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Abstract

Deconvolution of the speech excitation (source) and vocal tract

(filter) components through log-magnitude spectral processing

is well-established and has led to the well-known cepstral fea-

tures used in a multitude of speech processing tasks. This pa-

per presents a novel source-filter decomposition based on pro-

cessing in the phase domain. We show that separation be-

tween source and filter in the log-magnitude spectra is far from

perfect, leading to loss of vital vocal tract information. It is

demonstrated that the same task can be better performed by

trend and fluctuation analysis of the phase spectrum of the

minimum-phase component of speech, which can be computed

via the Hilbert transform. Trend and fluctuation can be sepa-

rated through low-pass filtering of the phase, using additivity of

vocal tract and source in the phase domain. This results in sep-

arated signals which have a clear relation to the vocal tract and

excitation components. The effectiveness of the method is put

to test in a speech recognition task. The vocal tract component

extracted in this way is used as the basis of a feature extrac-

tion algorithm for speech recognition on the Aurora-2 database.

The recognition results shows upto 8.5% absolute improvement

in comparison with MFCC features on average (0-20dB).

Index Terms: Speech phase spectrum, Source-filter decom-

position, Hilbert transform, phase wrapping, minimum-phase

component, Trend/Fluctuation analysis

1. Introduction

Phase spectrum of the speech signal has a very complicated be-

haviour. Its shape is noise-like and lacking in any meaningful

trend or extremum points making it hard to model or interpret.

Further, there are several studies that suggest it is unimportant

from a perceptual point of view [1–4]. Although there are no-

table works that have exploited the phase [5–20], it is still a

common practice to discard this spectrum after the Fourier anal-

ysis. Experimental studies have lacked a fundamental mathe-

matical foundation such that would allow measurement of the

information encoded by the phase spectrum. Useful reviews

about the phase spectrum may be found in [21], [22] and [23].

In the case of the magnitude spectrum, the source-filter

model is commonly employed to decompose the speech sig-

nal into its fundamental elements, i.e. the vocal tract (filter) and

the excitation (source). The theory of such deconvolution based

on cepstral (log-magnitude) processing is well-established and

most speech processing methods make use of it in some way

[24, 25]. However, in the case of the phase spectrum there is no

algorithm for direct phase modelling to facilitate such decom-

position, despite the fact that convolution in the time domain is

equivalent to addition in the phase domain, which should poten-

tially be useful for carrying out deconvolution. So, developing

a basic phase-based source-filter model, could pave the way for

putting the speech phase spectrum to practical use and will lend

support to the experimental results already reported.

In this paper, we present a novel method for source-filter

modelling which enables the blind deconvolution of the speech

using purely phase-based processing. This model provides in-

sight into the way in which information is encoded in the phase

spectrum and sheds light on the behaviour of the phase across

the spectrum. The capability of the method to follow the tempo-

ral evolution of the vocal tract configuration and the excitation

component will be demonstrated and discussed. In addition, we

propose a parametrization method to demonstrate the efficacy

of the suggested method in a speech recognition task.

The rest of this paper is structured as follows. Section 2

reviews the main issues with the phase spectrum-based analysis

and modelling. In Section 3 the proposed method is introduced

and investigated from different aspects. Section 4 presents the

feature extraction process and noise-robust speech recognition

results. Section 5 concludes the paper.

2. Properties of the phase spectrum

In speech processing, the magnitude spectrum plays the ma-

jor role because of its harmony with our understanding of the

physical characteristics of the speech production system and

its benign behaviour from the mathematical standpoint. In par-

ticular, source (fundamental frequency) and filter (formant fre-

quencies) elements, as the building blocks of the speech sig-

nal, can be obtained straightforwardly by decomposition in the

cepstral domain. As in the cepstral domain, these two compo-

nents are also additive in the phase domain. However, signal

processing through phase manipulation is overwhelmingly dif-

ficult because of phase wrapping. This phenomenon is due to

the atan2(., .) function and gives the phase spectrum a chaotic

shape, lacking any meaningful trend or extremum points. As a

result, direct interpretation and modelling of this spectrum be-

comes extremely complicated. To produce a more understand-

able representation of the phase, researchers resort to working

with its derivative, i.e. the group delay function (GDF).

2.1. Group Delay Function

Most of the phase-related works in speech processing are based

on the GDF, τX(ω), which is defined as follows

τX(ω) = −
d

dω
arg[X(ω)] = −Im{

d

dω
log(X(ω))} (1)

where arg[.] and Im{.} denote the unwrapped (continuous)

phase and imaginary part and ω is angular frequency. Phase un-

wrapping is not straightforward [26] but the GDF can be com-

puted while avoiding this issue by utilizing real and imaginary

parts,

τX(ω) =
XRe(ω)YRe(ω) +XIm(ω)YIm(ω)

|X(ω)|2
(2)



where Y (ω) is the Fourier transform of nx[n] and the Re sub-

script denotes the real part.

2.1.1. Pros and cons of working with GDF

There are several benefits of working with the GDF. First, un-

der certain conditions, it has a relatively clear behaviour and

resembles the magnitude spectrum. The second advantage is

additivity, which means if two signals are convolved in the time

domain their GDFs will be added. Third, it has a high frequency

resolution, i.e. it is able to resolve closely located peaks in the

frequency domain.

However, on the negative side, when the magnitude spec-

trum (denominator of Eq. (2)) gets close to zero, the GDF be-

comes very spiky and this will highly limit its usefulness. In the

case of speech signals, the excitation component gives rise to

such zeros and this, to a great extent, restricts the applicability

of the GDF.

2.1.2. Proposed Solutions

Four methods have been proposed in the literature for dealing

with the GDF spikiness, namely modified GDF (MODGDF)

[27–29], chirp GDF (CGDF) [30], product spectrum (PS) [31],

and model-based GDF [12,14, 32, 33]. Despite the relative suc-

cess of these techniques in tackling the aforementioned prob-

lem and returning an estimate of the vocal tract configuration,

none of them provides insight into the way in which the source

and filter components interact nor how such information is en-

coded in the phase spectrum. In fact, each one proposes a solu-

tion for alleviating the unfavourable effect of the denominator

of Eq. (2), when |X(ω)| approaches zero: MODGDF, replaces

the denominator with the cepstrally smoothed power spectrum;

CGDF tries to move away from the unit circle by chirp process-

ing; in the PS method the denominator is substituted with unity;

and in the model-based case the autoregressive (AR) model is

extracted and its group delay is computed.

2.1.3. Shortcoming of the Solutions

By suppressing the excitation element, these methods can not

be successfully employed in applications where this component

is of some significance. However, the more important issue with

the GDF is that although the GDFs of the source and filter com-

ponents are additive, decomposing the speech into these two

parts through GDF-based processing is problematic in princi-

ple. This point will be explained in Section 3.3.2 but its direct

implication is that the additive property of the GDF for doing

deconvolution becomes practically ineffective.

3. Phase Spectrum Modelling

3.1. Preliminary

Speech is a mixed-phase signal [34] owing to its complex cep-

strum being neither causal nor anticausal [24]; hence it can

be decomposed into two complementary components, namely

minimum-phase (MinPh), XMinPh(ω), and all-pass (AllP),

XAllP (ω),

X(ω) = |X(ω)|.ej.arg[X(ω)] = XMinPh(ω).XAllP (ω) (3)







|X(ω)| = |XMinPh(ω)|

arg[X(ω)] = arg[XMinPh(ω)] + arg[XAllP (ω)]
(4)

As seen, the magnitude spectrum is only related to the MinPh

part of the speech whereas the phase spectrum is linked to

both the MinPh and AllP components. Since both vocal tract

(XV T (ω)) and excitation (|XExc(ω)|) elements manifest them-

selves in the magnitude spectrum, the minimum-phase compo-

nent can be expressed as follows






|XMinPh(ω)| = |XV T (ω)|.|XExc(ω)|

arg[XMinPh(ω)] = arg[XV T (ω)] + arg[XExc(ω)].

(5)

Therefore, our goal, i.e. source-filter modelling in the phase do-

main, is to compute arg[XV T (ω)] and arg[XExc(ω)]. To do

so, first we need to compute the minimum-phase component of

the X(ω), namely XMinPh(ω).

3.2. Computing the minimum-phase component

For recovering the minimum-phase component of a mixed-

phase signal two approaches can be considered, parametric and

non-parametric. In the parametric case, the z-transform of the

sequence should be expressed in a rational form and all the

poles and zeros which are located outside the unit circle are re-

flected inside. This method is not practical since the z-transform

of an autoregressive-moving-average model is not available in

practice. On the other hand, the non-parametric approach does

not assume a particular form for the z-transform and takes ad-

vantage of the complex cepstrum properties. For the minimum-

phase signals the complex cepstrum is causal, i.e. it equals zero

at the negative quefrencies [24]. For such signals, the Hilbert

transform provides a one-to-one relationship between the mag-

nitude and phase spectra as follows

arg[XMinPh(ω)] = −
1

2π
log|XMinPh(ω)| ∗ cot(

ω

2
) (6)

By replacing the log|XMinPh(ω)| with log|X(ω)| based on

Eq. (4), arg[XMinPh(ω)] can be computed. Alternatively,

the minimum-phase component can be calculated by putting a

proper lifter on the cepstrum sequence. It should be noted that

both of these approaches are very closely related, one operates

in the frequency domain and one acts in the quefrency domain.

If the independent variable was continuous both would return

identical results, however, due to having discrete independent

variables, the outcome of these two approaches would not be

exactly the same. Fig 2(h) shows this slight difference which is

due to the behaviour of the cot(.) function as it tends to infinity

at the edges. By increasing the FFT length such error reduces.

We will use the cesptrum-based method henceforth because of

its better numerical accuracy.

3.3. Source-Filter Modelling

Now, arg[XMinPh(ω)] should be decomposed into excitation

and vocal tract components. To this end, some prior knowledge

is required. However, apart from the source/filter issue, by look-

ing at the arg[XMinPh(ω)] (Fig 2(h)), it can be imagined as

a modulated signal with two major ingredients, namely carrier

and message. The former varies fast and the later changes more

slowly with respect to the independent variable, i.e. frequency.

Based on this argument arg[XMinPh(ω)] may be expressed as

follows

arg[XMinPh] = Trend+ Fluctuation (7)

where the Trend element is the slowly-varying aspect and the

Fluctuation relates to the rapidly changing component [35].



Figure 1: Workflow of the phase-based speech source/filter de-

composition.

Comparing Eq. (7) with the way in which vocal tract and excita-

tion components are combined in the log-magnitude spectrum,

it is expected that the Trend is associated with the vocal tract

and Fluctuation pertains to the excitation part of the phase.

3.3.1. Trend/Fluctuation decomposition

The underlying premise of Eq. (7) is that the two components

have a different rate of change. If the phase sequence is assumed

to be a time series for the sake of discussion, a slower element

i.e. Trend will mainly occupy the low frequencies after com-

puting the Fourier transform and can be recovered by low-pass

filtering (Here, we have used a brickwall lowpass filter with 20

taps). Having extracted the Trend, by a simple subtraction, the

Fluctuation component may be computed.

3.3.2. Comparing additivity in the phase and GDF domains

It should be noted that additivity is not a sufficient condition for

performing such decomposition. In fact, such additivity holds

for the GDFs of the vocal tract and excitation parts, too. The

necessary condition for successful decomposition is the differ-

ent variation rates of the so-called Trend and Fluctuation ele-

ments which, ideally, leads them to occupying non-overlapping

frequency regions after Fourier analysis (recall that for the sake

of discussion they are assumed to be time series). The greater

the overlap between their supports in the frequency domain, the

less effective the decomposition will be. When computing the

derivative to get the GDF, the support of the Trend component

expands toward high frequencies because its high frequency

components, although weak, are not exactly zero. The deriva-

tive magnifies them linearly with frequency, i.e. the higher the

frequency the greater the amplification,

{

τX(t) = − d
dt
arg[XMinPh(t)] = − d

dt
Trend− d

dt
Fluctuation

F{τX(t)} = −jωF{Trend} − jωF{Fluctuation}
(8)

where F{.} denotes the Fourier transform and t notifies time

(as the phase sequence was assumed to be a time series for the

sake of discussion). As a result, the overlap between the corre-

sponding supports of the Trend and Fluctuation in the frequency

domain increases and the efficacy of the decomposition after

truncation substantially decreases. As such, the GDF of the vo-

cal tract (Trend) would have high-frequency components with

noticeable energy and blocking them with a low-pass filter will

result in significant error. Therefore, the additive property of

the GDF is not practically functional.

3.3.3. Postprocessing

To have a better representation of the data lying in the Filter and

Source components of the phase we added a post-processing

block to each branch. In the case of the excitation, in order to

capture the periodicity more efficiently, autocorrelation of the

τExc(ω) is computed. As seen in Fig 2(j), it allows for a better

fundamental frequency estimation.

τ̂Exc(ω) = Autocorrelation{τExc(ω)} (9)

In the case of the vocal tract branch, the formant peaks were

boosted using an approach similar to [28], i.e.

{

τ̂V T (ω) = signum(τV T (ω)).|τV T (ω)|
α

signum(τV T (ω)) =
τV T (ω)
|τV T (ω)|

(10)

where α can be considered as a peak-boosting factor and should

be less than 1. Figs. 2(i) and 3(e) depict the effect of this factor

when it is set to 0.7. As seen, it adjusted the dynamic range and

the bandwidth of the formants.

Fig. 1 shows the block diagram of the phase-based

source/filter decomposition of a speech frame, x[n]. Fig. 2

illustrates different representations of a typical speech wave-

form and Fig. 3 depicts the spectrogram of the source and filter

components computed through the proposed method. As seen,

the suggested method succeeds in deconvolving the speech into

source and filter elements, directly models the phase spectrum

behaviour and clarifies the way in which information is encoded

in the phase spectrum of the speech signal.

3.4. Comparison with the magnitude-based approach

The advantages of the proposed method compared with the

magnitude-based approach are twofold: higher frequency res-

Figure 2: Different representations of a speech signal. (a) wave-

form, (b) wrapped phase spectrum (ARG[X(ω)]), (c) magni-

tude spectrum and its cepstrally smoothed version, (d) MOD-

GDF, (e) CGDF, (f) PS, (g) GDF of AR model (order 13), (h)

arg[XMinPh(ω)], (i) τV T (ω) (Filter), (j) τExc(ω) (Source).



Figure 3: Spectrograms of the Source and Filter components

based on the proposed method for sp10 from NOIZEUS cor-

pus [36]. (a) magnitude spectrum, (b) its cepstrally smoothed

version, (c) τV T (ω), (d) τExc(ω), (e) τ̂V T (ω), (f) τ̂Exc(ω).

olution and less frequency leakage. As seen in Fig. 2 (c) and

(i), even without boosting, it has a higher capability in resolv-

ing the local peaks of the envelope. Comparing the spectro-

grams of Fig. 3 (b) with (c) and (e), clearly shows that the for-

mants are more distinct in the filter component estimated via

arg[XV T (ω)]. Such better distinction of the formants poten-

tially implies that this representation affords better phoneme

discrimination. It should be noted that in the magnitude-based

processing there is a trade-off between the resolution and leak-

age and both of them can not be improved simultaneously.

4. Experimental Results
4.1. Feature Extraction

In order to investigate the effectiveness of the proposed method,

we used it as the basis of a feature extractor for speech recogni-

tion and compared its performance with other well-known fea-

tures. Four simple approaches were taken for turning the filter

component into a feature for ASR

i) arg[XV T ] → DCT ⇒ PHV T

ii) τV T → DCT ⇒ GDV T

iii) τ̂V T → MelF ilterbank → DCT ⇒ MFGDV T

iv) τ̂V T → Mel F ilterbank → Boost → DCT ⇒
BMFGDV T

where the rightmost name is the name assigned to each feature

derived from the filter component of the phase spectrum.

For all features, we have used the default parameters re-

ported in their respective publications. Frame length, frame

shift and number of filters were set to 25 ms and 10 ms and

23, respectively. Feature vectors have been augmented by log-

energy as well as delta and delta-delta coefficients. Cepstral

mean normalization (CMN) is performed. In the proposed

method, α coefficient (Eq. (10)) was set to 0.7 and brickwall

lowpass filter with 20 taps was used for extracting the Trend.

Hamming window were applied for all features except for the

proposed methods where Chebyshev (30 dB) window has been

employed due to [15]. Aurora-2 [37] has been used as the

database and the HMMs were trained from the clean data using

HTK [38] based on the Aurora-2 standard recipe. Recognition

results (average 0-20 dB) of the different magnitude-based and

phase-based features are reported in Table 1.

4.2. Discussion

As seen, the proposed method outperforms the other magnitude

and phase-based features despite its relative simplicity. In par-

ticular, the fact that it provides better performance than power

normalized cepstral coefficients (PNCC) [39], is remarkable

given the complexity of the PNCC. The relative robustness of

the proposed method can be explained in part by the greater

distinction of the formants arising from there being higher fre-

quency resolution and less leakage which, in turn, decreases the

confusion occurring after SNR reduction in the spectrum. An-

other important factor should be noted: As mentioned, the vocal

tract component corresponds with the trend of the MinPh parts

phase spectrum. Each point of the Trend may be considered as

a pseudo-mean of the neighbouring points in the vicinity. This,

in turn, increases the inertia of each of the Trend’s individual

points. As a result, the tendency for a point to preserve its ini-

tial condition and resist disturbance is higher. This reduces the

sensitivity to the noise and increases the feature’s robustness.

Table 1: Average (0-20dB) recognition rates Aurora-2 [37].

Feature TestSet A TestSet B TestSet C

MFCC 66.2 71.4 64.9

PLP 67.3 70.6 66.2

PNCC 71.2 72.8 71.5

MODGDF 64.3 66.4 59.5

CGDF 67.0 73.0 59.4

PS 66.0 71.2 64.6

i) PHVT 69.0 74.8 67.1

ii) GDVT 70.5 75.9 69.1

iii) MFGDVT 72.8 77.3 72.8

iv) BMFGDVT 73.2 77.4 73.4

5. Conclusions
In this paper we proposed a novel phase-based method for the

source-filter decomposition of speech. The minimum-phase

part of the signal was computed through a Hilbert transform.

Vocal tract and excitation components were then successfully

deconvolved by Trend/Fluctuation analysis of the correspond-

ing phase spectrum. This analysis clarifies the behaviour of the

the phase spectrum and the way in which it encodes informa-

tion. The efficiency of the method in comparison with perform-

ing the same process in the log-magnitude (cepstrum) and GDF

domains was discussed and illustrated. In addition, the vocal

tract component was transformed into a feature vector and its

effectiveness was evaluated in speech recognition. Recognition

results demonstrate the efficacy of the proposed method. No-

tably, despite its simplicity, it outperforms recent robust feature

extraction techniques such as PNCC. Given the centrality of the

source-filter modelling, the proposed method paves the way for

putting the phase spectrum to practical use by providing a foun-

dation for speech signal processing through phase manipula-

tion. Further optimization and studying the statistical behaviour

of the proposed phase-based representations is a broad avenue

for future research.
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