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ABSTRACT

We describe the University of Sheffield system for participation

in the 2015 Multi–Genre Broadcast (MGB) challenge task of tran-

scribing multi–genre broadcast shows. Transcription was one of four

tasks proposed in the MGB challenge, with the aim of advancing

the state of the art of automatic speech recognition, speaker diari-

sation and automatic alignment of subtitles for broadcast media.

Four topics are investigated in this work: Data selection techniques

for training with unreliable data, automatic speech segmentation

of broadcast media shows, acoustic modelling and adaptation in

highly variable environments, and language modelling of multi–

genre shows. The final system operates in multiple passes, using an

initial unadapted decoding stage to refine segmentation, followed

by three adapted passes: a hybrid DNN pass with input features

normalised by speaker–based cepstral normalisation, another hy-

brid stage with input features normalised by speaker feature–MLLR

transformations, and finally a bottleneck–based tandem stage with

noise and speaker factorisation. The combination of these three

system outputs provides a final error rate of 27.5% on the official

development set, consisting of 47 multi–genre shows.

Index Terms— Multi–genre broadcasts, automatic speech

recognition, data selection, speech segmentation, acoustic adap-

tation, language adaptation.

1. INTRODUCTION

Audio-visual media is an area of high interest for research in a va-

riety of topics related to computer vision, speech processing and

natural language processing. The ability to search into vast media

archives, browse through thousands of hours of recordings or struc-

ture the complete resources of a media company would significantly

increase the efficiency of these organisations and the services pro-

vided to the end users.

From the point of view of Automatic Speech Recognition

(ASR), work on transcription of broadcast news has achieved sig-

nificant reduction in error rates since the early works in the 1990s

[1, 2], with word error rates falling below 10% for traditional broad-

cast new programmes [3]. However, other types of broadcast media

shows have not been so widely explored. The transcription of multi-

genre data is a complex task due to the large amounts of variability

arising from multiple, diverse speakers, the variety of acoustic and

recording conditions and the lexical and linguistic diversity of the

topics covered [4].

Evaluations of technology covering different aspects of research

in audio-visual media have been a major driver behind some of the
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most recently achieved results in audio-visual media processing. The

MediaEval evaluation campaign [5] has brought together researchers

from many areas to work in automatic classification and retrieval

of broadcast data. Evaluation series such as the NIST-organised

Hub4 tasks [6] helped start the earlier efforts in broadcast news tran-

scriptions in English, while the Topic Detection and Tracking (TDT)

campaign [7] expanded this work to other tasks related to broadcast

news. More recently, the Ester campaigns [8] have created increased

interest in the transcription of French broadcast news and the Al-

bayzin campaigns [9] have pushed the efforts in audio processing of

Spanish broadcast news.

Following these efforts, the Multi-Genre Broadcast (MGB) chal-

lenge [10] aimed to take on several tasks of an increasing complexity

in broadcast media. This work tries to address that with advances in

several areas of ASR and its application in a fully functional system

for Task 1 of the MGB challenge: Speech-to-text transcription of

broadcast television.

The rest of the paper is organised as follows: Section 2 describes

the experimental setup. Section 3 explains data selection techniques

used for acoustic model training. Section 4 introduces new proce-

dures for improved automatic segmentation for ASR. Sections 5 and

6 describe different approaches for acoustic model adaptation and

language modelling adaptation for multi-genre shows. Section 7

outlines the final system. Overall results are presented in Section

8. Finally, Section 9 discusses outcomes and concludes the paper.

2. MGB CHALLENGE - TASK 1

The MGB challenge 2015 consisted of four different tasks, cover-

ing the topics of multi-genre broadcast show transcription, lightly

supervised alignment, longitudinal broadcast transcription and lon-

gitudinal speaker diarisation. The focus of this work was on Task

1: Speech-to-text transcription of broadcast television, although as-

pects of the system presented here were used in submissions to other

challenge tasks. A full description of this and the other tasks in the

challenge can be found in [10], but a brief description of the task is

given here.

Participation in this task required the automatic transcription of

a set of shows broadcast by the British Broadcasting Corporation

(BBC). These shows were chosen to cover the multiple genres in

broadcast TV, categorised in terms of 8 genres: advice, children’s,

comedy, competition, documentary, drama, events and news. Acous-

tic Model (AM) training data was fixed and limited to more than

2,000 shows, broadcast by the BBC during 6 weeks in April and

May of 2008. The development data for the task consisted of 47

shows that were broadcast by the BBC during a week in mid-May

2008. The numbers of shows and the associated broadcast time for

training and development data are shown in Table 1.



Table 1. Amount of training and development data.

Train Development

Genre Shows Time Shows Time

Advice 264 193.1h. 4 3.0h.

Children’s 415 168.6h. 8 3.0h.

Comedy 148 74.0h. 6 3.2h.

Competition 270 186.3h. 6 3.3h.

Documentary 285 214.2h. 9 6.8h.

Drama 145 107.9h. 4 2.7h.

Events 179 282.0h. 5 4.3h.

News 487 354.4h. 5 2.0h.

Total 2,193 1580.5h. 47 28.3h.

Additional data was available for Language Model (LM) train-

ing in the form of subtitles from shows broadcast since 1979 to

March 2008, with a total of 650 million words, and referred to as

LM1. The subtitles from the 2,000+ shows for acoustic modelling

could also be used for LM training, referred to as LM2. Statistics

for these 2 sets can be seen in Table 2.

Table 2. Amount of language model training data.

Subtitles #sentences #words #unique words

LM1 (1979-2008) 72.9M 648.0M 752,875

LM2 (Apr/May ’08) 633,634 10.6M 32,304

2.1. Common system description

Throughout this work, two different types of systems were used.

This Section describes the fundamental features for both of them,

while specific descriptions will be given in the paper, if further ex-

periments are addressing specific issues.

The first types of systems used were Hybrid DNN-HMM sys-

tems, built using the Kaldi toolkit [11]. These were based on a Deep

Neural Network (DNN) where the input were 5 contiguous spliced

frames of Perceptual Linear Prediction (PLP) features of 40 dimen-

sions. Features were obtained by using a linear discriminant anal-

ysis transformation of 117 spliced PLP features (from 13 dimen-

sions with a context of 4 to the left and right and middle frame), fol-

lowed by a global CMLLR transform. Features were transformed us-

ing a boosted Maximum Mutual Information (bMMI) discriminative

transformation [12], unless otherwise stated. DNNs consisted of 6

hidden layers of 2,048 neurons, and an output layer of 6,478 triphone

state targets. State-level Minimum Bayes Risk (sMBR) [13, 14] as

target functions, unless otherwise mentioned, and Stochastic Gradi-

ent Descent (SGD) was used as the optimisation method. Decod-

ing with Hybrid systems was performed in two stages; in the first

stage, lattices were generated using a highly pruned 3-gram, and af-

terwards the lattices were rescored using a complete 4-gram and the

1-best obtained and scored using the official MGB scoring package.

The second system types used are so-called Bottleneck DNN-

GMM-HMM systems built using the TNet toolkit [15] for DNN

training and the HTK toolkit [16] for Gaussian Mixture Model

(GMM) and Hidden Markov Model (HMM) training and decoding.

Bottleneck systems used a DNN as a front-end for extracting a

set of 26 bottleneck features. Such DNNs took as input 15 contigu-

ous log-filterbank frames and consisted of 4 hidden layers of 1,745

neurons plus the 26-neuron bottleneck layer, and an output layer of

8,000 triphone state targets. sMBR was used for training, unless

otherwise stated. Feature vectors for training the GMM-HMM sys-

tems were 65-dimensional, including the 26 dimensional bottleneck

features, as well as 13 dimensional PLP features together with their

first and second derivatives. GMM-HMM models were trained using

16 Gaussian components per state, and around 8k distinct triphone

states. Decoding with Bottleneck systems was also performed in

two stages; in a first stage, lattices were generated using a 2-gram,

and afterwards these lattices were rescored using a 4-gram and the

1-best obtained and scored with the official MGB scoring package.

All decoding experiments were performed using a 50,000-word

vocabulary, constructed from the most frequent words in the subtitles

as provided for language model training. Pronunciations were ob-

tained using the Combilex pronunciation dictionary[17], which was

provided to the challenge participants. When a certain word was

not contained in the lexicon, automatically generated pronunciations

were obtained using the Phonetisaurus toolkit [18]. These pronun-

ciations were expanded to incorporate pronunciation probabilities,

learnt from the alignment of the AM training data [19]. Unless oth-

erwise stated, language models used were obtained by interpolation

of several language models trained with the LM1 and LM2 lan-

guage model data from Table 2. LM training was performed with

the SRILM toolkit [20].

3. DATA SELECTION AND TRAINING

One of the main difficulties for transcription in the MGB challenge

was the efficient use of the acoustic training data provided, as the use

of prior models or other data was not allowed. The transcription of

the training data was not created for ASR training purposes. Only

the subtitle text broadcast with each show could be used, which is

of varying quality for a variety of reasons. An aligned version of

the subtitles was provided where the time stamps of the subtitles had

been corrected in a lightly supervised manner [10, 21]. After this

process, 1,196.73 hours of speech were left available for training.

The provided transcripts for the training shows were unreliable

in two ways: First, the subtitle text might not always match the actual

spoken words; and second, the time boundaries given might have

errors arising from the lightly supervised alignment process. This

work did not aim to improve on the second aspect, but instead it

studied how to perform data selection in order to train with those seg-

ments with the most accurate transcripts. An initial selection strategy

was based on selecting segments for training based on their Word

Matching Error Rate (WMER), a by-product of the semi-supervised

alignment process that measures how similar the text in the subti-

tle matched the output of a lightly supervised ASR system for that

segment [10, 21].

A more complex selection strategy was designed using confi-

dence scores for each segment. The scores were obtained from the

posterior probabilities given by a 4-layer DNN trained on the initial

selection of data whose targets were 144 monophone states [22]. The

inputs to this DNN were 15 contiguous log-Mel-filter-bank frames,

and each hidden layer had 1,745 neurons. For each segment in

the training set, the monophone state sequence was obtained using

forced alignment, and the segment-based confidence measure was

calculated as the average of the logarithmic posteriors of each frame

for its corresponding monophone state, excluding silence areas.

Two different training data setups arose from these two strate-

gies: TRN1, which contained 512.6 hours of speech segments with

WMER of 40% or less; and TRN2, which contained 698.9 hours of

speech segments with confidence score above −3.0. The amount of

data per genre in each data training definition can be found in Table

3.

Both training strategies were evaluated on the Hybrid and

Bottleneck systems, as defined in Section 2.1, in this case using

Cross-Entropy (CE) training [23]. Recognition experiments were



Table 3. TRN1 and TRN2 data selection strategies.

TRN1 TRN2

Advice 72.2h. 107.8h.

Children’s 54.2h. 68.9h.

Comedy 17.3h. 26.2h.

Competition 68.5h. 99.0h.

Documentary 92.6h. 113.5h.

Drama 24.1h. 36.3h.

Events 34.2h. 44.1h.

News 153.4h. 203.0h.

Total 512.5h. 698.8h.

performed on the manual segmentation available for the develop-

ment data, with the Word Error Rate (WER) results shown in Table

4. The results indicate that there is a 1% absolute improvement from

using TRN2 instead of TRN1, although the gain might have been

due mainly to the extra 180 hours of data included in TRN2. The

gain was independent of the system setup, and was achieved in both

Hybrid and Bottleneck systems.

Table 4. ASR results with different data selection strategies.

System Training data WER

Hybrid
TRN1 30.6%

TRN2 29.0%

Bottleneck
TRN1 34.4%

TRN2 33.3%

4. AUTOMATIC SEGMENTATION

Automatic speech segmentation is a very important aspect in auto-

matic processing of broadcast media, where the presence of music,

applause, laughter and other background sounds can significantly

degrade the ability to detect sections containing speech. Errors in

segmentation can then propagate as ASR errors in regions of unde-

tected speech or those where speech was incorrectly detected. In this

work, a multi-stage automatic segmentation procedure is introduced:

an initial segmentation based on DNN posteriors is subsequently im-

proved using the output of an ASR system.

NNs have been used extensively for speech segmentation of

meetings [24, 25] and naturally DNNs are equally useful for this

task [26]. The neural networks are trained to classify each frame

in one of two classes, one corresponding to speech being present

and the other one representing speech not being present. One of the

challenges in this work’s setup was, as seen in the previous section,

the unreliability of the data and the requirement to have efficient

data selection strategies. Two strategies were tested to cope with the

issue. In the first one, SNS1, all acoustic training data available

were used for training the DNN, the originally defined segments

were force-aligned to determine which areas were speech and which

areas were non-speech. All audio that was not assigned to a speech

segment in the original segments was labelled as non-speech. The

second strategy, SNS2, took the 512.5 hours from the TRN1 data

selection strategy, as defined in Section 3, and used force alignment

to label areas as speech and non-speech, without adding any extra

non-speech areas. The amount of training data can be seen in Table

5.

The segmentation DNN provided, for any given audio output,

the estimated values of the posterior probabilities of speech or non-

Table 5. SNS1 and SNS2 data selection strategies for speech

segmentation.

Speech Non-speech Total

SNS1 759h. 793h. 1,552h.

SNS2 363h. 116h. 479h.

speech for each frame. A two-state HMM was used to smooth this

sequence of posteriors to a sequence of valid speech segments, with

extra 0.25 seconds added at the beginning and the end of each speech

segment. This, with either of the strategies SNS1 or SNS2, gave

the initial segmentation used for recognition in the first pass.

With the output of decoding based on the original segmentations,

a refinement stage was performed as follows. Confidence measures

based on the posteriors of a 144-monophone-target DNN were ob-

tained for each word in the hypothesis, as seen for acoustic data se-

lection in section 3. Then, the raw confidence scores were mapped

using a decision tree trained on the development data, using deci-

sion targets that were either 1 if the word was in an area of speech

as defined in the reference segmentation, or 0 if the word was in

an area of non-speech. The features to the decision tree were the

raw confidence score of each word, the confidence score of the seg-

ment, the length of the word (in seconds), the length of the word

(in phonemes) and the length of the segment (in seconds). Once the

confidences were calculated, words with confidence score below a

threshold were removed from the transcript. New segments were

redefined then around the remaining words.

The results of the this systems are presented in Table 6, in terms

of segmentation error: i.e. missed speech and false alarms, and

WER for sMBR Hybrid and Bottleneck systems trained on the

TRN2 data. Both DNN segmenters produced a significant degra-

dation compared to the use of manually defined segments. How-

ever, SNS2 was found to achieve a much larger false alarm rate

than SNS1, possibly due to the unbalanced amount of data used for

training SNS2. This made SNS2 more suitable for the refinement

stage, where areas of false speech detection could be pruned by the

use of confidence measures in the ASR output. Table 6 shows how

this refinement stage using ASR gave more than 1% absolute im-

provement over SNS1 and SNS2, despite its segmentation error

rate of 9.4%, similar to SNS1 at 9.2%.

5. ACOUSTIC BACKGROUND MODELLING

Tackling acoustic variability is one of the main issues arising for

multi-genre broadcast transcription. The presence of a large vari-

ety of possible recording conditions and acoustic background envi-

ronments presents a real challenge for ASR systems. In this work,

two approaches to compensating for such variability were studied.

The first aimed to normalise the background variability in the in-

put to DNNs for hybrid systems, while the second one aimed to use

asynchronous Constrained Maximum Likelihood Linear Regression

(aCMLLR) transformations [27] for the compensation of dynamic

background noises in bottleneck systems.

5.1. Domain adaptation of hybrid systems

Adaptation of DNN-based ASR systems is currently one of the

most extensively researched areas of speech recognition technol-

ogy. While several approaches have been evaluated in the past, the

normalisation of the input features is most commonly employed.

For example, for speaker adaptation, this has been done by directly



Table 6. Results in automatic segmentation.

Speech time Segments Missed speech False speech Hybrid WER Bottleneck WER

Human 19.5h. 30,702 0.0% 0.0% 28.6% 31.0%

SNS1 18.3h. 17,713 6.6% 2.6% 31.2% 34.4%

SNS2 21.8h. 15,337 1.3% 15.4% 31.0% 34.4%

+Refinement 19.3h. 16,327 4.0% 5.4% 29.8% 33.3%

Table 7. Domain and noise adaptation of Hybrid and Bottleneck systems

System Adv. Child. Comed. Compet. Docum. Dram. Even. News Global

Hybrid CE baseline 26.9% 26.8% 45.9% 25.5% 28.5% 49.1% 33.0% 16.1% 30.7%

Hybrid CE adapted 24.2% 26.5% 43.8% 23.6% 27.3% 45.0% 31.6% 14.3% 28.9%

Bottleneck baseline 25.2% 30.8% 44.7% 27.3% 28.9% 42.1% 34.9% 16.6% 31.0%

Bottleneck adapted 24.6% 29.2% 43.3% 26.7% 27.9% 40.8% 33.8% 15.8% 30.0%

transforming the input features via feature MLLR (fMLLR) trans-

formations [28] or by using additional input features representing

some characteristic of the speaker, like i-Vectors [29, 30].

Latent Dirichlet Allocation (LDA) models have been recently

used to model hidden acoustic categories in audio data. In [31],

it was shown that LDA is a suitable model for structuring acoustic

data from unknown origin, into unsupervised categories, that could

be used to provide domain adaptation in ASR. In this work, 64 hid-

den acoustic domains were found in the acoustic model training data

using the LDA model following the procedure in [31]; these domains

were found in a unsupervised manner and internally structured the

different acoustic conditions of the data. Afterwards, each segment

in the training and development sets was assigned to one of these

domains. In DNN training, 64 extra features were appended in the

input layer, where the domain corresponding to the input frame was

codified as a 1–of–N vector. Decoding is performed as usual, with

the hidden domain corresponding to the input segment being also

appended in the input layer.

5.2. Dynamic noise adaptation of bottleneck systems

One of the advantages of tandem (DNN-GMM-HMM) systems is

that techniques for adaptation such as Maximum A Posteriori (MAP)

or MLLR [32] can be employed. In our previous works, a new HMM

topology for asynchronous adaptation of GMM-HMM systems was

proposed and shown to produce ASR improvement in the presence

of dynamic background conditions [27].

This setup was applied to this task and expanded through the use

of asynchronous Noise Adaptive Training (aNAT) [33, 27]. First, a

global aCMLLR transformation with 8 parallel paths was trained on

the whole training data in order to characterise the most common

background conditions in this data. Then, the initial sMBR-trained

Bottleneck model was retrained in an adaptive training fashion

using this aCMLLR transformation. Finally, the global aCMLLR

transformation was retrained into show-based aCMLLR transforma-

tions using an initial decoding stage in order to more finely charac-

terise the types of noise and background existing in each show, and

these transformations were used with the aNAT Bottleneck model

to run the final noise-adapted system.

The results, including baseline results, for Hybrid systems with

domain adaptation and Bottleneck systems with noise adaptation

are shown in Table 7 using the manually defined segmentation and

for systems trained on TRN2 data. The Hybrid baseline and

Hybrid adapted systems were cross-entropy (CE) trained in this

case, because sequence training for domain-adapted hybrid DNNs

did not complete in time. The domain adapted DNN in the Hybrid

setup provided a significant improvement of 1.8% (5.9% relative),

which showed the strength of the hidden domain found through the

LDA model. For Bottleneck systems, the improvement over the

baseline was 1% absolute (3.2% relative) in WER, with balanced

improvement across the 8 genres. The experiments in Table 7 were

carried out after the challenge and thus were not a part of the final

submission.

6. MULTI–GENRE LANGUAGE MODELLING

Acoustic variation is not the only source of variability that can be

found in multi-genre broadcasts. Lexical and linguistic variability is

also present in this data, due to the large variety of topics that are

covered in these shows. In order to tackle this linguistic variability,

several experiments were designed to improve language modelling

in this task.

One of the aspects explored in this work is the use of genre-

specific LMs. While the subtitles in the LM2 language model train-

ing data were already categorised by genre, this information was not

available in the much larger LM1 language model training data. In

order to automatically derive genre labels for that dataset, genres

were automatically inferred using an LDA based approach. First,

hidden LDA topics were inferred from the LM2 data where genre

labels are present. Given those, a Support Vector Machines (SVM)

classifier could be trained that would allow classifying a show into

one of the 8 genres using the distribution of LDA hidden topic poste-

riors as input. These SVMs were used to produce labels for separated

chunks of the LM1 training data. The statistics of words assigned

to each genre can be seen in Table 9.

Table 9. Number of words for training of genre-LMs.

LM1 LM2

Advice 91.8M 1.4M

Children’s 41.4M 0.8M

Comedy 98.5M 0.4M

Competition 73.6M 1.3M

Documentary 189.2M 1.2M

Drama 97.7M 0.5M

Events 4.4M 1.1M

News 51.9M 2.7M

Once all the data had been classified into genres, genre-based

LMs were trained in two different configurations: The first one



Table 8. Results with genre-LMs for Hybrid and Bottleneck systems

System Adv. Child. Comed. Compet. Docum. Dram. Even. News Global

Hybrid baseline 4-gram LM
PPL 94.5 101.4 102.1 104.2 129.4 83.9 126.3 137.1 110.8

WER 23.6% 27.9% 41.1% 25.3% 27.2% 38.2% 33.4% 15.3% 28.9%

Hybrid genre RNN LM
PPL 58.6 62.7 59.6 50.5 68.7 60.4 64.0 67.2 N/A

WER 23.0% 23.6% 43.9% 22.7% 27.3% 43.9% 31.7% 13.6% 28.2%

Bottleneck baseline 4-gram LM
PPL 94.5 101.4 102.1 104.2 129.4 83.9 126.3 137.1 110.8

WER 25.2% 30.8% 44.7% 27.3% 28.9% 42.1% 34.9% 16.6% 31.0%

Bottleneck genre 4-gram LM
PPL 87.2 92.1 93.8 94.5 124.1 78.4 120.0 125.1 N/A

WER 24.9% 30.6% 44.3% 27.0% 28.7% 41.8% 34.9% 16.2% 30.8%

was based on a Recurrent Neural Network (RNN) LM [34], ini-

tially trained on the full LM1 and LM2 training data. This initial

RNNLM was then converted into 8 genre–dependent RNNLMs by

fine–tuning each one of them to the genre-dependent data. These

RNNLMs were used to rescore the lattices obtained by the Hybrid

systems using the baseline 4-gram language model. The second

one was based on genre-based 4-grams as the interpolation of the

genre-independent 4-gram with each genre-dependent 4-gram and

was used to rescore lattices in Bottleneck systems. Both systems

used manual segmentation and were trained on TRN2.

The perplexity and recognition results obtained with the genre-

specific LMs are shown in Table 8, along with the results using the

baseline LMs. The results show a very significant drop in perplexity

when using RNNLMs but only a modest improvement in word error

rate of 0.7%. This is consistent with the experiments reported on the

same BBC data in [35]. The main difference, however is that in [35],

instead of LM1 as background language model, another corpus of

1 billion words was used for language modelling, and different topic

models including LDA, were used to classify the text into a set of

different genres. As noted above, the LM training data is noisy, both

in word accuracy and genre labelling.

Using genre-specific n-gram language models yields an im-

provement of only 0.2% and the perplexity reductions are not as sig-

nificant. This could be explained by the need to use longer contexts

than 4-grams, in order to obtain improvements, which RNNLMs are

able to achieve through the use of unrestrained context. It is also

interesting to note that genre-specific RNNLMs perform worse than

corresponding n-grams on some genres (e.g., comedy and drama).

This seems to be related to data sparsity with these two genres

having fewer words than the rest as shown in Table 9 and thus the

RNNLM fine-tuning does not work very well. The experiments in

Table 8 were carried out after the challenge and thus were not a part

of the final submission.

7. SYSTEM DESCRIPTION

The final system processing as submitted for the the MGB challenge

followed the diagram pictured in Figure 1. Each node in the dia-

gram was implemented as a composition of separate modules, each

performing specific computation on the speech data.

The input audio was split into speech segments using a DNN

segmenter based on the SNS2 strategy, as defined in Section 4.

These segments were then decoded by an initial, unadapted Hybrid

ASR system: ASR-P1, trained on TRN1. The segmentation was af-

terwards refined using confidence measures in the ASR output as de-

scribed in section 4. After resegmentation, speaker clustering based

on Bayesian Information Criterion (BIC) [36] was performed to as-

sign each speech segment to a given speaker.

Input audio

DNN--based
Speech segmentation

ASR P1

fMMI features
DNN--HMM system

Resegmentation

Speaker clustering

ASR P2-1

fMMI features
Speaker CMVN

DNN--HMM system

Speaker adaptation

fMLLR estimation

Noise compensation

asynchronous CMLLR

ROVER combination

ASR P2-2

fMLLR features
DNN--HMM system

Speaker adaptation

MLLR estimation

ASR P2-3

Noise--speaker adapted
DNN--GMM--HMM system

Fig. 1. System diagram

From here onwards, three different decoding passes were de-

ployed: ASR-P2-1, ASR-P2-2 and ASR-P2-3, which where based

on complementary forms of dealing with speaker and noise vari-

ability. ASR-P2-1 was a Hybrid system where the features were

normalised using speaker-based Cepstral Mean and Variance Nor-

malisation (CMVN) without requiring any previous transcript. ASR-

P2-2 was also a Hybrid system, but in this case speaker variability

was compensated through the use of fMLLR input features based on

the transcript from ASR-P1. Finally, ASR-P2-3 was a Bottleneck



Table 10. Overall and individual performance results on the full development data set, with the Univ. of Sheffield submission for Task 1 of

the MGB challenge.

System Adv. Child. Comed. Compet. Docum. Dram. Even. News Global

ASR P1 23.1% 36.5% 45.4% 25.1% 30.0% 40.8% 36.4% 14.1% 31.2%

ASR P2-1 22.8% 31.0% 42.9% 24.1% 28.4% 38.6% 33.6% 14.2% 29.4%

ASR P2-2 23.0% 31.2% 42.8% 24.2% 28.5% 39.0% 33.5% 13.8% 29.4%

ASR P2-3 23.7% 32.0% 45.3% 25.1% 29.3% 40.5% 34.3% 15.0% 30.5%

System combination 21.6% 27.7% 40.9% 22.7% 26.6% 37.1% 31.3% 13.2% 27.5%

system where asynchronous noise transformations were used as de-

scribed in Section 5, and speaker-based MLLR transformations were

trained on top of this for further speaker and noise factorisation. All

these three systems were trained following the sMBR criterion using

the TRN2 training data definition.

The output of these three passes was finally combined via a

Recognition Output Voting Error Reduction (ROVER) [37] proce-

dure.

7.1. System implementation

The implementation of the system is based on the Resource Optimi-

sation Toolkit (ROTK), which is developed by the team at the Uni-

versity of Sheffield and was presented initially in [25]. ROTK allows

the formulation of functional modules that can be executed in asyn-

chronous fashion using computing grid infrastructure. Systems are

defined as a set of modules linked together by directed links trans-

ferring data of specific types. This is informally depicted in a graph

in Figure 1; the actual modules used are more specific. The system

uses metadata to organise how data is processed in an efficient par-

allelised way through the graph. Each module can split its own tasks

into several subtasks based on data, which then can be processed

in parallel. The overall dependency structure of these sub-tasks is

then automatically inferred. Each module submits jobs on a grid

system using the Sun Grid Engine (SGE). The ROTK system allows

for simple repeatability of the experiments as the same graph can be

executed on multiple datasets such as development and evaluation

sets.

8. RESULTS

The results of all intermediate passes and the final output are pre-

sented in Table 10. In this Table, the gains obtained by the 3 adapted

systems in relation to the baseline can be seen, as well as the final

gain obtained by the combination of the three outputs. Since the

results that lead to the development of the proposed system have

already been presented and discussed all through the paper, this Sec-

tion only reviews the final results achieved by the full system on the

development set.

Evaluating the results per genre, the results vary significantly

from News shows, with a 13.2% WER, to Comedy shows, with a

40.9% WER. This highlights the considerable impact of the acoustic

variability present in broadcast shows. In terms of gain, Children’s

shows achieved the largest improvement from the initial unadapted

system, 36.5%, to the final output, 27.7%. This shows how the dif-

ferent techniques proposed for compensating variability worked in

complementary ways in one of the most challenging conditions, i.e.,

where children and adults may appear in the same show and large

amounts of music and other backgrounds happen.

9. CONCLUSION

In this paper we presented the complete system structure, model

training and implementation of the University of Sheffield system

for speech–to–text transcription of broadcast media. The system was

designed for participation in Task 1 of the MGB challenge. The final

result, 27.5% WER, reflects the complexity of the task, especially

in the most challenging genres such as comedy or drama shows. It

is important to note that these results are obtained without the avail-

ability of high quality training data, which is normally available for

other related evaluation campaigns. The proposed system has made

use of the complementarity of DNN-HMM and DNN-GMM-HMM

systems using different adaptation strategies.

Several techniques have been proposed and evaluated. In terms

of data selection techniques for acoustic model training, results have

shown that adding more data of more quality can provide improve-

ments in both Hybrid and Bottleneck models. The refinement of

automatic speech segmentation using the output of an ASR stage is

a significant contribution of this system, with the results showing

how this can be used to find speech segments that minimise error

rates without necessarily minimising segmentation error rates. The

two techniques proposed for domain and noise adaptation of acous-

tic models have shown how complementary techniques can be used

successfully. In this work, domain–based input features have been

shown to reduce domain variability in Hybrid systems; while asyn-

chronous adaptation with CMLLR transformations performs a sim-

ilar effect in Bottleneck systems. Finally, language model adap-

tation to multi–genre shows have been shown to produce slight im-

provements. In this case, the use of genre–dependent 4–grams does

not achieve the gains obtained using genre information in RNNLMs,

indicating that more work should be focused on adaptation of RNNs

for language modelling.
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