compared to the cited paper [26] which needed almost 50 cycles to 

realize perfect tracking. Moreover, there exists no steady output tracking error in each cycle, 

owing to using the output tracking error in the current cycle for 2D ILC design as shown in (37).  

Case 2. Time-varying uncertainties and disturbance. Assume that the process state transfer 

matrices becomes time-varying with ( ) 0.1t  , together with non-repetitive load disturbance, 

( , 1) sin( ( ))t k t k     where ( )k  is a random variable uniformly distributed in the range of 

[0,2 ]  as assumed in the cited paper [26]. Since the closed-loop system becomes a stochastic 

process, we perform 100 Monte Carlo tests, each of which includes 100 cycles. The averaged 

results of ATE  are plotted in Figure 4, in comparison with those of refs. [10, 26]. It is seen that 

the closed-loop system maintains robust stability well in both the time and batchwise directions 

by the proposed ILC method, thus demonstrating that it  can be reliably used for robust tracking of 

the desired profile and on- line optimization against batch-to-batch process uncertainties and load 

disturbance. 

6  Conclusions 

For industrial batch processes subject to time-varying uncertainties from batch to batch, a 

robust indirect-type ILC method has been proposed based on the conventional PID control 

structure. In the proposed control scheme, either the closed-loop PID controller or the ILC 

updating law can be designed relatively independent, along with the feedforward controllers 

added to increase the control flexibility, which is therefore different from the standard 

indirect-type ILC structure studied in the literature. To accommodate for the time-varying 

uncertainties, a robust PID design has been given based on the robust H infinity control objective. 

For implemental simplicity, it is preferred to use a PI controller if such a controller can be derived 
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from the LMI conditions established for maintaining the closed-loop robust stability. For the 

batchwise direction, an ILC scheme consisting of a learning setpoint strategy and a feedforward 

control added to the process input has been developed based on an equivalent 2D system 

description of the batch process and the LMI condition formulated in terms of the robust H 

infinity control objective for robust convergence. Only measured output errors of current and 

previous cycles are used to implement the proposed ILC scheme for the convenience of practical 

application. The application to an illustrative example from the literature has demonstrated the 

effectiveness and merits of the proposed ILC method. 
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Appendix I  

Proof of Theorem 1 

Define the following Lyapunov-Krasovskii inequality of state energy to guarantee the 

asymptotic stability of the closed-loop system shown in (20), 

2 21
PID PID2 2

ˆ ˆ[ ( 1)] [ ( )] ( ( ) ( ) )P PV x t V x t e t t                     (A1) 

where ˆ( ) [ ( ),  ( 1) ]T T Tx t x t e t   , and PID  is the robust performance level as shown in (21). 

Considering that ( ) ( )e t Cx t   by letting rY ( ) 0t  , and ˆ( ) [ , ] ( )x t x t 0I , we have  

ˆ( ) ( )e t CHx t                                (A2) 

where H  has been shown in (22). 

By substituting (20) into (A1), we obtain  

1 0T                                  (A3) 

where ˆ[ ( ),  ( )]T T Tx t t  , g [ 0]TD  I , and 

d m p i
g

ˆ ˆ ˆ[ ( ) ]A B k C A k C Bk
A

C

   
  

 

I

I
                       (A4) 
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1
g PID

1 g g
g PID*

T T T

T

A P H C CH
P A D

D




              

0

I
              (A5) 

By the Schur complement, it can be derived that (A3) is guaranteed by 

g

PID

PID

*
0

* *

* * *

T T

P D

P PH C




  
   
 
 

  

0

0

0I

I

                    (A6) 

where  

11 d m p 11 12 12 d m p 12 22

11 12 12 22

ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) ] [ ( ) ]T
i i

T

AP B k C A k C P Bk P AP B k C A k C P Bk P

CP P CP P

        
   

    

I I
   (A7) 

Note that   can be reformulated as 

A1 1 A2 B1 2 B2( ) ( )t t                               (A8) 

where  , A1 , A2 , B1 , and B2  have been shown in (22),  

1 d m p 11 12
ˆ ˆ ˆ[ ( ) ] T

iR k C A k C P k P   I  and 2 d m p 12 22
ˆ ˆ ˆ[ ( ) ] iR k C A k C P k P   I . 

The following lemma is used herein for analysis. 

Lemma 2 [34] :  Let A , D , E , and F  be real matrices of appropriate dimensions with 

1F  , the following inequality holds for any scalar 0  ,  

1T T T T TDFE E F D DD E E                         (A9) 

Using Lemma 2 and the Schur complement, it can be seen that (A6) is guaranteed by (22) in 

Theorem 1. This completes the proof.                                              Ƒ 
 

Appendix II 

Proof of Theorem 2 

The robust 2D control objective in (38) can be rewritten as  

1 p 1 p2 2
2 21

BP ILC ILC2 2
0 0 0 0

( ( , 1) ( , 1) ) 0
N T N TN N

t k t k

J t k t k V V   
  



   

               (A10)  

where V  is a Lyapunov-Krasovskii function used for analysis of 2D asymptotic stability, i.e. 
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( 1, ) ( , )

( , 1) ( , )

h h

Q Qv v

x t k x t k
V V V

x t k x t k

   
        

                   (A11) 

Using the boundary conditions from an initial resetting of batch process operation, i.e.  

s s s

s s s

(0,0) (0,1) (1,0) 0;

(0,0) (0,1) (1,0) 0;

(0,0) (0,1) (1,0) 0;

(0,0) (0,1) (1,0) 0.

x x x

e e e

e e e

e e e

  
  
  

  
   
      
   

             (A12) 

it can be easily verified using 1 2 3 4{ ,  ,  ,  }Q diag Q Q Q Q  that 


1 p 1 p2 2

1 1 2

2 3 3

s
0 0 0 0

s s s

[ ( 1, 1)] [ ( , 1)] [ ( , 1)]

                                       [ ( 1, 1)] [ ( , 1)] [ ( 1, 1)]

                       

N T N TN N

Q Q Q
t k t k

Q Q Q

V V x t k V x t k V e t k

V e t k V e t k V e t k

  

  

  

   

       

         

   

4 4
                [ ( 1, 1)] [ ( 1, )]Q QV e t k V e t k    

             

2 2

1 2

2 1

3 4

1 s 1
0 0

s 1 2
0 0

[ ( 1, 1)] [ ( , 1)]

    [ ( , 1)] [ ( 1, 1)]

0

N N

Q Q
k k

N N

Q Q
k t

V x N k V e N k

V e N k V e t N

 



 

 



 

    

     



 

                     (A13) 

    Therefore, a sufficient condition to ensure the control objective in (A10) is that 
2 21

ILC ILC2 2
( , 1) ( , 1) 0t k t k V                        (A14) 

By substituting the 2D system description in (37) and (A11) into (A14), we obtain 

2 0T                                 (A15) 

where [ ( , )] ,  [ ( , )] ,  ( )
Th T v T Tx t k x t k t     , and 

1
ILC

2 w

ILCw *

TT

T

Q G G
Q D

D




   
        

  

0

I
               (A16) 

By the Schur complement, it can be derived that (A15) is guaranteed by 

w

ILC

ILC

*
0

* *

* * *

T

Q D

Q QG




  
   
 
 

  

0

0

0I

I

                    (A17) 

where  
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A1 1 A2 B1 2 B2( ) ( )t t                            (A18) 

where  , A1 , A2 , B1 , and B2  have been shown in (40). 

Using Lemma 2 in Appendix I and the Schur complement, it can be seen that (A17) is 

guaranteed by (40) in Theorem 2. This completes the proof.                            Ƒ 
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Figure 1  Block diagram of the proposed PID based indirect-type ILC scheme 

Figure 2  Tracking performance for case 1 

Figure 3  Plot of ATE for case 1 

Figure 4  Plot of ATE for case 2 

 

 

 

 

 

 

 

 

 

 

Figure 1  Block diagram of the proposed PID based indirect-type ILC scheme 
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Figure 2  Tracking performance for case 1 

 

 

 

 

 

 

0 20 40 60 80 100 120 140 160 180 200
-50

0

50

100

150

200

 

 

Step (t)

In
pu

t s
ig

na
l

Batch 1
Batch 2
Batch 20

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

 

 

Step (t)

P
ro

ce
ss

 o
ut

pu
t

Desired profile
Batch 1
Batch 2
Batch 20

0 10 20 30 40
160

180

200

220

 

 



- 25 - 

 

 

 

 

 

 

 

 

Figure 3  Plot of ATE for case 1 

 

 

 

 

 

 

 

 

 

 

Figure 4  Plot of ATE for case 2 
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