
This is a repository copy of Towards Platform Independent Database Modelling in 
Enterprise Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/109291/

Version: Accepted Version

Proceedings Paper:
Ellison, Martyn Holland, Calinescu, Radu Constantin orcid.org/0000-0002-2678-9260 and 
Paige, Richard Freeman orcid.org/0000-0002-1978-9852 (2016) Towards Platform 
Independent Database Modelling in Enterprise Systems. In: STAF 2016:Software 
Technologies: Applications and Foundations. Lecture Notes in Computer Science (LNCS) .
Springer , pp. 42-50. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Towards Platform Independent Database

Modelling in Enterprise Systems

Martyn Ellison, Radu Calinescu, and Richard F. Paige

Department of Computer Science, University of York, UK
{mhe504, radu.calinescu, richard.paige}@york.ac.uk

Abstract. Enterprise software systems are prevalent in many organi-
sations, typically they are data-intensive and manage customer, sales,
or other important data. When an enterprise system needs to be mod-
ernised or migrated (e.g. to the cloud) it is necessary to understand the
structure of this data and how it is used. We have developed a tool-
supported approach to model database structure, query patterns, and
growth patterns. Compared to existing work, our tool offers increased
system support and extensibility which is vital for use in industry. Stan-
dardisation and platform independence is ensured by producing models
conforming to the Knowledge Discovery Metamodel and Software Met-
rics Metamodel.

1 Introduction

Model driven engineering has been shown to aid the modernisation and re-
engineering of enterprise software systems [18]. Public clouds are a common
target platform for these systems, as investigated in the ARTIST [9] project and
CloudMIG [6]. However, this existing work gives minimal consideration to data
(and the database layer) despite this being the most valuable and irreplaceable
part of many systems [5]. Extensive work has been done on database modelling
[2] [12] and reverse engineering [16] [4], although this is disconnected from the
work on software modernisation and does not focus on the cloud.

In order to determine the costs of migrating and storing data in the cloud
the workload of the enterprise system’s database, i.e., query patterns and growth
patterns, must be known. Furthermore, the database structure must be known
to decide which tables or columns to migrate and whether any modernisation
tasks should be performed during migration (e.g., table merging). In this paper
we investigate how to model these properties in a platform independent way so
that further analysis and migration simulation is possible.

We have developed a prototype model extraction tool, called DBLModeller,
which transforms a schema dump and query log into a structure and a workload
model. These conform to the Knowledge Discovery Metamodel (KDM) and the
Structured Metrics Metamodel (SMM) respectively. Most existing model-driven
modernisation and cloud migration approaches use these metamodels, and the
range of existing tools mean they are an ideal choice for our work. Approaches
for obtaining these two inputs are also proposed.



DBLModeller has been developed in partnership with Science Warehouse
(www.sci-ware.com), a UK-based e-business company that specialises in enter-
prise procurement software. They have provided access to their core system to
support the evaluation of DBLModeller. This is a large Java-based system that
business customers use to order and compare products from multiple suppliers.

One key challenge when modelling databases is heterogeneity, as a variety
of SQL dialects exist. This becomes an issue when developing a platform inde-
pendent tool which supports a wide range of systems. We have overcome this in
a number of ways: (1) our approach incorporates existing tools from database
providers, (2) a single grammar has been developed to support multiple SQL
dialects, and (3) a model-to-model transformation has been removed from the
model extraction process required to produce KDM and SMM models. These
changes increased the range of enterprise systems supported by DBLModeller
and improved extensibility compared to the state-of-the-art Gra2MoL SQL-to-
KDM tool [8].

The rest of the paper is structured as follows. Section 2 presents our DBLMod-
eller approach. Section 3 describes our evaluation of DBLModeller. Section 4
concludes the paper with a brief summary and suggests future work directions.

2 DBLModeller Approach

Our approach for producing the structure (KDM) and workload (SMM) mod-
els is shown in Figure 1. Step 1 (T1 & T2) is performed by existing external
tools, such as Oracle SQL Developer [15] for the schema and P6Spy [1] for the
SQL trace. Nearly all databases will have an accompanying management tool
which can produce a SQL schema dump, this is preferable to using any existing
SQL scripts in the organisation as these may be out of date. Similarly, several
approaches exist to capture a SQL trace (i.e., the SQL queries being sent to
the database) but we propose using a ‘spying’ library. These wrap the existing
database driver used by the system and save all queries to a log file, therefore
code changes to the system are not required.

DBLModeller can process the SQL traces produced by P6Spy into a sequence
of load measurements (Step 1 T3), if the SQL trace is captured via another
method then this must be done manually. The load measurements include: entity
count, entity reads, entity writes, unused entities, and database size. An ‘entity’
is the primary data artefact the database is storing and is selected by the user;
e.g. products in an e-commerce system or pages in a Wiki. Abstracting the
measurements in this way greatly simplifies the workload model extraction, and
makes the process more generic.

Steps 2 & 3 are fully automated and performed by DBLModeller. The text-
to-model transformation (Step 2) consists of two separate transformations, one
for each metamodel, as shown in Figure 2. This uses grammar-to-model mapping
(the approach from [7]), with SQL and Metrics grammars (G1 & G2) that are
mapped to the KDM and SMM (MM1 & MM2) via a set of rules we developed.



Fig. 1. Overview of the DBLModeller approach

Traditionally when using a grammar-to-model approach a publicly available
grammar is reused, however for DBLModeller we developed our own multi-dialect
SQL grammar. Given that the source grammar and mapping rules are tightly
coupled, a new rule-set (i.e, R1 on Figure 2) would be required for each grammar.
This would not be a scalable approach if a large number of SQL dialects were to
be supported. A multi-dialect grammar is feasible when the target metamodel
(KDM) is at a far higher level of abstraction than the source language, e.g., the
TEXT (in MySQL) and VARCHAR (in Oracle) types both map to the KDM
type String. Furthermore, support for a new dialect can be achieved by adding
the unsupported constructs to the grammar (many constructs will exist in both)
and without modifying the mapping rules, improving extensibility.

If a model is highly abstract or significantly different from a source text,
model extraction typically requires a model-to-model (M2M) transformation to
be combined with a text-to-model (T2M) transformation [8] [13]. This is un-
desirable when designing a model extraction tool to be extensible, because the
M2M transformation is an additional code block to modify. In the case of KDM
model extraction, the M2M transformation is only needed to perform simple
tasks like moving elements or resolving references. We developed an annotation-
based model-extraction approach to remove simple M2M transformations.

In our approach three annotation types exist: Add, Move, and Reference.
These are inserted during the T2M transformation (Step 2) to produce an anno-
tated model, which is processed by a model refinement engine (Step 3). The user
will never see the annotated model and he/she will never have to consider which
annotations to use unless DBLModeller is being extended to support a new SQL
dialect or version. We have used annotations to support: ALTER statements,
CREATE INDEX statements, and to resolve references. These three use cases
require the model to be searched after the initial T2M transformation, e.g. an



Fig. 2. Text-to-model transformations in DBLModeller

ALTER statement might add a primary key to a previously created table, this
model element must be found and modified.

3 Evaluation

The evaluation of DBLModeller is based around the following research questions:

RQ1 To what extent are the models produced by DBLModeller complete and
correct?

RQ2 How is the model extraction time impacted by the M2M transformation
replacement?

RQ3 How does the set of SQL keywords supported by DBLModeller compare
to those used in Oracle/MySQL dumps from real-world systems?

RQ4 What is the effect of a multi-dialect grammar and annotated T2M trans-
formation on extensibility?

3.1 Model Extraction

This section evaluates the completeness and correctness of the extracted models
(RQ1) and the performance of DBLModeller (RQ2). These research questions
have been examined together as they impact on each other. DBLModeller has
been compared to Gra2MoL’s PLSQL2KDM example [3] as this had the high-
est level of SQL support at the time of writing. We extracted KDM models
from the database schemas of four systems: Apache OFBiz, MediaWiki, Science
Warehouse, and a student record system [8]. With OFBiz and MediaWiki we
obtained Oracle and MySQL versions of the schema by installing them on both
databases. Additionally, SMM models were extracted from Wikipedia (using 6
months data from [10] and [19]) and Science Warehouse.

Model completeness was assessed by comparing the number of model ele-
ments and input elements, while for correctness the properties of the model ele-
ments and input elements were compared. We developed a small model checking
tool to automate this analysis. DBLModeller was able to extract models from
the 6 schemas successfully, and from the output of our tool we concluded: that
the input text and the output model had the same number of elements, all table,
column, and sequence names were correct, and relationships between tables were



correct. Furthermore, we confirmed the models conformed to KDM and SMM
using the Eclipse Modelling Framework.

Table 1. Model Extraction Times using DBLModeller and Gra2MoL

Schema Size (KLOC) Tool Mean (Secs.) Std. Dev. sec/KLOC

Oracle OFBiz
31.5 DBLM 174 2.35 6
10.3 G2M 237 3.4 24

Oracle MediaWiki
2 DBLM 7 0.23 4
0.8 G2M 14 0.68 18

Oracle Science
Warehouse

1 DBLM 5 0.19 5
0.4 G2M 14 0.62 35

Oracle UoM Student
System

0.3 DBLM 5 0.21 17
0.3 G2M 10 0.62 33

MySQL OFBiz
21.7 DBLM 104 2.13 5
9.5 G2M 230 9.73 24

MySQL MediaWiki
1 DBLM 5 0.24 5
0.4 G2M 13 0.53 33

The performance of DBLModeller was assessed by extracting a KDM model
for each schema and measuring the time taken. This process was repeated 20
times per schema. We expected that the removal of the M2M transformation
from the model extraction process will have significant performance gains. A
virtual machine on the Digital Ocean cloud platform with 4GB of RAM and two
Ivy Bridge based Intel Xeon cores was used to perform the experiment.

The performance results are presented in Table 1, which shows that DBLMod-
eller can extract a KDM model in less time for every schema. As Gra2MoL
supports fewer SQL statements than DBLModeller, in order to obtain results
it was necessary to modify the schemas by removing unsupported content until
they could be processed by Gra2MoL. We used the metric “sec / KLOC” to
simplify comparison, based on this we conclude the model extraction time has
been reduced by up to 86% for Oracle schemas and up to 84% for MySQL.

3.2 RQ3: SQL Keyword Usage Study

Fully supporting every SQL dialect was impractical due to the number that
exist and the size of the language, therefore DBLModeller supports a subset of
two dialects (Oracle and MySQL). Whilst it is straightforward to identify which
dialects to support (many organisations report on the estimated market share),
it is harder to select statements and keywords to support within these. We have
re-used the 6 schemas from Section 3.1 and obtained 9 others, giving a sample
size of 15 (listed in Table 2). The additional schemas were obtained using the
same process, i.e., deploying an instance of the system then connecting to its
database with MySQL Workbench or Oracle SQL Developer.

Figure 3 shows the 25 most used keywords in our schema set. None of the
words which appear in the MySQL top 25 are unsupported, while only two in



0 5000 10000 15000 20000

SMALLINT
CHAR

CASCADE
ON

AUTO_INCREMENT
DECIMAL

UNSIGNED
BIGINT

INT
PRIMARY
CHARSET
ENGINE
TABLE

CREATE
CONSTRAINT
REFERENCES

FOREIGN
COMMENT
DATETIME
COLLATE
VARCHAR

NOT
KEY

DEFAULT
NULL

MySQL

Supported
Unsupported

0 1000 2000 3000 4000 5000 6000

USING
PRIMARY

NVARCHAR2
FOREIGN

REFERENCES
SEQUENCE

CONSTRAINT
KEY
ADD

VARCHAR2
MODIFY

NOT
NULL

NUMBER
FLOAT

ENABLE
ALTER

UNIQUE
DROP
TABLE
DATE
ON

INDEX
CHAR

CREATE
Oracle

Supported
Unsupported

Fig. 3. Most frequent SQL keywords for the MySQL (left) and Oracle dialects (right)

the Oracle top 25 are unsupported: NVARCHAR2 and USING. NVARCHAR2 is
only used by Confluence (albeit extensively), however this means the data type
for NVARCHAR2 columns will be null. If necessary, support for NVARCHAR2
could be added by modifying one line of the SQL grammar (to map it to the

Table 2. Database schemas used for keyword analysis

System Type Domain

Science Warehouse Oracle E-commerce

Record System [8] Oracle Record System

Apache OFBiz Oracle & MySQL Business Management & E-commerce

MediaWiki Oracle & MySQL Collaboration

Confluence Oracle & MySQL Collaboration

Joomla MySQL Website Management

Magneto MySQL E-commerce

SonarQube MySQL Software Engineering

Mantis MySQL Software Engineering

WordPress MySQL Website Management

Moodle MySQL Education

OrangeHRM MySQL Record System

SuiteCRM MySQL Business Management

RefBase MySQL Education

OpenMRS MySQL Record System



Table 3. Code changes to support the SharePoint schema

G2M New Grammar DBLModeller Extension
New LOC Updated LOC New LOC Updated LOC

Lexer 70 0 25 6

Parser 11 0 6 14

T2M 25 85 24 1

M2M 10 5 0 0

Total 116 90 55 21

KDM:String data type). The lack of support for USING is not an issue because it
specifies whether an index is enabled or disabled in the Confluence schema, and
this detail is lost when abstracting to a KDM model. From the keyword anyalsis
data we can also conclude that DBLModeller supported 96% of the content in
the MySQL schemas and 99% of the content in the Oracle Schemas.

3.3 RQ4: Microsoft SQL Server Specialisation

Given the heterogeneity of schemas, databases, and SQL dialects, it is inevitable
that DBLModeller may need to be extended. A case study has been performed
where DBLModeller and the Gra2MoL SQL-to-KDM extraction tool [8] [3] were
extended to support a Microsoft SharePoint schema.

A schema dump was obtained from a Microsoft SQL Server database used
by a Microsoft SharePoint 2013 instance. This instance was created specifically
for the case study by installing SharePoint (the schema rather than the data
is needed here, so the results are unaffected by the SharePoint instance not
being live/in-use). As SharePoint uses 16 schemas the largest was selected; this
contains 7 KLOC consisting of 136 tables, 5442 columns, and 61 indexes. The
goal here was not to select a schema which is representative of all Microsoft SQL
Server based databases, but rather to have a schema which is unsupported by
both tools in equal measure.

The changes needed to DBLModeller to support the schema were determined
by attempting to extract a model, then noting any errors produced. These were
then fixed incrementally and the number of modified lines of code were counted.
However, with Gra2MoL a new ANTLR grammar was developed to parse the
schema dump. This makes it possible to compare the work required to extend a
grammar against the work required to develop a new grammar.

Table 3 presents the results and shows that the extension of DBLModeller
required fewer code changes. The use of our annotated T2M transformation
meant that no M2M rule changes were needed. The use of a multi-dialect gram-
mar meant it was unnecessary to write a new grammar for the Microsoft SQL
dialect, instead we modified various rules in our existing grammar. However,
when comparing the development time/effort in extending the two tools it is im-
portant to consider whether a new LOC represents the same effort in each. As
identical technologies are used in the Gra2Mol PLSQL example and DBLMod-
dler (ANTLR for the Lexer/Parser, and the G2M DSL for the T2M rules), the



results should be comparable. Returning to RQ4, we conclude that the changes
made in DBLModeller have had a positive effect on extensibility. Furthermore,
the similarities between SQL dialects meant that extending the DBLModeller
was a straightforward task.

4 Conclusions & Future Work

We introduced DBLModeller, a tool-supported approach for modelling the data-
base layer of enterprise software systems. Using this we were able to extract a
structure model conforming to the KDM [17] and a workload model conforming
to the SMM [14]. These standardised metamodels ensured interoperability with
exiting modelling and cloud migration tools [11] [9]. Previous database modelling
tools did not capture the properties which influence cloud migration costs, i.e.,
growth and query patterns. Furthermore, we decoupled the extraction of KDM
and SMM based models from their use (e.g. SMM was used within CloudMIG
[6] but the user is not able to access the model and other SMM models can not
be used as input).

We evaluated DBLModeller using database schemas and log files from multi-
ple real systems. Our experiments showed that DBLModeller can extract models
from a wider range of systems and can be extended with less effort than the lead-
ing existing tool (Gra2MoL [8]). These key benefits were achieved by removing a
model-to-model transformation from the model extraction process and by using
a single multi-dialect grammar instead of using a grammar for each dialect.

In the future we plan to use DBLModeller to extract models from other live
systems and to use these to simulate and optimise data migration from legacy
systems into the cloud. Other potential areas of future research include analyses
of the extracted models to identify design issues or anti-patterns, and to identify
suitable database types for the system being modelled. Finally, we envisage that
the use of annotations to avoid the need for multiple model transformations will
have applications in other areas of model-driven software engineering.

Acknowledgements

This work was funded by the UK EPSRC grant EP/F501374/1. Science Ware-
house Ltd granted access to their systems for evaluation purposes and provided
feedback on the industrial application of DBLModeller.

References

1. P6Spy Framework. http://p6spy.github.io/p6spy
2. Alalfi, M.H., Cordy, J.R., Dean, T.R.: SQL2XMI: Reverse engineering of UML-ER

diagrams from relational database schemas. In: Proceedings of the 15th Working
Conference on Reverse Engineering. pp. 187–191 (2008)

3. Canovas, J.: Gra2Mol: PLSQL2ASTM example project. github.com/jlcanovas/
gra2mol/tree/master/examples/Grammar2Model.examples.PLSQL2ASTMModel



4. Davis, K.H., Alken, P.: Data reverse engineering: A historical survey. In: Seventh
Working Conference on Reverse Engineering. pp. 70–78. IEEE (2000)

5. Dı́az, O., Puente, G., Izquierdo, J.L.C., Molina, J.G.: Harvesting models from web
2.0 databases. Software & Systems Modeling 12(1), 15–34 (2013)

6. Frey, S., Hasselbring, W.: Model-based migration of legacy software systems into
the cloud: The CloudMIG approach. Softwaretechnik-Trends 30(2) (2010)

7. Izquierdo, J.L.C., Molina, J.G.: A domain specific language for extracting models
in software modernization. In: 5th European Conference on Model-driven Archi-
tecture Foundations and Applications (ECMDA-FA). pp. 82–97 (2009)

8. Izquierdo, J.L.C., Molina, J.G.: An architecture-driven modernization tool for cal-
culating metrics. IEEE Software 27(4), 37–43 (2010)

9. Menychtas, A., Konstanteli, K., Alonso, J., Orue-Echevarria, L., Gorroñogoitia,
J., Kousiouris, G., Santzaridou, C., Bruneliere, H., Pellens, B., Stuer, P., Strauß,
O., Senkova, T., Varvarigou, T.A.: Software modernization and cloudification using
the ARTIST migration methodology and framework. Scalable Computing: Practice
and Experience 15(2), 131–152 (2014)

10. Mituzas, D.: Page view statistics for Wikimedia projects. dumps.wikimedia.org/
other/pagecounts-raw

11. Mohagheghi, P., Sæther, T.: Software engineering challenges for migration to the
service cloud paradigm: Ongoing work in the REMICS project. In: IEEE World
Congress on Services (SERVICES). pp. 507–514 (2011)

12. Mori, M., Noughi, N., Cleve, A.: Mining SQL execution traces for data manipula-
tion behavior recovery. In: Joint Proceedings of the CAiSE 2014 Forum and CAiSE
2014 Doctoral Consortium co-located with the 26th International Conference on
Advanced Information Systems Engineering (CAiSE 2014), Thessaloniki, Greece,
June 18-20, 2014. pp. 41–48 (2014)

13. Normantas, K., Vasilecas, O.: Extracting term units and fact units from exist-
ing databases using the Knowledge Discovery Metamodel. Journal of Information
Science 40(4), 413–425 (2014)

14. Object Management Group: Structured Metrics Metamodel (1 2012)
15. Oracle: SQL Developer. www.oracle.com/technetwork/developer-tools
16. Pérez-Castillo, R., de Guzmán, I.G.R., Caivano, D., Piattini, M.: Database schema

elicitation to modernize relational databases. In: 14th International Conference on
Enterprise Information Systems (ICEIS’12). pp. 126–132 (2012)

17. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge Discovery
Metamodel-ISO/IEC 19506: A standard to modernize legacy systems. Computer
Standards & Interfaces 33(6), 519–532 (2011)

18. Sadovykh, A., Vigier, L., Hoffmann, A., Grossmann, J., Ritter, T., Gomez, E.,
Estekhin, O.: Architecture driven modernization in practice–study results. In: 14th
IEEE International Conference on Engineering of Complex Computer Systems. pp.
50–57. IEEE (2009)

19. Wikimedia: Wikimedia dump index. dumps.wikimedia.org/backup-index.html


	Towards Platform Independent Database Modelling in Enterprise Systems

