
This is a repository copy of Automatic Genre and Show Identification of Broadcast Media.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/109228/

Version: Accepted Version

Proceedings Paper:
Doulaty, M., Saz, O., Ng, R.W.M. et al. (1 more author) (2016) Automatic Genre and Show 
Identification of Broadcast Media. In: Proceedings of the 17th Annual Conference of the 
International Speech Communication Association (Interspeech). Interspeech 2016, 08-12 
Sep 2016, San Francisco. ISCA . 

https://doi.org/10.21437/Interspeech.2016

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Automatic Genre and Show Identification of Broadcast Media

Mortaza Doulaty, Oscar Saz, Raymond W. M. Ng, Thomas Hain

Speech and Hearing Group (SpandH), Department of Computer Science, University of Sheffield
{mortaza.doulaty, o.saztorralba, wm.ng, t.hain}@sheffield.ac.uk

Abstract

Huge amounts of digital videos are being produced and broad-

cast every day, leading to giant media archives. Effective tech-

niques are needed to make such data accessible further. Auto-

matic meta-data labelling of broadcast media is an essential task

for multimedia indexing, where it is standard to use multi-modal

input for such purposes. This paper describes a novel method

for automatic detection of media genre and show identities us-

ing acoustic features, textual features or a combination thereof.

Furthermore the inclusion of available meta-data, such as time

of broadcast, is shown to lead to very high performance. Latent

Dirichlet Allocation is used to model both acoustics and text,

yielding fixed dimensional representations of media recordings

that can then be used in Support Vector Machines based classi-

fication. Experiments are conducted on more than 1200 hours

of TV broadcasts from the British Broadcasting Corporation

(BBC), where the task is to categorise the broadcasts into 8 gen-

res or 133 show identities. On a 200-hour test set, accuracies of

98.6% and 85.7% were achieved for genre and show identifi-

cation respectively, using a combination of acoustic and textual

features with meta-data.

Index Terms: genre identification, show identification, broad-

cast media automatic labelling, latent Dirichlet allocation

1. Introduction

With the ever increasing amounts of digital media and require-

ments to process media archives, automatic labelling and clas-

sification of media recordings becomes more and more impor-

tant. Multimedia data can be grouped by genre such as sports,

news and comedy, which are categories that also imply other

than purely semantic information. As such classification is eas-

ier to understand by viewers, is required for downstream pro-

cesses such as indexing. Research in this field is pushed for-

ward by initiatives such as the “MediaEval Benchmarking for

Multimedia Evaluation” [1], or the “Robust, as Accurate as Hu-

man Genre Classification for Video” challenges within the Mul-

timedia Grand Challenges of ACM Multimedia Conference [2].

Genre identification, and identification of shows can be consid-

ered as a core task in multimedia processing and is studied in

this paper.

In a typical genre ID setting supervised methods learn from

audio and/or video features extracted from the media streams.

For audio-based classification mostly short-term features are

used [3], such as Mel-Frequency Cepstral Coefficients (MFCC)

[4]. The use of other features such as average speech rate, sig-

nal energy, zero crossing rate, duration of silence, noise and

speech have also been studied [5]. Typical features extracted

from video include colour statistics, camera motion and cut de-

tection [5, 6, 7]. In the literature, audio based features usu-

ally have very similar performance compared to the video-based

features [10]. Textual features such as subtitles and meta-data

(e.g. title, tag, video description) contain semantic information

and are believed to give promising results in genre ID [5].

This paper proposes new methods for automatic detection

of media genre based on audio and explores what information

sources are required to obtain very high levels of performance

on a very large dataset of more than 1,200 hours of data. Also

for the first time, to the best of our knowledge, the show identi-

fication task on very large datasets is studied in this paper.

This paper is organised as follows: Section 2 reviews the

related work for genre identification. Section 3 describes the

proposed method for genre and show identification, followed

by the experimental setup in Section 4, results in Section 5 and

a conclusion of this work in Section 6.

2. Related Work

Research on genre ID tasks typically report accuracies of over

90% [5, 6, 10, 11]. Typical datasets are the RAI dataset [11],

Quaero dataset [12] and some custom YouTube videos. Both

RAI and Quaero datasets are around 70 hours each and most of

other datasets have similar or smaller sizes.

Genre labelling is difficult even for humans, mostly because

of its subjectiveness. Labels of genres differ among datasets and

this makes interpretations of results difficult. Also, the chosen

labels do not always fully reflect multi-genre TV; for instance

the RAI dataset has 7 genres labels. These 7 genres are car-

toon, commercial, football, music show, news, talk show and

weather forecast, which seem to be in some cases very specific,

e.g. football which can be considered as a subset of a broader

sport genre.

The proposed method in [10] uses acoustic features and us-

ing the RAI dataset, they reported accuracy of 94.3%. Using

video, 99.2% was reported in [5] for the same dataset. For other

similar datasets such as the Quaero dataset, similar classifica-

tion accuracies are reported (e.g. 94.5% [5]). On a custom

YouTube dataset [5], 87.3% was reported which was further im-

proved by the use of meta-data to 89.7%

Genre ID can be addressed by using generative models.

Kim et al. [10] reported an accuracy of 93.6% on a 11.5h

test set with the RAI dataset using Gaussian Mixture Models

(GMM) trained with the MFCC features. These features rep-

resent short-term characteristics of speech, such as the spectral

properties of phonemes and speakers. In smaller and more ho-

mogeneous datasets where the same shows and speakers might

often reoccur, the classification performance with those features

are usually much better than the accuracies obtained on larger

and more heterogeneous datasets [13].

The probabilistic approach using GMMs can be further ex-

tended using latent semantic indexing techniques. [10] had the

accuracy improved by 0.7% absolute over their GMM baseline

of 93.6% on the RAI dataset using acoustic topic models. They

used vector quantisation to represent frames by discrete sym-



bols and trained Latent Dirichlet Allocation (LDA) models [14]

followed by Support Vector Machine (SVM) classifiers. How-

ever when the amount of data is more and thus the dataset is

more diverse, the same baseline models performs much worse

[13].

Sageder et al. [15] tried to pool various types of features

and then group and select a subset using canonical correlation

analysis in order to identify low-correlated and complementary

features. These features were then used to train different clas-

sifiers such as K-Nearest Neighbour, Random Forest and SVM.

They reported very good classification performance on different

datasets including some custom RAI and BBC shows, however

the amount of data is tiny (less than 55h in total and in case of

BBC, 4.5h with just 3 classes) and thus hard to directly compare

with other approaches.

Other approaches try to identify certain audio-visual events,

with the objective to model the semantics of the broadcast

shows or YouTube videos [16, 17]. However, due to the com-

plexity of the shows and videos, the performance of these tech-

niques are not usually competitive with the previously men-

tioned methods.

3. Acoustic Latent Dirichlet Allocation

As shown in our previous work [18], acoustic LDA domain

posteriors have a unique distribution across genres and shows.

In this work we make use of acoustic LDA domain posterior

features to classify broadcast media and investigate the use of

other data sources such as subtitles, automatic speech recogni-

tion (ASR) output as well as meta-data.

LDA is an unsupervised probabilistic generative model for

collections of discrete data. Since speech observations are con-

tinuous data, first it needs to be represented by some discrete

symbols, here called acoustic words. A GMM with N mixture

components is employed for this purpose. The index of Gaus-

sian component with the highest posterior probability is then

used to represent each frame with a discrete symbol. Frames of

every acoustic document of length T , di = {u1, ...,ut, ...,uT }
are represented as:

vt = argmax
n

P (Gn|ut), 1 ≤ n ≤ N (1)

Where Gn is a Gaussian component from a mixture of N com-

ponents. With this new representation, document di is repre-

sented as d̃i = {v1, ..., vt, ..., vT }. For each acoustic word

vt in each acoustic document d̃i, term frequency-inverse docu-

ment frequency (tf-idf) can be computed as:

wt = tfidf(vt, d̃i, D̃) = tf(vt, d̃i) idf(vt, D̃) (2)

Where D̃ is the set of all acoustic documents represented with

acoustic words. With each document now represented with tf-

idf scores as d̄i = {w1, ..., wt, ..., wT }, the LDA models can

be trained.

A graphical representation of the LDA model is shown at

Figure 1, as a three-level hierarchical Bayesian model. In this

model, the only observed variables are wt’s. α and β are dataset

level parameters, θ
d̃i

is a document level variable and zt is a

latent variable indicating the domain from which wt was drawn.

The following joint distribution is the result of the generative

process of LDA:

p(θ, z, d̄|α, β) = p(θ|α)
T
∏

t=1

p(zt|θ)p(wt|zt, β) (3)

Figure 1: Graphical model representation of LDA

The posterior distribution of the latent variables given the acous-

tic document and α and β parameters is:

p(θ, z|d̄, α, β) =
p(θ, z, d̄|α, β)

p(d̄|α, β)
(4)

Computing p(d̄|α, β) requires some intractable integrals. A

reasonable approximate can be acquired using variational ap-

proximation, which is shown to work reasonably well in various

applications [19]. The approximated posterior distribution is:

q(θ, z|γ, φ) = q(θ|γ)

T
∏

t=1

q(zt|φt) (5)

where γ is the Dirichlet parameter that determines θ and φ is

the parameter for the multinomial that generates the latent vari-

ables.

Training minimises the Kullback-Leiber Divergence be-

tween the real and the approximated joint probabilities (equa-

tions 4 and 5) [19]:

argmin
γ,φ

KLD
(

q(θ, z|γ, φ) || p(θ, z|d̄, α, β)
)

(6)

The posterior Dirichlet parameter γ(d̄) can be used as fea-

ture for classification. Discriminative classifiers such as SVMs

have been used successfully for genre classification tasks before

[10, 20] including our previous work [13].

Kim et al. [10] used the whole shows to train the LDA

models and used the domain posteriors as features for an SVM

classifier. In this work we followed our previous setup [18, 21]

where only speech segments are used to train the LDA model.

For each show, the domain posteriors of its segments were ac-

cumulated and length normalised and used as features for the

discriminative classifier in the later stage:

xi =
1

∑

s∈segs

len(s)

∑

i∈segs

len(i) γ(d̄i) (7)

4. Experimental Setup

4.1. Data

TV broadcasts provided by the British Broadcasting Corpora-

tion (BBC) were used for all experiments. The data is iden-

tical to the one defined and provided for the 2015 Multi-

Genre Broadcast (MGB) Challenge [22] with a different train-

ing/testing set definitions. The shows were chosen to cover the

full range of broadcast show types and categorised in 8 genres:

advice, children’s, comedy, competition, documentary, drama,

events and news. All shows were broadcast by the BBC during

6 weeks in April and May 2008. There were more then 2,000

shows in the original MGB challenge data, from which 1,789

shows were selected for the experiments, 1,501 shows for the

training set and 288 shows for test set, with 133 unique shows

in total. The distribution of shows (time and count) across gen-

res for the training and test data is shown in Table 1. Figure 2



Table 1: Amount of training and testing data per genre

Genres
Train Set Test Set

# Shows Dur (h) # Shows Dur (h)

Advice 189 135.3 35 24.4

Children’s 301 112.7 60 25.0

Comedy 90 44.1 22 10.8

Competition 224 153.3 45 29.8

Documentary 90 57.4 29 19.3

Drama 102 69.0 21 14.6

Events 98 161.0 21 36.3

News 407 293.0 55 40.2

Total 1501 1025.6 288 200.4
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Figure 2: Distribution of 133 unique shows in training and test

set

shows the distribution of the 133 unique shows for both train-

ing set and test set, where the horizontal axis represents unique

shows and the vertical axis represents the number of episodes in

that show. Order of the bars are identical in both plots and e.g.

the first bar of both plots represents the same show.

It is important to note that this dataset is by orders of mag-

nitude larger than most of the datasets used in the literature for

the genre ID task [2, 4, 5, 6, 10, 15].

4.2. Baseline

As a baseline, GMM classifiers were used for both genre and

show identification tasks. For the data as described above, genre

ID task has 8 target classes and show ID task has 133 target

classes. 13 dimensional PLP [23] features plus their first and

second derivatives were used to train the genre-based and show-

based GMMs using Expectation Maximisation algorithm and

mix-up procedure to reach 512 mixtures. The optimal number

of mixtures for a similar task was found to be 512 in our pre-

vious experiments [13]. Table 2 shows the classification accu-

racy for both tasks. Since there are fewer target classes, genre

ID should be an easier classification task compared to show

ID. However, GMMs are found to perform better in classify-

ing shows than genres (70.1% compared to 61.5%), one reason

for this could be the diversity of data as discussed in the intro-

duction and the fact that PLP features are good for representing

speaker specific characteristics [13] and for the show ID task the

GMMs are learning speakers in re-occurring episodes. However

they provide poor generalisation for the genre ID task. If show

to genre mapping is assumed to be a priori knowledge, then the

show ID GMMs can be used for the genre ID task. The accuracy

for genre ID in such a setting would be 79.2%.

Table 2: Genre/show classification accuracy with GMMs

Model Genre ID Show ID

GMM 61.5 (79.2) 70.1

Table 3: Genre/show classification accuracy using whole show

and segment based acoustic LDA models

#Domains
Whole Show Segment Based

Genre ID Show ID Genre ID Show ID

16 73.6 45.1 76.7 46.7

32 71.9 53.8 81.5 57.8

64 78.1 56.6 81.2 63.4

128 77.8 56.9 83.3 66.6

256 76.4 58.0 86.4 67.3

512 80.2 61.8 85.0 66.7

1024 77.1 65.3 85.7 63.8

2048 80.6 65.3 84.7 63.1

5. Results

5.1. Whole Show and Segment Based Acoustic LDA

Whole shows were used to train the LDA models with varying

number of latent domains with the same procedure outlined in

the previous section. The performance of these models is to be

compared with the proposed segment based LDA models. The

classification accuracy for the genre ID and show ID tasks are

presented in Table 3. For the segment level models the pos-

terior estimates on short segments can be noisy. Picking the

domain with the highest posterior probability and representing

the posterior vector as one-hot-vector may reduce the posterior

estimate noise and it was found to slightly outperform the base

case and was used in the experiments.

As the performance of segment level models was better than

the whole show models, they were used in the rest of experi-

ments. Segment based models also had higher accuracy with

fewer latent domains. E.g. the highest accuracy with the seg-

ment based models for genre ID was 86.4% obtained with an

LDA model with 256 latent domains. However, the best perfor-

mance for the whole show models was 80.6%, with 2048 latent

domains. A similar pattern was found for the show ID task as

well.

5.2. Text Based LDA

Transcripts of the shows have valuable information for discrim-

ination of genres and shows. In this section the classification is

studied based on solely textual features. BBC TVs provide sub-

titles of the TV soundtrack, mostly for helping deaf and hard-

of-hearing viewers. The quality of these subtitles varies consid-

erably by genres. For example subtitles of live events and news

are mostly re-spoken live ASR output and have higher errors,

however for other genres which does not have the live nature,

the quality is higher. For a detailed analysis of the subtitles qual-

ity refer to [22] and [24]. Subtitles were used as-is, without any

preprocessing, to train the classifiers for both tasks. Although

subtitles can be of varied quality, their correctness is still high.

In a second experiment, ASR output is used instead of subtitles.

The ASR systems used here were trained for participation in the

MGB Challenge. For more details about these ASR systems, re-

fer to [24] and [25]. The classification task here is similar to a

document classification task, where each show’s transcript is a

document and the classes are either genres or shows. To have a



Table 4: Genre/show classification accuracy using text based

LDA models

#Domains
Subtitles ASR Output

Genre ID Show ID Genre ID Show ID

16 77.4 41.3 70.1 29.2

32 81.3 50.7 71.9 34.0

64 85.4 62.1 81.6 45.8

128 89.2 68.8 87.5 55.2

256 91.0 77.1 88.2 65.6

512 91.0 76.7 87.9 63.9

1024 94.8 81.3 88.5 64.9

2048 96.2 79.9 89.9 64.9

4096 93.1 78.1 89.6 64.2

fair comparison with the acoustic LDA experiments, text based

LDA models were trained and the domain posteriors were used

as features in the SVM classifiers. A simpler approach would

be SVMs with tf-idf features directly. However here the LDA

model reduces the dimensionality of the tf-idf features to the

number of latent domains, which is known to work better than

tf-idf only features for document classification [19]. Table 4

summarises the results. LDA models trained with the subtitles

performed substantially better than models trained on the ASR

output. Note that the ASR models used here have around 30%

WER on the official development set of the MGB challenge.

The performance gap is even wider in case of the show ID task,

22.6% vs. 13.5% absolute difference. This could caused by

some specific names that were present in the subtitles, but not

in the ASR output. Such words may have considerable discrim-

inability information.

The overall performance of text based classification with

subtitles is generally better than with direct audio based clas-

sification (96.2% vs. 84.4% for the genre ID task and 81.3%

vs. 67.3% for the show ID task) but when considering the ASR

output only, the audio based classification is better for the show

ID task.

5.3. Using Meta-Data

The data used in the experiments also includes some meta-data,

such as the BBC broadcast channel number, the date and time

of broadcast, and other unstructured information. Using some

of the structured meta-data is studied next to learn how the

classification accuracy can be improved further. Since these

programmes were broadcast during 6 weeks in April and May

2008, using the date was not likely to be helpful which we ver-

ified in the experiments. Instead, the time of broadcast, split-

ting 24 hours into 8 chunks, and channel number, in this setup

1–4 corresponding to BBC1, BBC2, BBC3 and BBC4, were

appended as one-hot-vectors to the inputs of the SVM classi-

fiers and their effect is studied. Table 5 summarises the results

of using the meta-data together with acoustic LDA features.

Adding these meta-data helps for both tasks. When comparing

channel and time, in both tasks appending time helps more and

the difference is bigger in case of the show ID task (72.8% vs.

77.7%). Combining channel information and time of broadcast

also helps further improve the classification accuracy in both

tasks and overall with meta-data there is 5.9% and 15.3% abso-

lute improvement in accuracies of genre ID and show ID tasks.

The first row in Table 5 shows the accuracy when only meta-

data is used (without any acoustic or textual features) which

shows how much information with the meta-data is provided.

Table 5: Genre/show classification accuracy using meta-data

Meta-Data Genre ID Show ID

Only Channel & Time 46.7 22.0

Baseline (acoustic 256) 86.4 67.3

+ Channel 89.6 72.8

+ Time 89.9 77.7

+ Channel & Time 92.3 82.6

Table 6: Genre/show classification accuracy with system fusion

Method Genre ID Show ID

Baseline (acoustic 256) 86.4 67.3

Baseline (text 2048) 96.2 79.9

Acoustic & Text 97.2 85.0

Acoustic + Meta-data & Text 98.6 85.7

5.4. System Fusion
With the two systems based on acoustic and textual features,

one can use a combination of both, assuming that they will make

different classification errors and their outputs are complimen-

tary. To combine the scores of the systems, logistic regression

is used to find a linear combination of individual system scores

to maximize the probability of correct classification [26]. Ta-

ble 6 shows the classification accuracy with the system fusion.

The combination of acoustic and text based systems improves

the classification accuracy for both tasks, 97.2% and 85.0% ac-

curacy for genre ID and show ID respectively, which shows

the complementarity of the individual systems. Moreover, in-

cluding meta-data further improves the accuracy to 98.6% and

85.7% which is near perfect for the genre ID task.

6. Conclusions

In this paper new methods for the genre classification of broad-

cast media based on audio were proposed. Furthermore, re-

quired information sources to obtain very high levels of perfor-

mance was explored. Also for the first time, show classification

task on very large datasets was studied. For the experiments

more than 1,200 hours of data with more than 1,500 TV shows

from the BBC which was broadcast in 2008 was used. These

data was a part of the MGB 2015 challenge [22]. For the genre

ID task there were 8 classes and for the show ID task there were

133 classes. Acoustic and textual LDA models were trained

with the audio and subtitles to infer the posterior Dirichlet pa-

rameters which were then used in SVM classifiers to classify

the genres and shows. On a 200h test set, combination of both

acoustic and text based classifiers had accuracy of 97.2% and

85.0% for genre ID and show ID tasks respectively. Use of

meta-data such as time of broadcast further improved the accu-

racies to 98.6% and 85.7%.

Future work can be exploiting more information from the

unstructured meta-data and trying to deal with cases where

some meta-data is missing.
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