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AUTOMATIC ASSESSMENT OF ENGLISH LEARNER PRONUNCIATION USING

DISCRIMINATIVE CLASSIFIERS

Mauro Nicolao, Amy V. Beeston, Thomas Hain

Speech and Hearing Research Group, Department of Computer Science, University of Sheffield, UK

ABSTRACT

This paper presents a novel system for automatic assessment

of pronunciation quality of English learner speech, based on

deep neural network (DNN) features and phoneme specific

discriminative classifiers. DNNs trained on a large corpus

of native and non-native learner speech are used to extract

phoneme posterior probabilities. A part of the corpus in-

cludes per phone teacher annotations, which allows to train

two Gaussian mixture models, representing correct pronun-

ciations and typical error patterns. The likelihood ratio is

then obtained for each observed phone. Several models were

evaluated on a large corpus of English-learning students, with

a variety of skill levels, and aged 13 upwards. The cross-

correlation of the best system and average human annotator

reference scores is 0.72, with miss and false alarm rate around

19%. Automatic assessment is 81.6% correct with a high de-

gree of confidence. The new approach significantly outper-

forms spectral distance based baseline systems.

Index Terms— Pronunciation assessment, Computer-

Assisted Language Learning, DNN-GMM, binary classifier.

1. INTRODUCTION

As automatic assessment tools permeate teaching method-

ologies, reliable automatic assessment of English learners’

speech is of increasing interest. Interactive language learning

tools incorporate a variety of approaches, however, assess-

ment of pronunciation quality remains a particularly challeng-

ing task, especially with adolescent students. Approaches to

computer-assisted pronunciation training were reviewed in

[?, ?], and use a variety of metrics designed to assess pronun-

ciation at the fine-grained phonetic level [?]. Nonetheless,

studies in this area tend to score a learners’ speech on longer

time-intervals, reporting assessments in units of words [?, ?]

or longer, e.g. per-sentence or per-student measures as in [?].

This paper describes a method for phone-level pronuncia-

tion error detection developed as part of a research project on

language learning for Dutch learners of English. The project

has collected a large corpus of classroom recordings which

is described in more detail below. Our approach is similar

This work was done in collaboration with ITSLanguage BV

(http://www.itslanguage.nl)

to that of [?, ?] in that a student’s attempt to pronounce a

given phrase is compared directly against an audio example

provided by their teacher.

Our proposed method produces a phoneme-level assess-

ment, which is a far more challenging task than word, sen-

tence or student level assessment. We introduce a binary er-

ror classification regime that allows an efficient pronunciation

assessment, and which benefits from advanced acoustic mod-

elling with deep neural networks (DNNs). The new method

is also computationally efficient, as it uses DNN features and

GMM-based binary classification rather than ASR, as recent

related work describes [?]. The cross-correlation of our best

system and average human annotator reference scores is 0.72,

with miss and false alarm rate around 19%. Automatic as-

sessment is 81.6% correct with a high degree of confidence.

2. PRONUNCIATION ASSESSMENT

The objective is to assess the pronunciation quality of an un-

known student utterance, Us. It is assume that a reference

utterance Ut exists, spoken by a teacher. The system then out-

puts a vector S = {si} with a pronunciation quality assess-

ment score for each of the M phonemes in Us. By design,

teacher and student utterances have the same word content,

Ws = Wt. Moreover, a proficient learner should exactly

match their teacher’s phonetic sequence, Ps = Pt.

Given two recordings of the same text prompt – one from

the student, Os, and one from the teacher, Ot – we would like

to compute the probability that the learner recording mimics

the teacher reference in pronunciation. Alternatively one can

ask if the teacher’s reference is a good predictor for the stu-

dent utterance, i.e. we would like to compute P (Os|Ot).
With the reference Ot, the word Wt and the phonetic

Pt sequences are also determined. Hence, P (Os|Ot) can be

written as

P (Os|Ot) =
P (Os,Wt,Pt,Ot)

P (Wt,Pt,Ot)
(1)

For estimating the above we use that reacher and student

words are the same, i.e Wt = Ws = W, but also assume

that the two phonetic sequences are identical, Pt = Ps = P.

As P (P,W,Ot) depends only on the reference segmenta-

tion, it is constant for every similar utterance of the learner



Set name Use # sessions Acquisition # talkers Age # files # hours

INAph 1–2 GMM training 7 Apr 2013 238 13+ 6,252 3.05

INAph 3–6 GMM test & regression tree training 7 Apr 2013 222 13+ 6,640 2.99

INT DNN and acoustic model training 10 May 2013 598 13+ 88,697 46.49

INY Pronunciation reference (Ut) 1 Dec 2013 8 - 1,869 1.68

Table 1. ITSLanguage data subsets. Annotated learner recordings in INA are split into two portions of around 3 hours duration

each. Learner material in INT is used in training, and INY contains teacher recordings used as pronunciation references.

and (??) can be approximated as

P (Os,Wt,Pt,Ot)

P (Wt,Pt,Ot)
∝ P (P)P (Os,Ot|P). (2)

The above phoneme sequence prior is constant for all obser-

vations. Assuming segmentation information for phonemes,

P = {ri}, both student and teachers feature sequences can be

split into the phone-related sets:

P (Os,Ot|P) =

M∏

i=1

P (Oi
s,O

i
t|r

i) (3)

The paired sets, Oi
s and O

i
t, are normally of different length.

In order to give each realisation of the phone the same im-

portance, the duration is normalised to a fixed length L. The

simplest solution might set L = 1 and chose, for example, ei-

ther the central feature vector, Oi = o
i,central or an average

of the feature vectors within the phone ri along each dimen-

sion. If the feature domain is assumed to be continuous along

each dimension (such as in the posterior features domain), an-

other solution would be to resample or interpolate the values

on each dimension to achieve feature sets with same length L,

e.g. Oi,L
s and O

i,L
t with L = 20. Each element of the product

in (??) can be thus modelled as a phoneme-dependant mixture

of Gaussians (GMMi).

The problem then can be turned into a binary classifi-

cation problem, where phoneme-level scores for each stu-

dent utterance Os are computed. For pairwise aligned data,

O
i,L = [Oi,L

s ,O
i,L
t ], each student’s phone is judged to be

well pronounced (C=correct) when P (C=correct|Oi,L) >

P (C=error|Oi,L). This is equivalent to

P (Oi,L|C=correct)

P (Oi,L|C=error)
>

P (C=correct)

1− P (C=correct)
(4)

where the right hand side of (??) serves as a threshold T ,

which depends on the degree of proficiency of the learners.

ACC gives the percentage of phones that were correctly

assessed. CC Cross-correlation detects similar behaviour in

different sequences of values [?].

3. THE ITSLANGUAGE DATASET

The dataset underpinning this work comprises recordings of

native-speakers and learners of English, a portion of which

has mispronunciation annotated at a phonetic level.

Comparison vs. Agreement CC vs. Agreement CC

a1 a2 0.858 0.434 R 0.947 0.816

a2 a3 0.782 0.412 R 0.911 0.649

a3 a1 0.818 0.523 R 0.871 0.678

Table 2. Inter-annotator analysis. Left: pairwise compar-

isons showing Agreement (where annotators scores match)

and cross-correlation (CC, which detects similar behaviour

across sequences of values [?]). Right: Each annotator is

compared with the combined reference, R.

Recordings were made via an online learning environ-

ment, by mainly Dutch children in schools across the Nether-

lands. Working individually, the learners read items from an

ordered list of 193 text prompts (both words and short sen-

tences), re-recording each item until satisfied with their pro-

nunciation. Recorded with predominantly USB headset mi-

crophones, audio signals were stored in MS-WAVE format

(22.05 kHz, 16-bit). Many students performed the record-

ing task simultaneously; a high degree of background noise

was therefore present in each classroom. Meta-data for each

learner detailed their age, mother tongue and other languages

spoken. Further, their familiarity with English was quantified

in several ways: number of years learning, self-reported con-

fidence, and the Common European Framework level of the

class in which the student was enrolled. The learner dataset

consisted of around 80 hours of raw speech. Recordings with

prominent distortion were removed using clipping detection.

Items with partial, missing, or inappropriate speech content

were filtered out by aligning the audio with the known text

prompt (using a British English acoustic model and multiple-

pronunciation dictionary). Table ?? illustrates learner subsets

selected for the current work: around 6 hours (INAph) was se-

lected for phone-level annotation and c. 46.5 hours (INT) was

used in system development as detailed below.

Pronunciation references (INY) for the 193 test items

were recorded by proficient British English speakers. A high

quality microphone and quiet room were used, but other

conditions replicated those described above. Teacher data

comprised 6 sets of recordings by native-speaking adults (2

male, 2 female) and 4 sets by non-native adults (2 male, 2

female, with Dutch, Austrian, and Flemish backgrounds).

The annotation dataset (INA) included utterances from as
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Fig. 1. Pronunciation evaluation framework showing stages of annotation (top), training (middle) and assessment (bottom).

many learners as possible, balancing gender, age and learner

level. Around half was annotated at the phone-level (cf.

INAph in Table ??), and half at the word-level (unused in

the present study). These utterances were aligned (allowing

for multiple pronunciations) in order to provide a standard

phone sequence reference, Pa, which was presented along-

side the audiofile in an online annotation tool. Three native

Dutch-speaking phoneticians (a1, a2, a3) acted in the role

of teacher to assess the correctness of the learners’ pronun-

ciation. Table ?? quantifies inter-annotator consistency. To

handle differences of opinion, a combined reference, R, com-

prised the average of the three responses for each phone in

each utterance. This located regions that all three annotators

considered well-pronounced or mispronounced, and ambigu-

ous regions causing disagreement. This approach differs from

[?], where items that were not unanimously labelled were re-

moved. Moreover, it reflects the fact that an ‘error’ resists

clear definition since pronunciation varies continuously be-

tween native and unintelligible [?]. A threshold on R then

highlights consistently well- or poorly-spoken phones.

4. EVALUATION FRAMEWORK

The method described in § ?? was implemented with the ar-

chitecture outlined in Figure ??. The observation vector in

(??) has no restriction on the type of features that can be used.

Here, posterior probability features (labelled post) were ex-

tracted, using a deep neural network (DNN). Two DNNs were

tested: DNNUK, a 2-layer network trained on clean British

English pronunciation using the WSJCAM0 corpus [?], and

DNNUK+INT, a 4-layer network trained using both British and

Dutch-accented student audio (WSJCAM0 and INT). As in-

put, both DNNs used a 15-frame span vector with 23 filter-

bank coefficients per frame. The bottleneck (BN) layer had

26 coefficients and the output layer had 144 monophone states

(English phone set). Posterior features were extracted from

both the INAph 1–2 learner corpus and one or more teachers

in INY. The three post values measured for each phone state

were combined into a single value. The output of the BN layer

(bn) was also used to train the triphone-based GMM-HMM

acoustic model used in alignment.

During training, learner and teacher audio fragments

were fused in a pairwise manner, phone-by-phone, by means

of the annotation sequences Pa. During assessment, a ‘2-

step’ process first obtained a target phone sequence from the

teacher’s audio using a multiple-pronunciation dictionary,

and secondly used this sequence in forced alignment of the

student’s recording. Teacher and learner phones typically

have different durations; same-length feature sets were cre-

ated here by interpolation of the extracted vectors along each

dimension, setting length L = 20. The alignment and fusion

processes thereby generated the phone-comparison vectors

O
i,L = [Oi,L

s ,O
i,L
t ] of (??). In training, these vectors were

then grouped into 47 (one per phone i), giving sets of L×Ni

vectors, where Ni is the number of phone realisations. Each

set was further split using the reference R with a threshold

at 0.5, which provided a binary decision label based on the

annotators’ majority opinion. After this, {Oi,L}CNi
stored all

the correct phone pronunciations, and the mispronunciations

were gathered in {Oi,L}ENi
. These sets were input of the

GMM expectation-maximisation training, allowing computa-

tion of P (Oi,L|C=correct) and P (Oi,L|C=error). In total, 94

GMMi were created, each counting 64 Gaussian functions.

During assessment, the same feature extraction process

took place, using the 2-step alignment discussed above. The

left side of (??) was then computed using the synchronised

feature set, resulting in a wide range of continuous likelihood

ratio values. These were mapped into the [0,1] interval us-

ing a regression tree which was optimised using the annotated

data of the GMM training, a measure of the time-discrepancy



SYSTEM Ut (gender) Us MAPPING CC FAR MISS ACC F-SCORE NCE

Baseline [D+E+S+∆] INY51 (F) INAph 1–2 reg.tree(INAph 1–2) 0.443 0.443 0.365 0.695 - 0.008

DNNUK+INY51 INY51 (F) INAph 1–2 none 0.426 0.239 0.207 0.763 0.327 N.A.

DNNUK+INY51 INY51 (F) INAph 1–2 reg.tree(INAph 1–2) 0.716 0.184 0.193 0.816 0.388 0.397

DNNUK+INY51 INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.613 0.252 0.264 0.747 0.261 0.447

DNNUK+INY51+D INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.614 0.252 0.262 0.748 0.262 0.446

DNNUK+INY51+D+∆ INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.616 0.258 0.255 0.742 0.260 0.451

DNNUK+INT+INY51+D+∆ INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.581 0.297 0.275 0.704 0.229 0.559

DNNUK+INT+MULTI+D+∆ INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.576 0.288 0.284 0.712 0.232 0.473

DNNUK+INY51+D+∆ INY52 (M) INAph 3–6 reg.tree(INAph 1–2) 0.574 0.250 0.241 0.751 0.504 0.371

DNNUK+INT+INY51+D+∆ INY52 (M) INAph 3–6 reg.tree(INAph 1–2) 0.582 0.291 0.281 0.710 0.231 0.558

DNNUK+INT+MULTI+D+∆ INY52 (M) INAph 3–6 reg.tree(INAph 1–2) 0.587 0.278 0.277 0.722 0.240 0.470

Table 3. Comparison of phone-level mispronunciation detection scores predicted by the system, S, and marked in the human

annotators’ reference, R. Top: baseline system. Middle: system development using a matched teacher voice for training and

assessment stages of the framework. Bottom: Comparisons using a mis-matched teacher voice.

between teacher and student phone durations (D), and their

differential values (∆). A pronunciation error resulted when

mapped scores fell beneath a threshold whose level sets the

system’s strictness. Here, the rate of undetected mispronunci-

ations (MISS) balanced the well-pronounced phones marked

as errors (false alarm rate, FAR).

5. EXPERIMENTS

The evaluation framework was used to assess learner pronun-

ciation in the (unseen) INAph 3–6 dataset. For this, the system

outcome, S, was compared with the combined human refer-

ence, R, using six common information retrieval indices. Of

these, CC, FAR and MISS were previously defined; addition-

ally, Accuracy (ACC), F-score, and normalised cross-entropy

(NCE) are displayed in Table ??. ACC gives the percentage

of phones that were correctly assessed. The F-score combines

recall and precision rates [?]. NCE concerns the mutual infor-

mation between the correctness of the mispronunciation de-

tection and the confidence score in making that decision [?].

For the perfect system, CC, ACC, F-score, and NCE values

are high; FAR and MISS are low.

The baseline system reported in [?] performed pairwise

comparison of temporal and spectral acoustic features aver-

aged at the phone-level (duration, D, energy, E, and spectral

shape, S). These were combined into a single score in the [0,1]

range using a regression tree as described above.

Table ?? shows the evaluation framework’s improvement

(middle) over the baseline (top), and outlines the relative gains

(or losses) arising as each component is introduced. Anno-

tated learner speech material (Us) is compared against ut-

terances recorded by a single teacher (here, Ut=INY51, fe-

male), simulating the manner in which this learning environ-

ment would be used in the classroom. The proposed system

uses audio data from the selected teacher to train the GMMs.

System performance is loosely similar to that of the base-

line, even without the regression tree mapping (e.g., CC is

0.426 and 0.443 respectively). The performance is boosted

substantially when the regression tree is tuned on student ut-

terances used in the GMM training stage (CC= 0.716 for

INAph 1–2). Importantly, cross-correlation remains high (CC=
0.613) when this system is then tested on unseen learner au-

dio, i.e. when INAph 3–6 is used for Us, simulating a new

student group. A slight improvement is observed by intro-

ducing D and ∆ as input to the regression tree (CC= 0.616).

However, inclusion of the student data in the DNN creation

(DNNUK+INT) brings about a small reduction in performance

(CC=0.581). This arises due to the higher diversity of pro-

nunciation captured in the DNN posterior distributions.

An ideal system would allow introduction of a new

teacher without penalty (e.g., Ut=INY52, male, in Table ??,

bottom). However, a drop in performance occurred when

the DNNUK+INY51+D+∆ system was used with INY52. To

lessen the dependency on the training teacher, the GMM was

created using multiple teacher references (MULTI). When a

teachers is involved in both test and training (i.e., Ut=INY51,

female), there is no further benefit from this MULTI con-

dition. However, a different pattern of results emerges for

the mis-matched teacher condition using Ut=INY52, male,

where the MULTI condition gives an improvement in system

performance (CC increases from 0.574 to 0.587).

6. CONCLUSIONS

This paper introduced a novel system for automatic assess-

ment of pronunciation quality of English learner speech,

based on DNN features and phoneme-specific discriminative

classifiers. In this challenging phone-level decision task, one

in which even expert annotators often disagree, the proposed

method achieved good accuracy values with high decision

confidence. Improvements in DNNs and annotation quality

might address the low performance in FAR and MISS.


