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Abstract

Recurrent neural network language models (RNNLMs) have

consistently outperformed n-gram language models when

used in automatic speech recognition (ASR). This is because

RNNLMs provide robust parameter estimation through the use

of a continuous-space representation of words, and can gen-

erally model longer context dependencies than n-grams. The

adaptation of RNNLMs to new domains remains an active re-

search area and the two main approaches are: feature-based

adaptation, where the input to the RNNLM is augmented with

auxiliary features; and model-based adaptation, which includes

model fine-tuning and introduction of adaptation layer(s) in the

network. This paper explores the properties of both types of

adaptation on multi-genre broadcast speech recognition. Two

hybrid adaptation techniques are proposed, namely the fine-

tuning of feature-based RNNLMs and the use of a feature-based

adaptation layer. A method for the semi-supervised adapta-

tion of RNNLMs, using topic model-based genre classification,

is also presented and investigated. The gains obtained with

RNNLM adaptation on a system trained on 700h. of speech are

consistent using both RNNLMs trained on a small (10M words)

and large set (660M words), with 10% perplexity and 2% word

error rate improvements on a 28.3h. test set.

Index Terms: RNNLM, LM adaptation, multi-domain ASR

1. Introduction

Language models (LMs) play a key role in modern ASR and

machine translation systems as they ensure that the output re-

spects the pattern of the language in question. n-gram LMs

dominated ASR for decades until RNNLMs [1] were introduced

and found to give significant gains in performance. It is found

that n-gram LM and RNNLM contributions are complementary

and state-of-the-art ASR systems involve interpolation between

the two types of models [1, 2, 3, 4, 5, 6, 7, 8, 9].

In automatic speech recognition, language context is gener-

ally heavily influenced by the domain, which can include topic,

genre and speaking style. RNNLMs trained on a text corpus

provide an implicit modelling of such contextual factors. How-

ever, it has been found that domain adaptation of RNNLMs to

small amounts of matched in-domain text data provide signifi-

cant improvements in both perplexity (PPL) and word error rate

(WER) [10, 2, 3, 11, 5]. RNNLM adaptation can be categorised

as either feature-based [2, 5] or model-based [10, 3, 11]. The

former involves augmenting the input to the RNNLM with aux-

iliary features that encode domain information whilst the latter

involves adapting the network to the new domain. Model-based

RNNLM adaptation can either involve fine-tuning, which in-

volves further training the RNNLM with matched in-domain

data or the introduction of adaptation layer(s) to adapt the net-

work to new domains.

Whilst feature-based RNNLM adaptation was shown to

outperform domain fine tuning [5], it is required that the aux-

iliary features be known at the time of model training and

thus can be inflexible, as it requires for the whole model to

be re-trained should altered features become available. That

in turn can be inconveninent as training an RNNLM on large

amounts of data can take several days or even weeks to com-

plete. Domain fine-tuning somehow addresses such limita-

tion as the RNNLM can be fine-tuned using newly available

domain-specific data and do not require retraining of the whole

RNNLM. However, the shared information between domains is

not properly modelled. A combination of feature and model

adaptation can thus provide the best solution in many instances.

This paper provides a detailed comparison of both types of

adaptation on RNNLMs trained on both small and large text cor-

pora and proposes novel techniques for RNNLM adaptation, in-

cluding the linear hidden network (LHN) [22] adaptation layer

as well as hybrid adaptation methods, and are evaluated on a

broadcast media transcription task [12].

2. Recurrent Neural Network LMs

Recurrent Neural Network Language Models were introduced

in [13] and include a recurrent layer which can represent the

full history hi =< wi−1, . . . , w1 > for word wi using a con-

catenation of word wi−1 and the remaining context vector vi−2

from the previous time step. Each word wi is represented us-

ing a 1-of-K encoding. The main advantages of RNNLMs over

n-gram language models are: 1) it can represent the full, non-

truncated history of words in an utterance and 2) it provides a

continuous representation of the history and thus does not suffer

from sparsity issues of n-gram LMs as some contexts might not

occur in the data, and approximation techniques such as back-

off are required [14, 15]. An out-of-vocabulary (OOV) node

[10, 3, 5] can be included at the input to represent any input

word that is not in the chosen vocabulary, and an out-of-shortlist

(OOS) node [10, 3, 5] can be included at the output to represent

any word not in a shortlist vocabulary. The main purpose of

the latter is to reduce the computational cost at the output layer

by limiting the vocabulary to the most frequent words. A fur-

ther auxiliary feature vector f can be provided as input to the

network, in order to allow for feature-based adaptation [2, 5].

The LM probability for the next word P (wi+1|wi, vi−1) is

computed as follows. A full history vector is obtained by con-

catenating wi and the hidden (recurrent) layer activation from

the previous time step, vi−1. The hidden layer takes the two in-

puts and produces a new representation of the history, vi using

a non-linear sigmoid activation. This activation is then input

to the softmax activation function at the output layer to pro-

duce normalised RNNLM probabilities. Moreover, the activa-



tion from the hidden layer is also returned to the input layer, as

it encodes the word history, and is used to compute the proba-

bility for the following word. This is illustrated in Figure 1.

RNNLM training is performed using the back propagation

through time (BPTT) algorithm [16], where the error is back-

propagated through the recurrent connection for a specific num-

ber of time steps. The most expensive computation in RNNLM

is the output softmax layer, which involves normalising the

probabilities over the whole output vocabulary. This can be

very costly when using cross entropy (CE) training with typi-

cal ASR tasks, which typically involve several thousand words

in the output layer and several million words in the training cor-

pus. In order to limit this computational effort, various approx-

imation strategies have been developed. These include the hier-

archical softmax (HS) [17], noise contrastive estimation (NCE)

[18] and class-based approximations [19]. In this paper, the

approach proposed by Chen et al.[4] is used, with GPU-based

mini-batch training using spliced sentence bunch, allowing full

softmax computation of the output using CE training.

Figure 1: Feature-based RNNLM with OOS and OOV nodes.

3. Multi-Genre Broadcast Challenge Data

The experiments in this paper make use of the data provided

by the British Broadcasting Corporation (BBC) for the Multi-

Genre Broadcast (MGB) challenge 2015 [12]. Task 1 of the

challenge involved participants having to perform the automatic

transcription of a set of BBC shows. These shows were cho-

sen to cover the multiple genres in broadcast TV, categorised

in terms of 8 genres: advice, children’s, comedy, competition,

documentary, drama, events and news. Acoustic Model (AM)

training data was fixed and limited to more than 2,000 shows,

broadcast by the BBC during 6 weeks in April and May of 2008.

The development data for the task consisted of 47 shows that

were broadcast by the BBC during a week in mid-May 2008.

The numbers of shows and the associated broadcast time for

training and development data are shown in Table 1.

Train Development

Genre Shows Time Shows Time

Advice 264 193.1h. 4 3.0h.
Children’s 415 168.6h. 8 3.0h.
Comedy 148 74.0h. 6 3.2h.

Competition 270 186.3h. 6 3.3h.
Documentary 285 214.2h. 9 6.8h.

Drama 145 107.9h. 4 2.7h.
Events 179 282.0h. 5 4.3h.
News 487 354.4h. 5 2.0h.

Total 2,193 1580.5h. 47 28.3h.

Table 1: Amount of training and development data.

Additional data was available for Language Model (LM)

training in the form of subtitles from shows broadcast from

1979 to March 2008, with a total of 650 million words, and

referred to as LM1. The subtitles from the 2,000+ shows for

acoustic modelling could also be used for LM training, referred

to as LM2. Statistics for these two sets can be seen in Table 2.

The development data was used as the evaluation set in or-

der to provide fair comparison with previous work [5, 20]. For

language model experiments, the LM2 data was partitioned

into a training and development set by selecting 90% of text

for each programme for training and the remaining 10% for de-

velopment, after shuffling the lines for each programme.

Subtitles #sentences #words #unique words

LM1 (1979-2008) 72.9M 648.0M 752,875
LM2 (Apr/May ’08) 633,634 10.6M 32,304

Table 2: Language model data.

The rest of the paper will deal with RNNLM adaptation to

multiple domains in the context of the MGB challenge.

4. Feature-Based RNNLM Adaptation

In feature-based RNNLM adaptation, a feature vector f is ap-

pended to the input of the RNNLM as shown in Figure 1. Two

features are used in this work, which are as follows.

4.1. Genre 1-hot Auxiliary Codes

Genre information can be represented using a 1-of-K encoding,

with K being 8. Given that ground truth genre information is

available for each show, the latter can be input to the RNNLM

as a feature vector, at both training and test times.

4.2. LDA Auxiliary Features

Latent Dirichlet Allocation (LDA) [21] is a generative model

that allows text data to be represented by a set of unobserved

topics. Term frequency-inverse document frequency (TF-IDF)

vectors are computed on LM2 training text data, which are used

to train LDA models. LDA features are then obtained by com-

puting Dirichlet posteriors over the topics for each show. LDA

features were found to giver better performance than genre fea-

tures when used for RNNLM adaptation on the MGB data [5].

This is due to LDA features providing a finer representation of

domain than genre auxiliary codes, through the use of a contin-

uous feature space and over a larger number of latent topics.

5. Model-Based RNNLM Adaptation

5.1. Model Fine-tuning

Model fine-tuning is one way of adapting a RNNLM to a spe-

cific genre, and it involves further training the RNNLM on

genre-specific data, resulting in a separate model per genre.

5.2. LHN Adaptation Layer

An adaptation layer can be cascaded in the network and then

fine-tuned by only updating the weights connecting the adapta-

tion layer and the next layer. This was done for feed-forward

neural network LMs (NNLM), where the adaptation layer was

cascaded between the projection layer and the hidden layer [10].

A projection layer is necessary for NNLMs because n − 1 in-

puts, corresponding to n-gram contexts, need to be projected

to a lower dimension, before being fed to the hidden layer. In

RNNLMs, the projection layer is not necessary as only the re-

current vector is fed as input to the hidden layer [13]. In this

work, the adaptation layer is cascaded between the hidden layer

and the output layer as shown in Figure 2. The adaptation layer

has a linear activation and thus provides a linear transform to

the hidden layer. This is equivalent to the linear hidden network

(LHN) [22] transform that has been applied to DNN acoustic



models. The weights connecting the hidden and adaptation lay-

ers are initialised as the identity matrix, thus providing an equiv-

alent network to the unadapted RNNLM. At the time of fine-

tuning, only the weights connecting the adaptation to the output

layer are updated. To the best of our knowledge, we are the first

to apply LHN adaptation to RNNLMs.

Figure 2: RNNLM with LHN adaptation layer.

6. Hybrid RNNLM Adaptation

6.1. Fine-tuning Feature-Based RNNLM

Feature-based RNNLMs with LDA features can be further fine-

tuned to each genre by further training the models on genre-

specific text. This is one way in which topic and genre informa-

tion can be leveraged effectively for RNNLM adaptation.

6.2. Feature-Based RNNLM with Adaptation Layer

One disadvantage of the LHN adaptation layer fine-tuning of

RNNLMs is that overfitting can happen if the amount of genre-

specific data is small. It was shown in [11] that the adaptation

layer can be recast from providing a multiplicative transform

(as in the case of the LHN transform) to an additive transform,

by using a domain vector d in the form of a 1-of-K encoding,

as input to the adaptation layer. In our case, this is equivalent

to using genre 1-hot vectors as input to the adaptation layer.

Such a model can also include auxiliary features such as LDA,

as input to the hidden layer, as shown in Figure 3.

Figure 3: RNNLM with feature-based adaptation layer.

7. Semi-supervised RNNLM Adaptation

In the MGB challenge, genre information is only available for

the transcripts of the acoustic data (LM2) and not for the sep-

arate language model (LM1) subtitle text. LM1 text is much

richer with 650M words. In order to apply genre adaptation

when using LM1 text, genre labels need to be automatically

derived. LDA features allow for a good classification of genre

when using support vector machine (SVM) classification, as

was verified on the development set. An experiment was per-

formed where a SVM was trained to predict genre labels from

LDA features extracted on the acoustic text training set and

tested on the official development set. It was found that 1024
topics gave the best result with a classification accuracy of

94.79%. The same model is used further to predict the genre

labels for the subtitle (LM1) text in order to provide the genre

feature input for LM1&LM2 RNNLMs.

8. Experiments and Results

A vocabulary of 200k words was chosen from all the words in

the LM2 text (87k) and augmented with the most frequently

occuring words in LM1 for training the baseline 4-gram LM.

For acoustic modelling, 700h. of speech was selected from the

training set based on word matching error rate (WMER) and

confidence scores [23]. The acoustic models consisted of Bot-

tleneck DNN-GMM-HMM trained using TNet [24] and HTK

[25] toolkits. The Bottleneck system used a DNN for extract-

ing 26 features. The DNN took as input 15 contiguous log-

filterbank frames and consisted of 4 hidden layers of 1, 745 neu-

rons plus the 26-neuron Bottleneck layer, and an output layer of

8, 000 triphone state targets. State-level Minimum Bayes Risk

(sMBR) [26, 27] was used as the target function for training

the DNN. Feature vectors for training the GMM-HMM systems

were 65-dimensional, including the 26 dimensional Bottleneck

features, as well as 13 dimensional PLP features together with

their first and second derivatives. GMM-HMM models were

trained using 16 Gaussian components per state, and around

8k distinct triphone states. More details on our system for the

MGB challenge can be found in [23].

Our baseline 4-gram language model was trained using

LM1&LM2 text with the SRILM toolkit [28] using the

200k vocabulary. Our baseline RNNLM was trained using

LM1&LM2 text with a 60k vocabulary for the input word list

and a 50k vocabulary for the output word list. Both the 60k and

50k wordlists were obtained by shortlisting the 200k vocabulary

based on most frequent words.

Decoding with Bottleneck systems was performed in three

stages; in a first stage, lattices were generated using a 2-gram

LMs, followed by lattice rescoring with a 4-gram LM to gener-

ate new lattices. The 4-gram lattices were further rescored using

the RNNLM using the n-gram approximation lattice rescoring

method described in [29], with n set to 6 as this was found to

give optimal results. In addition, n-best list rescoring was per-

formed by first converting the lattices to n-best lists, with n

being 100, followed by 1-best computation.

The baseline results, as well as results obtained using adap-

tation of RNNLMs trained on LM2 and LM1&LM2 text and

scored using the official MGB scoring package [12], are shown

in Table 3. All RNNLMs in our experiments have 512 nodes

for the hidden layer and where applicable, 512 nodes for the

adaptation layer. It was found that n-best list rescoring gives an

improvement of 0.2% in the WER over lattice rescoring when

using LM1&LM2 RNNLMs. As a result, n-best list rescor-

ing was used for all RNNLM adaptation experiments. The in-

terpolation weight of LM1&LM2 RNNLMs with the 4-gram

baseline LM was set to 0.5 as this was found to give the lowest

PPL on our development set. Similarly, an interpolation weight

of 0.3 gives the lowest PPL for LM2 RNNLMs.

LDA auxiliary features are found to be more effective than

genre 1-hot features for the adaptation of acoustic text (LM2)

RNNLMs, similar to what has been reported in the literature

[5, 20]. The number of LDA topics was varied from 10 to 150



Genre → Adv. Child. Comed. Compet. Docum. Dram. Even. News Global

System Adaptation WER PPL WER

LM1&LM2 4-gram and RNNLM baselines

4-gram None 24.6 30.4 43.5 25.8 28.0 41.5 34.1 15.7 100.1 30.1

4-gram+RNNLM interp (lattice rescoring) None 23.8 29.4 43.1 25.5 27.3 41.5 32.9 14.8 88.6 29.4

4-gram+RNNLM interp (n-best rescoring) None 23.7 29.2 43.2 25.0 26.9 41.7 32.7 14.5 88.6 29.2

LM1&LM2 4-gram + LM2 RNNLM (0.3 interp) with RNNLM adaptation

RNNLM Baseline None 24.2 29.8 43.6 25.5 27.7 42.2 33.3 14.9 93.7 29.8

Genre feat. at hidden layer Feature 24.3 29.6 43.5 25.2 27.6 42.0 33.1 14.9 91.9 29.7

Genre fine-tuning Model 24.3 29.6 43.4 25.3 27.5 41.6 33.2 14.8 90.6 29.6

Genre LHN adaptation layer fine-tuning Model 24.1 29.5 43.3 25.2 27.6 41.7 33.1 15.0 90.4 29.6

Genre feat. at adaptation layer Hybrid 23.9 29.6 43.5 25.3 27.4 42.0 33.2 14.9 90.7 29.6

LDA feat. at hidden layer Feature 23.9 29.4 43.6 25.1 27.6 41.4 32.7 14.7 88.3 29.5

LDA feat. at hidden layer and genre fine-tuning Hybrid 23.9 29.3 43.6 24.8 27.5 41.3 32.7 14.8 86.7 29.4

LDA feat. at hidden and genre feat. at adaptation layer Hybrid 23.6 28.9 43.4 24.9 27.3 41.2 32.5 14.6 86.9 29.2

LM1&LM2 4-gram + LM1&LM2 RNNLM (0.5 interp) with RNNLM adaptation

RNNLM Baseline None 23.7 29.2 43.2 25.0 26.9 41.7 32.7 14.5 88.6 29.2

Genre feat. at hidden layer Feature 23.5 29.1 42.6 24.6 26.9 40.5 32.9 14.6 85.4 29.0

Genre fine-tuning Model 23.6 28.9 42.7 24.5 26.9 41.2 32.5 14.3 82.2 29.0

Genre LHN adaptation layer fine-tuning Model 23.4 28.8 42.6 24.6 26.9 41.2 32.4 14.2 81.9 28.9

Genre feat. at adaptation layer Hybrid 23.1 28.6 42.4 24.2 26.5 40.4 32.6 14.3 83.4 28.7

LDA feat. at hidden layer Feature 23.1 28.7 42.5 24.5 26.5 40.4 32.3 14.5 81.6 28.7

LDA feat. at hidden layer and genre fine-tuning Hybrid 23.0 28.7 42.5 24.4 26.5 40.4 32.3 14.4 80.4 28.7

LDA feat. at hidden and genre feat. at adaptation layer Hybrid 22.9 28.6 42.5 24.2 26.4 40.3 32.3 14.1 79.4 28.6

Table 3: RNNLM baseline and adaptation results on MGB data.

and it was found that 100 topics gives the best result, both in

terms of test PPL and WER, when extracting LDA features from

the reference text for each show. The number of topics was thus

fixed to 100. It was shown in [5] that computing LDA features

from the ASR output led to a degration of performance by about

0.1% when using 30 LDA topics. In contrast, we found that

with 100 topics, the same overall WER result is obtained when

using the reference and ASR output, with some minor variations

within genres. The ASR output text is thus used to compute

LDA features. It is interesting to note that the LDA-adapted

LM1&LM2 RNNLM with 100 topics also results in a sub-

stantial drop in WER of 0.5%. Moreover, small but significant

gains are obtained with the genre fine-tuning of LDA-adapted

RNNLMs. For the LM2 RNNLM, this hybrid adaptation leads

to a global drop in WER from 29.5% to 29.4%.

The LHN adaptation layer fine-tuning is found to work well

for RNNLMs, giving gains in terms of PPL over full model

fine-tuning for both LM2 and LM1&LM2 RNNLMs. With

LM1&LM2 RNNLM, there is also a drop in the global WER

(28.9%) using the LHN adaptation layer compared to full model

fine-tuning (29.0%). It is to be noted that such small gains are

significant for language modelling.

Our experiments with the introduction of a domain-specific

adaptation layer also corroborate with previous work on acous-

tic model DNN adaptation which showed that using an adapta-

tion layer with additive bias adaptation (feature-based adapta-

tion layer) works better than a multiplicative transform (LHN

adaptation layer) [30]. Whilst the performance of both are

comparable using LM2 RNNLMs with a WER of 29.6%, the

results with LM1&LM2 RNNLMs indicate that an additive

transform performs better (WER 28.7%) compared to when us-

ing a multiplicative transform (WER 28.9%). This might be ex-

plained by the fact that a multiplicative transform is more prone

to over-fitting, especially when the amount of in-domain data is

limited (e.g. in genres such as comedy and drama).

The results show that LDA features can be used to clas-

sify genre quite accurately using SVMs and these genre labels

are useful when training a LM1&LM2 RNNLM in a semi-

supervised fashion. Using those genre labels as input features

to the adaptation layer leads to a drop in WER of 0.5% from

29.2% to 28.7%. RNNLMs trained with those LDA-derived

genre labels at the adaptation layer give comparable results to

using LDA features input to the hidden layer, for LM1&LM2
RNNLMs with a WER of 28.7% for both, although combining

the two inputs yields a further improvement to 28.6%.

Finally, the results show the complementarity between the

two domain representations, namely topic representation de-

rived from LDA features and genre representation provided for

training, development and evaluation sets in the MGB chal-

lenge. Combining them, i.e. topic and genre at the hid-

den and adaptation layers respectively, gives the best results

with a drop in WER of 0.6% from 29.8% to 29.2% using an

RNNLM trained on LM2 text and from 29.2% to 28.6% using

an RNNLM trained on LM1&LM2 text.

9. Conclusions

In this work, various feature and model-based adaptation meth-

ods for RNNLMs have been compared and combined on multi-

genre speech recognition. It was found that the two approaches

can be complementary and combining them often improves per-

formance. The use of a separate adaptation layer was investi-

gated for genre adaptation, using either an additive or a mul-

tiplicative transform, with an additive transform giving better

results. Finally, it was found that using topic and genre features

together, lead to better results than when using either input on

its own. In future work, the joint modelling of topic and lan-

guage with RNNLMs will be investigated, in order to devise

novel adaptation techniques for multi-domain ASR.
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