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Abstract 

Rationale: Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, 

as measured via conditioned approach to the location of the unconditioned stimulus (US). 

However, learning begins before skeletomotor output, so this study assessed whether amygdala 

dopamine is also involved in earlier ‘emotional’ learning. Objectives: A variant of the conditioned 

reinforcement (CR) procedure was validated where training was restricted to curtail the 

development of selective conditioned approach to the US location, and effects of amygdala 

dopamine manipulations before training or later CR testing assessed. Methods: Experiment 1a 

presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 

sessions, 4 trials per session. Then the US was removed and two novel levers presented. One lever 

(CR+) presented the light and leverpressing was recorded. Experiment 1b also included a tone 

stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10nmols/1.0µl/side) before two 

training sessions (Experiment 2a) or a CR session (Experiment 2b). Results: For Experiments 1a 

and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach 

during 1 or 2 training sessions, or associated CR tests was low and nonspecific. In Experiment 2a, 

R(+) 7-OH-DPAT before training greatly diminished leverpressing during a subsequent CR test, 

preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR 

test also reduced leverpressing. Conclusions: Manipulations of amygdala dopamine impact the 

earliest stage of learning in which emotional reactions may be most prevalent.  

 

Keywords: amygdala, dopamine, learning and memory, emotion, associative 

learning, behavior, classical conditioning, consolidation, retrograde. 
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Introduction 

 It has been proposed that associative learning may broadly consist of three 

main stages (Mintz and Wang-Ninio 2001; Lennartz and Weinberger 1992; see 

also Konorski 1967; Wagner 2008; Wagner and Brandon 1989). The first stage is 

characterised as the relatively rapid acquisition of a range of physiological 

measures, e.g. galvanic skin responses, heart rate and blood pressure changes (e.g. 

Lennartz and Weinberger 1992), which typically are termed 'emotional' responses. 

The second stage consists of more readily observable skeletomotor, or 

behavioural responses, which develop at a relatively slow rate. Finally, a third 

stage of learning has been described as "efficient motor performance" in the 

absence of a corresponding emotional component (Mintz and Wang-Ninio 2001), 

i.e. the performance of a habit. 

 Dissociable components of brain dopamine systems have already been 

noted to play important roles in the second and third of these stages. For example, 

the mesoaccumbens dopamine projection may play a significant role in the rate of 

development of the second, skeletomotor stage of learning. Thus, mesoaccumbens 

dopamine is thought to govern an activational or gain-amplification component of 

behaviour (Everitt et al. 1999; Mogenson et al. 1980; Robbins and Everitt 2007), 

which usually (Robbins and Everitt 2007), though not necessarily (Bardo et al. 

1990) is closely linked to conditions of motivational significance. In practise, 

these conditions may consist of stimuli of predictive significance (e.g. Robbins 

and Everitt 2007; Robinson and Berridge 2003; Wise 2006), or when there is a 

mismatch between predicted and delivered outcomes (Schultz 2002). A related 

approach ascribes the degree of "incentive salience" attributed to conditioned 

stimuli, or the degree to which they  are "wanted" also to mesoaccumbens 

dopaminergic activation (Robinson and Berridge 2008). Third stage, or habitual 

stimulus-response learning is linked most closely with nigrostriatal dopaminergic 

innervation of regions of the dorsal striatum (Everitt and Robbins 2005; White 

and McDonald 2002). A great deal of evidence suggests that different regions of 

the dorsal striatum govern different categories of habitual behaviour (White and 

McDonald 2002).   

 At least three sources of data implicate the mesoamygdaloid dopamine 

projection in the earliest stage of learning. First, dopamine-dependent effects on 
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amygdala neuronal responses have been observed after just a very few 

conditioning trials (Rosenkranz and Grace 2002a; see also Grace and Rosenkranz 

2002; Rosenkranz and Grace 2002b). Second, an immunohistochemical technique 

enabled the simultaneous measurement of dopaminergic activity during the 

acquisition of a conditioned approach task across a variety of midbrain and 

forebrain regions (Phillips et al. 2003b). Observations taken soon after the 

acquisition of an overt behavioural response to a conditioned stimulus confirmed 

the widespread activation of mesotelencephalic dopamine systems, but found 

activity to be largely absent following extensive training. Third, although post-

session intra-amygdala infusions with dopaminergic agonists have been reported 

broadly to facilitate recent learning (Hitchcott et al. 1997a; Hitchcott et al. 1997b; 

Hitchcott and Phillips 1998a), in each case differential drug effects were confined 

solely to the very earliest stage of development of an overt goal-directed 

skeletomotor response. Whether mesoamygdaloid dopaminergic involvement is 

restricted to the initial development of readily observable conditioned responses, 

or if in fact it extends into the earlier, purely 'emotional' stage of learning is 

currently unclear. 

 The current work attempts to pinpoint with more precision the earliest 

stage at which mesoamygdaloid dopamine begins to exert a significant influence 

over associative learning. However, the development of a robust conditioned 

approach response towards the location of the unconditioned stimulus would 

indicate that the very earliest phase of ‘emotional’ learning no longer 

predominated. Hence, Experiments 1a and 1b restricted the degree of initial 

training sufficiently to preclude the development of  statistically significant levels 

of selective conditioned approach to the location of the US, and discovered that a 

light stimulus nevertheless acquired significant conditioned reinforcing properties. 

The validity of this methodology was assessed by comparing the ability of 

positive vs. negative light CS-US correlations later to support conditioned 

reinforcement (ab origine: Taylor and Robbins 1984). Subsequently, the 

dopamine receptor agonist R(+) 7-OH-DPAT was infused directly into the 

amygdala either immediately prior to just two CS-US training sessions 

(Experiment 2a), or a subsequent conditioned reinforcement test (Experiment 2b). 
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Methods 

Subjects 

 A total of 93 male Lister hooded rats took part in these experiments 

(Charles Rivers, Margate, Kent, UK); 48 in Experiment 1a, 8 in Experiment 1b, 

15 in Experiment 2a and 22 in Experiment 2b. Animals were housed in pairs 

under a 12h:12h light/dark cycle (lights on 08.00h) at a constant temperature of 

22°C. Experiments were carried out between 10.00-17.00h. The body weights of 

animals were reduced to 85% of their free-feeding weight by restricting access to 

food (Experiments 2a and 2b: following recovery from surgery). Water was 

available ad libitum. All experimental procedures were carried out under the 

Animals (Scientific Procedures) Act 1986, and were subject to UK Home Office 

approval (Project Licence PPL 50/01257). 

 

Apparatus 

 Testing was carried out in eight operant chambers (31 x 24 x 29cm); Med 

Associates Inc, St Albans, VT, USA). Each chamber was equipped with a dipper 

(model ENV-202; cup capacity 0.06ml) located within a small recess in the 

middle of the front wall and was used for the presentation of a 30% w/v sucrose 

solution which was made up fresh everyday and allowed to reach room 

temperature before the session. Two retractable levers each 5cm wide, were 

positioned symmetrically upon this wall 12cm apart and 7cm from the grid floor, 

either side of the dipper recess (5 x 5 x 3cm). The operant chamber could be 

illuminated by a white 15W houselight located at the top of wall opposite. Each 

chamber was also equipped with two white stimulus lights 15W, positioned 

directly above each retractable lever 18cm above the grid floor, and a 75dB 

SonAlert sinusoidal tone (2.9kHz) generator. The operant chamber was housed in 

a sound-attenuating box and external noise was masked further by a ventilating 

fan mounted on the side of the box. 

 Each chamber was also fitted with a number of active photobeams for the 

measurement of activity. Four photobeams recorded horizontal activity, and were 

positioned 4cm above the grid floor. They were aligned parallel with the wall 
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containing retractable levers, i.e. from front to back at 4cm, 11cm, 19cm and 

27cm from the wall with the recess. A fifth photobeam was located in the side 

walls of the dipper recess and was used to monitor alcove approach behaviour. 

The apparatus was controlled, and the data collected, by a standard IBM 

compatible 386 PC with appropriate software platform (Med Associates Inc, St 

Albans, VT, USA). 

 

Drugs 

 R(+) 7-OH-DPAT hydrobromide (Semat Technical (UK) Ltd, St. Albans, 

UK) was dissolved in sterile phosphate buffered saline (PBS), which also served 

as vehicle. Doses were calculated as that of the base. 

 

Surgery 

 Surgery was performed under both general and local anaesthesia. In 

Experiment 2a, rats were first anaesthetised with an i.p. injection of a solution 

containing 2,2,2-tribromoethanol in sterile PBS (Phillips et al. 1994). In 

Experiment 2b, rats were first anaesthetised in an induction chamber with 4% 

halothane and approx 0.8 l/min of N2O and O2 gas (RA Medical Services, 

Steeton, West Yorkshire, UK). Once anesthetised the rat was moved to a face 

mask in the stereotaxic frame and delivery of halothane was reduced to 1.5% for 

maintenance. At the same time, subjects also received 0.1ml amoxycillin i.m. 

(15mg/ml) to minimise the risk of bacterial infection. Finally, a lignocaine 

solution (20mg/ml) was applied directly to the exposed areas of skin following the 

initial incision. 

 Bilateral stainless-steel guide cannulae (22 gauge single cannulae; Plastics 

One, Roanoke, VA, USA) were implanted to gain access to the amygdala. The 

stereotaxic coordinates used were: AP -2.8mm from Bregma, L+/-4.5 from the 

midline, V -6.6mm from the surface of dura (Paxinos and Watson 1986). 

Implanted guide cannulae were secured to the skull with a minimum of four 

stainless steel screws and dental cement. The cannulae were closed by screw-in 

stainless steel wire obturators (28 gauge dummy cannulae; Plastics One, Roanoke, 
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VA, USA) and the animals returned to their home cages for a period of recovery 

of no less than 7 days. 

 

Pre-session Infusions 

 Intracerebral infusions within the amygdala were made using an infusion 

pump (Model A, 3.33RPM motor; Razel Scientific Instruments Inc, Stamford, 

CT, USA). Rats were hand-held while 28 gauge infusion cannulae (Plastics One, 

Roanoke, VA, USA) were placed into the surgically implanted guide cannulae. 

The infusion cannulae were attached to the pump microsyringes (Hamilton 

801RNE; Scientific Laboratory Supplies Ltd, Hessle, East Yorkshire, UK) by 

polyethylene tubing filled with sterile PBS. Drug solutions were backloaded 

within the cannulae and tubing to prevent contamination of the microsyringes. 

Infusion cannulae projected from guide cannulae by 1mm. The volume infused 

was 1.0µl over 50 seconds, and infusion cannulae remained in place for a further 

1min period. All sessions involving drug infusions were separated by a period of 

at least 72 hours. 

 

Procedure 

US Approach Training 

 Rats were first trained to consume the sucrose solution from the dipper 

during 8 sessions in which sucrose was presented 30 times/session according to a 

variable time 60 second (VT-60sec) schedule (100 possible intervals generated 

using the progression sequence of Fleshler and Hoffman 1962). 

 

Stimulus Pre-exposure 

 Rats were presented with stimuli later to be used in Pavlovian training. 

The single pre-exposure session consisted of four 10sec presentations of each 

stimulus according to a fixed time of 120 second (FT-120sec) schedule, with the 

probability of each stimulus type occurring next set at 0.5 (Experiments 1b, 2a 

and 2b). 
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Pavlovian CS-US Training 

 Experiment 1a: Following stimulus pre-exposure, subjects in the positive 

contingency condition were trained to associate an initially neutral light stimulus, 

(the conditioned stimulus; CS+) with delivery of sucrose (the unconditioned 

stimulus; US). Thus, each trial consisted of a 10sec Light stimulus presentation 

followed immediately by 10sec access to 30% sucrose.  A total of 4 trials were 

presented during each session. Trial frequency was set according to a fixed time 

240sec schedule (FT-240sec).  Animals in a control, negative contingency 

condition received an equal number of presentations of the CS+ and the US but 

these were not paired temporally at any time. Instead, the CS+ and US were 

presented in alternation on a fixed time 120sec schedule with a total of 4 

presentations of each. In both conditions the stimulus was Houselight off, wall-

lights on. A total of 1, 2, or 10 training sessions were given (n=8 per training 

session and contingency conditions). Approach behaviour during the 10sec period 

immediately preceding the presentation of the stimulus was recorded as a measure 

of baseline rates of approach behaviour and subtracted from that occurring during 

presentation of the stimulus itself. Thus, the specificity of the approach response 

in relation to the CS-US association could be assessed. 

 

 Experiments 1b and 2: Following stimulus pre-exposure, each trial 

consisted either of a 10sec stimulus presentation followed immediately by 10sec 

access to 30% sucrose solution (CS+ trial), or a 10sec presentation of the control 

stimulus alone (CS- trial). The probability of each type of trial occurring was 0.5, 

with the proviso that a total of 4 CS+ and 4 CS- trials were presented during each 

session. All animals received a total of 8 CS–US pairings across 2 sessions. Trial 

frequency was set according to a fixed time 240sec schedule (FT-240sec). The 

stimulus types were Houselight off, wall-lights on for the CS+ as for Experiment 

1, with the addition of a SonAlert tone as a control stimulus. In Experiment 1b, 

the stimulus type-contingency relationship was reversed for half the animals. 

Approach behaviour during the 10sec period immediately preceding the 

presentation of the stimuli was recorded as a measure of baseline rates of 

approach behaviour and subtracted from that occurring during presentation of the 

stimuli themselves. Thus, the specificity of the approach response in relation to 

the CS-US association could be assessed. Extraneous behaviour was measured 
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concurrently and was recorded as horizontal activity within experimental 

chambers.  

 

Infusions 

 During Experiment 2, animals received bilateral intra-amygdala infusions 

of R(+) 7-OH-DPAT (10nmols/1.0µl/side) or an equivalent volume of PBS 

vehicle immediately before each of two Pavlovian training sessions (Experiment 

2a, R(+) 7-OH-DPAT: n=8; Vehicle: n=7) or the conditioned reinforcement test 

session (Experiment 2b, R(+) 7-OH-DPAT: n=11, Vehicle: n=11). To accustom 

subjects to the infusion procedure, all subjects received mock infusions before 

each of the US approach training sessions, and animals in Experiment 2b also 

received mock infusions before the two Pavlovian training sessions. 

 

Conditioned Reinforcement Test 

 The ability of the CS+ to act as a conditioned reinforcer (CR) and support 

a novel lever pressing response was tested 24 hours after the last CS-US training 

session. During CR testing the US was not presented and the dipper remained 

inactive, although sucrose was still present in the container. Instead, two novel 

retractable levers were introduced into the operant chamber. Both levers retracted 

for 10sec following a response upon either lever during Experiment 1a, but 

remained extended at all times during the conditioned reinforcement phase 

subsequent experiments. Depression of  one lever (the CR+ lever) resulted in a 

10sec presentation of the CS+, while depression of the second lever (the CR- 

lever) was either without further programmed consequence (Experiment 1a) or 

resulted in a 10sec presentation of the CS- (Experiments 1b and 2). The position 

of the CR+ lever was counterbalanced across animals at all times. Sessions began 

after a response upon either lever, and continued for a total of 30 min. Rates of 

responding upon both levers and general activity within the chamber were 

recorded. 
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Histology 

 At the conclusion of Experiments 2a and 2b, animals were killed by 

pentobarbital overdose and the brain removed for histological examination. Brains 

were blocked and cut at 30µm sections using a vibratome (general scientific, 

Redhill, UK). The sections were mounted on glass slides and stained with cresyl 

violet. The accuracy of cannula placements was then assessed (Paxinos and 

Watson 1986). 

 

Statistical Analysis 

 Data were analysed initially using parametric analyses of variance, and 

where appropriate within-factor comparisons were analysed subsequently using 

simple main effect analyses of variance and appropriate post hoc tests (Winer 

1971). For Experiment 1a, alcove approach during Pavlovian training (measured 

as approach during the Pre-CS period subtracted from that during the CS period) 

was first subjected to a two-way fully independent analysis of variance (Training 

Sessions [1-, 10-Sessions] x CS-US Contingency [Positive, Negative]). Training 

data for the 2-Session group were not included, due to a data recording error 

during the second session of training. Each condition was then analysed separately 

using a one-way between subjects analysis of variance (CS-US Contingency). US 

approach was analysed by two-way between-subjects analysis of variance 

(Training Sessions x CS-US Contingency). Lever response data during the 

conditioned reinforcement session were analysed initially for each training session 

using a two-way repeated measures analysis of variance (CS-US Contingency x 

Lever [CR+, CR-]), followed by separate one-way within-subjects analyses of 

variance (Lever) for each Contingency. Approach data from this session were 

first subjected to a three-way analysis of variance (Training Sessions [1-, 2-, 10-

Sessions] x CS-US Contingency x Trial Type [CS+, CS-]) with CS-US 

Contingency as the independent factor, and then further two-way analyses were 

carried out (CS-US Contingency x Trial Type) for each training session, with 

CS-US Contingency as the independent factor. 

For Experiment 1b, alcove approach during Light or Tone stimulus 

presentations (measured as approach during the Pre-CS period subtracted from 

that during the CS period) during the second of two Pavlovian training sessions 
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was first subjected to a two-way analysis of variance (Stimulus Modality [Light 

CS+, Tone CS+] x CS-US Contingency [Positive, Negative]) with Stimulus 

Modality (CS+ Tone, CS+ Light) as the independent factor, then each Stimulus 

Modality (Light CS+, Tone CS+) further analysed with individual one-way 

within-subjects analyses of variance (CS-US Contingency [Positive, Negative]). 

US approach and locomotor data during the second training session were analysed 

by one-way between-subjects analysis of variance (Stimulus Modality [Light 

CS+, Tone CS+]). Lever responding data during the conditioned reinforcement 

test session was initially analysed using a two-way repeated measures analysis of 

variance (Stimulus Modality [Light CS+, Tone CS+] x Lever [CR+, CR-]) with 

Lever (CR+, CR-) as the between-subjects variable. Alcove approach data taken 

from conditioned reinforcement session were subjected to a two-way split-plot 

analysis of variance (Stimulus Modality [Light CS+, Tone CS+] x CS-US 

Contingency [Positive, Negative]) with CS-US Contingency [Positive, Negative] 

as a within-subjects variable. Finally, locomotor activity from the test session was 

analysed as a one-way between-subjects analysis of variance (Stimulus Modality 

[Light CS+, Tone CS+]). 

 For Experiment 2, alcove approach data gathered during training was 

subjected either to a three-way (Experiment 2a) or two-way (Experiment 2a) 

analysis of variance (Infusion Group (Experiment 2a only) [Vehicle, 

R(+) 7-OH-DPAT] x CS-US Contingency x Session [Session-1, Session-2]), 

with Session as the sole within-subjects factor. Alcove approach data during the 

second of the two Pavlovian training sessions were also subjected either to a split-

plot two-way (Experiment 2a) or one-way (Experiment 2b) analysis of variance 

(Infusion Group (Experiment 2a only) x CS-US Contingency) with Infusion 

Group as the independent factor. US approach and locomotor activity measured 

during the second training session were analysed by one-way between-subjects 

analysis of variance (Infusion Group). 

 Leverpresses during conditioned reinforcement were analysed initially 

using a two-way split-plot analysis of variance (Infusion Group x Lever) with 

Lever as the within-subjects factor, followed by separate one-way between-

subjects analyses of variance for each lever (Infusion Group). Alcove approach 

data from the conditioned reinforcement session were subjected to a two-way 

split-plot analysis of variance (Infusion Group x CS-US Contingency) with CS-
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US Contingency as the within-subjects variable, and for Experiment 2b again as 

the total number of alcove approaches per leverpress (Infusion Group). 

Locomotor activity from the test sessions were analysed using a between-subjects 

one-way analysis of variance (Infusion Group) and for Experiment 2b again as 

the total number of beam breaks per leverpress, and finally for beam breaks on the 

side of the experimental chamber opposite to the levers and alcove.  
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Results 

 

Experiment 1a: Rate of Development of Conditioned Approach vs. 

Conditioned Reinforcement 

CS-US Training 

 Ten training sessions established a far greater alcove approach response 

than a single Pavlovian CS-US session (Training Sessions F(1,28)=46.79, 

P<0.001; Means±SEMs alcove approaches per session: 1-Session, Positive CS-US 

contingency: -1.75 ±0.98; Negative CS-US contingency: -1.38 ± 0.46; 10-

Sessions, Positive CS-US contingency: 11.88 ± 1.47; Negative CS-US 

contingency: 0.00 ±; 0.38) and this approach response in the 10-Session group 

was specific to the condition in which the stimulus was positively correlated with 

the US (Training Sessions x CS-US Contingency F(1,28)=51.29, P<0.001; CS-

US Contingency F(1,28)=58.44, P<0.001). Separate analysis of the presence of 

conditioned approach in each Training Session condition confirmed these initial 

findings: animals in the 10-Session condition demonstrated a clear discriminative 

approach response to the light stimulus (CS-US Contingency F(1,14)=61.28, 

P<0.001), whereas animals in the 1-Session condition did not (CS-US 

Contingency F(1,14)=0.12, NS). 

 By contrast, alcove approach during US presentations were very 

comparable across Training Sessions (US-related alcove approach, beam breaks, 

Means±SEMs: 1-Session, Positive CS-US contingency: 3.75 ±0.16; Negative CS-

US contingency: 3.88 ± 0.30; 10-Sessions, Positive CS-US contingency: 4.13 ± 

0.30; Negative CS-US contingency: 4.25 ±; 0.25 Training Sessions F(1,28)=2.14, 

NS; CS-US Contingency F(1,28)=0.24, NS). 

 

Conditioned Reinforcement 

 Responding on the CR+ lever exceeded responding on the control CR- 

lever even following a single training session (see Figure 1, Upper Panel; Lever 

F(1,14)=20.32, P<0.001). However, at this early stage enhanced responding on the 
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CR+ lever was not specific to the positive CS-US contingency group (Lever 

F(1,14)=20.32, P<0.001; CS-US Contingency F(1,14)=0.041, NS; Lever x CS-

US Contingency F(1,14)=1.15, NS). By contrast, a more selective response 

typical of optimal CR performance was clearly seen following two training 

sessions. Thus, a preference for responding on the CR+ lever was clearly evident 

in the positive CS-US contingency condition, yet absent in the negative 

contingency condition (Lever x CS-US Contingency F(1,14)=5.85, P<0.05; 

Lever F(1,14)=8.02, P<0.05; CS-US Contingency F(1,14)=2.30, NS; Simple 

Main Effects: Positive CS-US contingency group, Lever F(1,7)=12.33, P<0.01; 

Negative CS-US contingency group, Lever F(1,7)=0.097, NS). Similarly, ten 

sessions of positive, but not negative CS-US contingency training also resulted in 

a robust and preferential rate of leverpressing on the CR+ lever (Lever x CS-US 

Contingency F(1,14)=12.99, P<0.01; Lever F(1,14)=12.99, P<0.01; CS-US 

Contingency F(1,14)=11.30, NS P<0.01; Simple Main Effects: Positive CS-US 

contingency group, Lever F(1,7)=17.92, P<0.01; Negative CS-US contingency 

group, Lever F(1,7)=0, NS). 

 Alcove approach behaviour following each leverpress generally failed to 

differentiate between CS+ and control conditions (Figure 1, Lower Panel). 

Consistent with this, discriminative approach in response to the CS+ was not 

evident at any time in the negative CS-US contingency group (Training Sessions 

x Trial Type F(2,21)=1.46, NS; 1-Session condition: Trial Type F(1,7)=0.34, 

NS; 2-Session condition: Trial Type F(1,7)=1.92, NS; 10-Session condition: 

Trial Type F(1,7)=0.10, NS). This was also true of the positive CS-US 

contingency group for both the 1-Session and the 2-Session condition (1-Session 

condition: Trial Type F(1,7)=1.84, NS; 2-Session condition: Trial Type 

F(1,7)=3.7, NS). Preferential approach behaviour in response to the CS+ did, 

however, develop in the positive CS-US contingency condition following 10-

Sessions of Pavlovian training (10-Session condition: Trial Type F(1,7)=141.75, 

P<0.001). Thus, approach behaviour recorded during presentations of the CS+ by 

animals subjected previously to a positive CS-US contingency increased across 

training sessions, while by contrast approach following CR- leverpresses declined 

(Training Sessions x Trial Type interaction (F(2,21)=24.54, P<0.001; Overall 

analysis with all groups included: CS-US Contingency x Training Sessions x 

Trial Type interaction F(2,42)=8.81, P<0.001; CS-US Contingency x Training 
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Sessions interaction F(2,42)=3.79, P<0.05; CS-US Contingency x Trial Type 

interaction F(2,42)=15.14, P<0.001; CS-US Contingency F(1,42)=7.85, P<0.05; 

Training Sessions F(2,42)=2.46, P=0.09; Trial Type F(1,42)=8.09, P<0.05). 

 

Experiment 1b: Stimulus type evaluation 

CS-US Training 

The light stimulus clearly failed to support a differential approach 

response during Session 2 of training when paired with the US (Figure 2: Light as 

CS+, Means±SEMs alcove approaches per session: Positive CS-US contingency: -

0.75 ±0.25; Negative CS-US contingency: -0.50 ± 0.29; Light as CS+, CS-US 

Contingency F(1,3)=0.27, NS; Overall analysis: Stimulus Modality F(1,6)=1.17, 

NS; CS-US Contingency F(1,6)=5.17, NS), and while the tone stimulus elicited 

some preferential alcove approach impact (Tone as CS+, Means±SEMs alcove 

approaches per session: Positive CS-US contingency: 1.00 ±0.41; Negative CS-

US contingency: -1.50 ± 0.65), this was also without statistically significant 

impact (Tone as CS+, CS-US Contingency F(1,3)=8.3, NS). 

Alcove approach in response to the US (alcove beam breaks, 

Means±SEMs, Tone as CS+: 8.98±0.30; Light as CS+: 8.64±0.27; Stimulus 

Modality F(1,6)=0.70, NS), and general locomotor activity within the 

experimental chamber were unaffected by the two main training conditions of 

tone or light as the CS+ (locomotor beam breaks, Means±SEMs: Tone as CS+: 

343.50 ± 5.55; Light as CS+: 379.50 ± 30.43; Stimulus Modality F(1,6)=0.13, 

NS).  

 

Conditioned Reinforcement 

Overall rates of response upon the CR+ lever exceeded those on the CR- 

lever (Lever F(1,6)= 29.98, P<0.05), and patterns of lever responding did not 

differ markedly with CS+ stimulus type (Stimulus Modality F(1,6)=0.45, NS; 
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Stimulus Modality x Lever F(1,6)=5.26, NS). The light stimulus supported a 

particularly robust pattern of responding (Leverpresses, Means±SEMs: Light 

stimulus as CS+: 52.5±9.73, ; Light stimulus as CS-: 20.5±9.17; Tone stimulus as 

CS+: 35.25±6.97; Tone stimulus as CS-: 16.5±3.52). 

Levels of alcove approach with the light stimulus as CS+ were low, and 

clearly did not differ between CS+ and CS- conditions (Alcove approaches per 

leverpress, Means±SEMs: CS+: 0.15±0.04; CS-: 0.14±0.0.5, CS-US Contingency 

F(1,3)=0.01, NS). Alcove approaches with the tone as CS+ were also generally 

low, but less consistent across CS+ and CS- conditions (Alcove approaches per 

leverpress, Means±SEMs: CS+: 0.5±0.05; CS-: 0.03±0.0.2; CS-US Contingency 

F(1,3)=46.14, p<0.05; Overall analysis: Stimulus Modality F(1,6)=18.84, 

p<0.01; CS-US Contingency F(1,3)=17.89, p< 0.05; Stimulus Modality x CS-

US Contingency interaction: F(1,6)=16.78, p<0.05). Locomotor activity was 

relatively comparable between groups (locomotor beam breaks, Means±SEMs: 

Tone as CS+: 431.00 ± 37.66; Light as CS+: 449.00 ± 32.10; Stimulus Modality 

F(1,6)=0.13, NS). 

 

Experiment 2a: Conditioned Reinforcement without Conditioned 

Approach: Effects of Intra-Amygdala R(+) 7-OH DPAT during CS-US 

Training 

 Histology 

 Infusions were located within the amygdala, and were within ± 0.5mm of 

the intended coordinates in the rostral-caudal plane (see Figure 3). Damage was 

limited to the immediate area of the infusions. 

 

CS-US Training 

 Very little approach was observed during presentations of either the CS+ 

or CS- stimuli during the two Pavlovian training sessions (Figure 4: see also grey 

bar comparison on Figure showing typical approach rates in 10-Session group 
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from Experiment 1a), and any approach behaviour that did emerge was not 

specific to the CS+ stimulus that previously had been paired with the US (CS-US 

Contingency F(1,13)=0.014, NS). There was no difference between the approach 

behaviour of the R(+) 7-OH-DPAT and Vehicle treatment groups (Infusion 

Group F(1,13)=0.32, NS; Infusion Group x CS-US Contingency F(1,13)=0.78, 

NS). Analysis of approach behaviour during the first compared to the second 

Pavlovian training session also showed no change (Session F(1,13)=3.55, NS). 

 Alcove approaches during US presentations in the final Pavlovian training 

session were very similar between Vehicle and R(+) 7-OH-DPAT groups (alcove 

beam breaks, Means±SEMs: Vehicle Group: 5.57±1.41; Drug Group: 4.50±0.60; 

Infusion Group F(1,13)=0.54, NS), and locomotor activity within the 

experimental chamber was similarly comparable (locomotor beam breaks, 

Means±SEMs: Vehicle Group: 481.86±34.22; Drug Group: 389.75±27.00; 

Infusion Group F(1,13)=4.57, NS). 

 

Conditioned Reinforcement 

 A general preference for responding on the CR+ lever over the CR- lever 

was observed (Figure 5, Upper Panel; Lever F(1,13)=22.64, P<0.001). This 

tendency was, however, greatly attenuated by intra-amygdala R(+) 7-OH-DPAT 

administration prior to training sessions (Infusion Group F(1,13)=5.21, P<0.05), 

and this reduction in responding was mainly specific to the CR+ lever (Infusion 

Group x Lever F(1,13)=6.46, P<0.05). Indeed, R(+) 7-OH-DPAT significantly 

attenuated responding on the CR+ lever (Infusion Group F(1,13)=6.90, P<0.05) 

but not the CR- lever (Infusion Group F(1,13)= 2.01, NS). 

 Alcove approaches during the CR test were relatively uncommon (Figure 

5, Lower Panel), and neither Vehicle nor R(+) 7-OH-DPAT groups exhibited any 

preference for alcove approach during the CS+ stimulus (CS-US Contingency 

F(1,14)=0.37, NS; Infusion Group F(1,14)=0.18, NS; Infusion Group x CS-US 

Contingency F(1,14)=0.03, NS). Levels of locomotor activity within the 

experimental chamber were also very comparable across groups (locomotor beam 

breaks, Means±SEMs: Vehicle Group, 374.25±37.44; Drug Group, 321.25±25.01; 

Infusion Group F(1,13)=2.51, NS). 
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Experiment 2b: Conditioned Reinforcement without Conditioned 

Approach: Effects of Intra-Amygdala R(+) 7-OH DPAT during the CR 

Test Phase 

Histology 

 Infusion sites were safely located within the amygdala and approximately 

0.5mm of the planned coordinates in the rostral-caudal plane (Figure 6). Limited 

damage was centred on the infusion site. 

 

CS-US Training 

 Figure 7 shows alcove approach data during the first and second Pavlovian 

training sessions. Although there was some small increase in approach behaviour 

from Session 1 to Session 2 (Session F(1,21)=5.67, P<0.05), this occurred 

independently of stimulus contingency (CS-US Contingency F(1,21)=3.21, NS; 

Session X CS-US Contingency F(1,21)=3.87, NS; Session 2 only: CS-US 

Contingency F(1,21)=0.21, NS), and remained at an extremely low level 

(compare with Figure 1, 10-Sessions of training). Following Pavlovian training, 

subjects were allocated either to the R(+) 7-OH-DPAT or the Vehicle Group for 

the conditioned reinforcement test. These two groups were matched on various 

aspects of performance during the second Pavlovian session (number of 

approaches during positive contingency stimulus presentations: Infusion Group 

F(1,20)=0.012, NS; number of approaches during US presentations, Infusion 

Group F(1,20)=0.31, NS; locomotor activity, Infusion Group F(1,20)=0.69, NS). 

 

Conditioned Reinforcement 

 Rates of leverpressing on the CR+ lever were higher than on the CR- lever  

(Figure 8, Upper Panel; Lever F(1,20)=27.88, P<0.001), but were significantly 

attenuated following intra-amygdala R(+) 7-OH-DPAT infusions (Infusion 

Group F(1,20)=19.41, P<0.001). Drug-induced impairments in leverpressing 

rates tended to predominate on the CR+ lever (Infusion Group x Lever 

F(1,20)=4.19, P=0.0539). 
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 Stimulus-related alcove approach was extremely low during the 

conditioned reinforcement session (Figure 8, Lower Panel), and remained such 

following administration of R(+) 7-OH-DPAT (Infusion Group F(1,20)=0.58, 

NS; CS-US Contingency F(1,20)=0.24, NS; Infusion Group X CS-US 

Contingency F(1,20)=0.15, NS). Reduced locomotor activity within the 

experimental chamber (locomotor beam breaks, Means±SEMs: Vehicle Group: 

395.64±20.35; Drug Group: 256.0±20.29; Infusion Group F(1,20)=23.61, 

P<0.001) occurred to a significantly lesser degree than that for leverpressing 

(Proportional reductions in behavioural rates following R(+) 7-OH-DPAT 

administration: Leverpressing -79.19%; Locomotor activity -35.19%). Indeed, it 

could be argued that locomotor activity actually increased relative to changes in 

lever-related behaviour (Locomotor beam breaks per leverpress, Means±SEMs: 

Vehicle Group, 18.68±1.28; Drug Group, 31.16±5.59; Infusion Group 

F(1,20)=5.1, P<0.05). Consistent with these findings, an analysis of beam breaks 

on the opposite side of the experimental chamber to the levers and alcove, which 

would be relatively uncontaminated by drug effects on stimulus-related 

behaviours unambiguously demonstrated a lack of direct effect of 

R(+) 7-OH-DPAT on locomotor activity (Beam breaks on left side of chamber, 

Means±SEMs: Vehicle Group, 127.91±12.83; Drug Group, 101.55±9.24; 

Infusion Group F(1,20)=2.8, NS). 
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Discussion 

 To further identify the point at which mesoamygdaloid dopamine might 

first show influence over associative learning, a variant of the conditioned 

reinforcement procedure was developed which restricted the degree of training so 

that statistically significant levels of selective conditioned approach to the location 

of the US were not observed. Experiments 1a and 1b demonstrated that despite the 

extreme curtailment of initial training, the ability of an initially arbitrary light 

stimulus subsequently to support a consistent and selective leverpressing response 

remained entirely dependent on prior stimulus presentations being temporally 

contiguous with those of a US: an equal number of separate presentations of the 

light stimulus and the US generally did not support a selective leverpressing 

response. In Experiment 2a, R(+) 7-OH-DPAT infusions prior to training sessions 

greatly diminished the ability of the stimulus subsequently to support a selective 

leverpressing response, and in Experiment 2b, R(+) 7-OH-DPAT infusions 

immediately prior to the conditioned reinforcement test also resulted in a 

profound reduction in leverpressing. Taken together, these data perhaps implicate 

mesoamygdaloid dopamine in the very earliest phase of associative learning, 

commonly termed ‘emotional’ learning (e.g. Konorski 1967; Lennartz and 

Weinberger 1992; Wagner 2008; Wagner and Brandon 1989) . 

 Dopaminergic innervation of the amygdaloid complex demonstrates both 

neuroanatomical and functional specificity. First, while post-session infusions of 

dopamine receptor agonists within the central nucleus of amygdala enhanced the 

acquisition of a Pavlovian conditioned approach response, the same treatment 

within the basolateral area of the amygdala was without effect (Hitchcott and 

Phillips 1998a; see also Harmer et al. 1997; Hitchcott et al. 1997a; Hitchcott and 

Phillips 1998b). By contrast, manipulations of dopamine function within the 

basolateral area potently impaired the acquisition of a conditioned instrumental 

response, while the same pharmacological treatment of the central nucleus left 

such instrumental behaviour relatively intact (Hitchcott and Phillips 1998a; see 

also Blundell et al. 2001; Blundell et al. 2003; Parkinson et al. 2000). Second, the 

involvement of the mesoamygdaloid dopamine pathway in the acquisition of 

appetitive associative learning appears to be functionally quite specific. For 

example, dopamine overflow increased during trials in which an arbitrary 
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stimulus (light or tone) was repeatedly paired with an unconditioned stimulus 

(US), but remained quiescent throughout trials in which the stimulus and US were 

presented with equal frequency, but separately (Harmer and Phillips 1999). 

Similarly, immunohistochemical analysis of dopaminergic activity within 

midbrain and forebrain regions again showed that mere exposure to an arbitrary 

stimulus and a US was insufficient to lead to a response: temporal contiguity 

between a potential CS and a US was necessary to activate mesocorticolimbic 

dopamine (Phillips et al. 2003a; b). Finally, intra-amygdaloid dopaminergic 

manipulations were effective in enhancing the acquisition of conditioned 

approach only when the stimulus was presented in close temporal proximity to a 

US, but otherwise were entirely without effect (e.g. Hitchcott et al. 1997a; 

Hitchcott and Phillips 1998a). In short, activation of mesoamygdaloid dopamine 

appears to be under a quite exquisite degree of control by current motivational 

circumstances.  

 However, dopaminergic activity within the amygdala appears to influence 

associative learning only indirectly. Thus, while post-session intra-amygdala 

R(+) 7-OH-DPAT infusions enhanced the acquisition of conditioned approach 

(Hitchcott et al. 1997a; Hitchcott and Phillips 1998a; b), pre-session infusions 

robustly blocked the acquisition of the self-same conditioned response (Phillips 

and Hitchcott 2009). Recent learning is relatively labile (McGaugh 2000), and 

may be vulnerable to a number of influences, including the introduction of a 

subsequent learning experience (Müller and Pilzecker 1900). Conversely, 

otherwise amnestic drugs such as alcohol or benzodiazepines improve memory for 

items presented before the administration of these drugs (Hinrichs et al. 1984; 

Mueller et al. 1983; Parker et al. 1980). The mesoamygdaloid dopamine 

projection appears well suited to play a key role in such retroactive modulation of 

recent learning. For example, dopamine released within the amygdala has a 

relatively long extracellular half-life (Jones et al. 1995), which may correspond 

with a notable mismatch between the highest concentrations of amygdala 

dopamine terminals, and dopamine receptors (Asan 1998; Freedman and Cassell 

1994). These findings lend support to a volume transmission view of amygdala 

dopamine function - a mode of action sometimes lasting minutes rather than 

milliseconds (Zoli et al. 1998). The high affinity of the D3 dopamine receptor for 

dopamine (Sokoloff et al. 1992) and its localisation in key regions of the 
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amygdala (Scibilia et al. 1992) including the central nucleus (Murray et al. 1994), 

together with behavioural outcomes from pharmacological manipulations linked 

with the D3 receptor (Hitchcott et al. 1997a; Phillips et al. 2002a; Phillips et al. 

2002b) make it an ideal candidate for this form of neural communication. In short, 

two events, such as a CS and a US, will become associated only to the extent that 

it is possible concurrently to process their representations during the immediate 

post-training period (Wagner 1978), and the mesoamygdaloid dopamine system 

seems particularly well constructed to govern this process. 

 However, prior findings depended on the observation of a conditioned 

skeletomotor action; a behaviour far removed from the initial formation of a CS-

US association (Mintz and Wang-Ninio 2001). Three lines of evidence suggested 

possible a relatively early involvement. First, dopaminergic manipulations of the 

amygdala affect neuronal responsivity following a very few pairings of a stimulus 

and a US (Rosenkranz and Grace 2002a; see also Grace and Rosenkranz 2002; 

Greba et al. 2001; Rosenkranz and Grace 2002b). Second, immunohistochemical 

visualisation of dopamine activity within the central nucleus showed most activity 

during early and intermediate stages of associative learning (Phillips et al. 2003a; 

b). Third, Figure 1 of Hitchcott and Phillips (1997b) indicates that post-session 

intra-amygdala R(+) 7-OH-DPAT enhanced subsequent conditioning during the 

second session only: later infusions were without differential impact. Comparable 

effects confined to the very earliest stages of training are evident in a number of 

related studies (see Figure 2 in each case: Hitchcott et al. 1997a; Hitchcott and 

Phillips 1998a; Phillips and Morutto 1998).  

 A novel variant of the CR procedure was therefore developed, in which 

initial training was restricted so that statistically significant levels of selective 

conditioned alcove approach (the most typical conditioned response measured) 

failed to consistently develop. Despite the very limited number of trials (eight in 

total), Experiments 1a and 1b demonstrated that a preference for the active lever 

in a subsequent CR test was entirely dependent on the stimulus being paired 

previously with a US: an equal number of presentations of the stimulus not in 

conjunction with the US were generally ineffective. These data echo those of 

Taylor and Robbins (1984), who observed that the ability of an initially arbitrary 

stimulus subsequently to support an instrumental leverpressing response was 

entirely dependent upon a prior positive correlation between an initially arbitrary 



23 

stimulus and a US, rather than negative or random correlations. Contemporary 

studies of this phenomenon have invariably employed an initial training phase in 

which extensive CS-US training is given, and many hundreds of trials might be 

presented. For example, Hitchcott et al. (1997b) provided 300 pairings before 

moving on to the CR test phase, and Taylor and Robbins (1984) presented over 

500 such trials. The implicit rationale would appear to be that extended Pavlovian 

training maximises the ability of the CS to function as a conditioned reinforcer. 

For this to follow it is necessary to assume that the form of learning underlying 

performance of the Pavlovian CR is the same or equivalent to that underlying 

conditioned reinforcement. However, it is far from clear that this is the case. For 

example, Pavlovian responses are far more responsive to US devaluation 

preparations than conditioned instrumental behaviours (Burke et al. 2007; Holland 

1998; Parkinson et al. 2005). 

 The relative sensitivity of the Pavlovian response to devaluation likely 

denotes reliance upon a detailed representation of the US (Colwill and Motzkin 

1994; Holland 1998). By contrast, reported failures of US devaluation procedures 

to affect responding maintained by conditioned reinforcement suggests that a 

basic prerequisite for the emergence of this behaviour is the ability of the CS to 

elicit a more general state of motivational or affective arousal (Burke et al. 2007; 

Ostlund et al. 2009; Parkinson et al. 2005). The latter is significant inasmuch as 

previous research has demonstrated that this aspect of learning is relatively 

rapidly acquired (Lennartz and Weinberger 1992; Powell 1994). Thus, it has long 

been known that CRs which index a general state of preparedness of the organism, 

including various autonomic responses and central motive states, appear early in 

the course of conditioning, often during the first few trials. Specific behavioural 

CRs which promote adaptation appropriate to the US only appear much later 

(Konorski 1967).   

 Thus, minimal initial Pavlovian training in the present study failed to 

establish reliable conditioned approach behaviour, and yet the same stimulus 

supported the acquisition of a novel instrumental response. Presumably, a mere 

eight pairings of stimulus and US were sufficient to engender a state of general 

affective arousal, elicited initially by the US (30% sucrose solution), and to 

condition to the CS. Effects of intra-amygdala infusions of R(+) 7-OH-DPAT are 

at least consistent with this interpretation. Considerable evidence implicates the 
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amygdala, and in particular the central nucleus, in some forms of affective arousal 

(e.g. Lang and Davis 2006; see also McDannald et al. 2004), and dopaminergic 

manipulations within the central nucleus, but not basolateral area of the amygdala 

clearly impact associative learning (Hitchcott and Phillips 1998a). In the present 

study, infusions of R(+) 7-OH-DPAT prior to Pavlovian training (Experiment 2a) 

or the CR test (Experiment 2b) reduced the ability of the stimulus to support 

instrumental responding, presumably by suppressing the ability of the stimulus to 

acquire or support an affectively arousing, or 'emotional' response..  

 However, R(+) 7-OH-DPAT infusions immediately prior to the CR test 

(Experiment 2b) reduced responding to some degree on both levers. While these 

results resemble those of a motoric character, particularly given that an overall 

reduction in locomotor activity was also observed, at least four lines of evidence 

suggest that reduced responding more likely was due to a relative flattening of the 

arousal response to presentations of the conditioned stimulus. First, a borderline 

drug x lever interaction in reduced responding was in fact also noted. Second, 

direct effects of amygdala dopamine manipulations on locomotor activity are not 

a characteristic feature of this manipulation (e.g. Hitchcott and Phillips 1998a; 

Hitchcott and Phillips 1998b; c; Phillips et al. 2002a; Phillips et al. 2002b). 

Effects of amygdala dopamine manipulations on even conditioned behaviours 

have only been noted under conditions of novelty (Hitchcott and Phillips 1998c), 

or when new learning is required (Phillips and Hitchcott 2009). Third, direct 

effects on overall locomotor activity were actually less than half those on 

leverpressing. Fourth, a more specific analysis confined to the side of the 

chambers opposite to levers showed no significant effects whatever of 

R(+) 7-OH-DPAT on locomotor activity. Drug effects on CR behaviour were not 

likely then the outcome of some species of motoric disadvantage, but reflect more 

consistently an interaction with emotional processes considered above. 

 To conclude, the present work supported the view that amygdala dopamine 

may be actively involved in the earliest, 'emotional' phase of learning, using a 

novel version of the CR procedure in which initial training was restricted to 

preclude the development of statistically significant levels of selective 

conditioned approach to the location of the US. The precise roles for other brain 

dopamine systems in later learning remain to be fully established.  
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Figure Legends 

Figure 1: Effects of degree of prior training on the subsequent performance of a conditioned 

reinforcement task (Upper Panel: leverpresses; Lower Panel: alcove approaches). Subjects 

previously received 1, 2 or 10 training sessions in which a light stimulus and unconditioned 

stimulus (sucrose reward) were presented, either together (Solid lines: CS+ group) or separately 

(Dashed lines: CS- group). There were 4 trials per session. Filled circles: behaviour associated 

with the instrumental delivery of light stimulus presentations; Open circles: behaviour associated 

with a control lever. The unconditioned stimulus available during training was not available at any 

time during the conditioned reinforcement session. Values are means per session ± 1SEM. Stars 

above SEMs or adjacent to circles indicate statistically significant comparisons with the associated 

CS- condition; other comparisons are as indicated by appropriate lines, *P<0.05, **P<0.01, 

***P<0.001. 

 

Figure 2: Alcove approach behaviour in response to stimulus presentations either paired or 

unpaired with an unconditioned stimulus (US: sucrose solution in alcove). Data are from 

Experiment 1b, and shown is the second of two Pavlovian training sessions, 4 trials per session. 

Conditioned approach behaviour in response to stimulus presentations either paired or unpaired 

with sucrose reward. Data taken from second of two Pavlovian training sessions, 4 trials per 

session. Stimulus Modality: CS+ Tone: CS+ = tone, CS- = light; CS+ Light: CS+ = light, CS- = 

tone. Filled bars: mean approaches per session into an alcove in response to the CS+ stimulus 

paired with sucrose reward; Open bars: mean approaches per session into an alcove in response to 

the CS- control stimulus unpaired with sucrose reward. Greyed items: comparison with 

conditioned approach behaviour following 10 sessions of training, 4 trials per session (see 

Experiment 1a). Values are mean approaches into the alcove during the session, ± 1SEM. 

 

Figure 3: Representative locations of infusion sites within the amygdala for Experiment 2a. Plates 

show coronal sections through the rat brain, and are based upon the atlas of Paxinos and Watson 

(1986). Numbers adjacent to each section represent distances from Bregma (mm) in the anterior-

posterior plane. Infusion sites shown as filled circles. 

 

Figure 4: Alcove approach behaviour in response to stimulus presentations either paired or 

unpaired with an unconditioned stimulus (US: sucrose solution in alcove). Data are from 

Experiment 2a, and shown is the second of two Pavlovian training sessions, 4 trials per session. 

Bilateral infusions of Vehicle (1µl/side) or R(+) 7-OH-DPAT (10nmols/1µl/side) were made into 

the amygdala immediately before each training session. Filled bars: mean approaches per session 

into an alcove in response to a stimulus paired with the US; Open bars: mean approaches per 

session into an alcove in response to a stimulus unpaired with the US. Greyed items: comparison 
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with conditioned approach behaviour following 10 sessions of training, 4 trials per session (see 

Experiment 1a). Values are mean approaches into the alcove during the session, ± 1SEM. 

 

Figure 5: Effects of bilateral R(+) 7-OH-DPAT infusions into amygdala prior to two Pavlovian 

training sessions on the subsequent performance of a conditioned reinforcement task (Upper 

Panel: leverpresses; Lower Panel: alcove approaches per leverpress). Vehicle Group: bilateral 

infusions of vehicle solution (1µl/side); Drug Group: bilateral infusions of R(+) 7-OH-DPAT 

(1nmols/1µl/side). Filled bars: behaviour associated with the instrumental delivery of the CS+; 

Open bars: behaviour associated with the instrumental delivery of the CS-. The unconditioned 

stimulus available during training was not available at any time during the conditioned 

reinforcement session. Values are means per session, ± 1SEM. Stars indicate statistically 

significant comparisons with the associated unpaired performance, *P<0.05, **P<0.01. 

 

Figure 6: Representative locations of infusion sites within the amygdala for Experiment 2b. Plates 

show coronal sections through the rat brain, and are based upon the atlas of Paxinos and Watson 

(1986). Numbers adjacent to each section represent distances from Bregma (mm) in the anterior-

posterior plane. Infusion sites shown as filled circles. 

 

Figure 7: Alcove approach behaviour in response to stimulus presentations either paired or 

unpaired with an unconditioned stimulus (US: sucrose solution in alcove). Data are from 

Experiment 2b, and shown are the first and second of two Pavlovian training sessions, 4 trials per 

session. Filled bars: mean approaches per session towards an alcove in response to a stimulus 

paired with the US; Open bars: mean approaches per session towards an alcove in response to a 

stimulus unpaired with the US. Greyed items: comparison with conditioned approach behaviour 

following 10 sessions of training, 4 trials per session (see Experiment 1a). Values are mean 

approaches into the alcove during the session, ± 1SEM.  

 

Figure 8: Effects of bilateral R(+) 7-OH-DPAT infusions into amygdala on the performance of a 

conditioned reinforcement task (Upper Panel: leverpresses; Lower Panel: alcove approaches per 

leverpress). Infusions were made immediately prior to the session start. Vehicle Group: bilateral 

infusions of vehicle solution (1µl/side); Drug Group: bilateral infusions of R(+) 7-OH-DPAT 

(1nmols/1µl/side). Filled bars: behaviour associated with the instrumental delivery of the CS+; 

Open bars: behaviour associated with the instrumental delivery of the CS-. The unconditioned 

stimulus available during training was not available at any time during the conditioned 

reinforcement session. Values are means per session, ± 1SEM. Stars indicate statistically 

significant comparisons with the associated unpaired performance, **P<0.01; and filled circles 

with associated vehicle performance, • P<0.01. 

 


