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Analysing Wireless EEG based Functional Connectivity Measures
with Respect to Change in Environmental Factors

Dwaipayan Biswas, Valentina Bono, Michael Scott-South, Shre Chatterjee, Anna Soska, Steve
Catherine Noakes, Janet F. Barlow, Koushik Maharatna and mc schvéssfdder, IEEE

Abstract— In this paper we present a systematic exploration fundamental brain structures [2] responsible for the evolution
to formulate a predictive model of the human cognitive process in perception/emotion dynamics with respect to the changing
with the changing environmental conditions at workplace. We environment. Electroencephalogram (EEG) is one of the
select six different environmental conditions with small change biological signals that are widely used in the field of healthcare
in temperature/ventilation representative of realistic work for neurofeedback treatment. EEG with its high temporal
environment having manual control. EEG data were acquired resolution can detect the immediate responses to external
through 19-channel wireless system from three participants and stimuli which affect the perceptual state of the human brain
COz, Temperature, Relative humidity were recorded \yhich has been exploited by the research community to
throughout the six conditions. The EEG data was pre-processed ngerstand the effect of changing environmental parameters
using an artifact reduction  algorithm and 129 4 hyman cognition [2], [3]As the cognitive process (e.g.
reucprsdogia feares vere extaced fom neionl percepton) involves a lage-scale netvork (4] nstead of
environmental data were processed to generate 15 'S|ngle. br.aln region [5.] a multlchqnnel EEG. a!"a'ﬁ'
time/frequency domain features. Five best features selected investigating the |nteract|or_1 among different br".’“n sites C.O.UId
throg_g_h a ranking algorith(;n fofr all trlle variabl:;—isI across thezi;; I)OrrorzggasteT ﬁg inl;g?rﬁgsttiggdér;%h gr];gfahf)ewgsrzl)tlhng ng?ﬁg;}geof
conditions were processed to formulate a model (environmeat :
parameters as Bredictors) using retrospective (10_f0|d cross- Segregated functional units of the bralln which integrate with
validation in conjunction with multiple linear regression. The ~€ach other can be described by functional connectif@j (
model was prospectively evaluated over 10 runs on a test set tomeasures, which can be quantified by a number of neuro-
predict the EEG variable across the six conditions and biological features using complex network analysis [6].

parameters corresponding to the run producing least root mean . . . . )
square error were reported. Our exploration shows that the In this study we aim to investigate the EEG-based features

condition having no modulation of the ambient environmental extr_acted frolmf brain S|gnals acqu_lredl_ durl(;\g Chang'rr‘]g
parameters reflects the optimum condition for predicting the €nvironmental factors (acting as a stimuli) to determine the

EEG features using the examined environmental parameters. significant features involved in cognitive_z progessing. These
features are used to model the relationship between the

. INTRODUCTION cognitive processes (functional units) and the environmental

ggriables. Identification of significant features and the model

The design of modern workplaces (e.g. offices) incorporat arameters can help to control the environmental factors and
the fact that maintaining environmental parameters (e.g. P

ventilation, air quality, etc.) at predefined levels assuresad towards intelligent workspace design.

comfort and satisfaction of the occupants which is also For this investigationwe recorded EEG data elicited by
directly related to their health and productivity.[Alnumbe  Six environmental conditions from three particisam a

of studies have explored the way occupants perceive pdwiurally ventilated buildingA wireless 19-Channel EEG
indoor air quality leading to degraded cognitive functionSystem was used to collect data from the subjects and relevant
reduced productivity and overall well-beirgowever, same Processing was done to identify EEG features which were used
indoor environments lead to different subjective respgnsd€ modelling the relationship of the cognitive process with
primarily due to inter-person differences in perception dfach different condition. The acquired EEG data was de-
environmental factors as well as inherent behavioral factdfQ!Sed using wavelet packet transform-empirical mode

that influence the decision on comfortability, which is usuall ecomposition (WPT-EMD) [7] artifact reduction algorithm.

beyond the regulation of any standards. It is not possible (fg? e processed EEG data were used to genérateased

HVAC . i ter to th . d d easures which were represented with a reduced
AVAL engineers 1o cater 1o the varying demands imensionality by applying the Brain Connectivity Toolbox
individuals at workplace.

(BCT) yielding 129 features. Similarly, we extrd&time and
Ef@gquency domain features from the environmental monitoring
. . ta acquired through carbon-dioxide(p), temperature (T)

lead to an objective control or modulation of these factors. Thig,q rejative humidity (Rh) sensors. We select five significant
mechanism can be represented by neurophysml_oglqi tures that maximizes the variance in the feature space, each
measurement which can access the processes in EEG, CQ, T and Rh data. These features are successfully
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used for building a model using multiple linear regression imaving manual control over windows/heater and were targeted
conjunction with 10 runs of 10-fold cross-validation (CV) taowards capturing the perception of the participants towards
prospectively select the parameters that relate thiee changing factors. The small range of the sensor recordings
environmental data to the EEG. (COu: 555— 924 ppm; T: 22 - 25°C; Rh: 41 47%) further
highlight that the conditions were representative of a realistic
Il. BACKGROUND office environment with manual control.
The research community has for long focused on analyzing
the relationship between various environmental and behavioral TABLE . EXPERIMENTAL ENVIRONMENTAL CONDITION
factors with cognitive processes using dedicated tests (e.9-Conditions | Duration Description
cognitive executive functions [8]) performed by.part.lupants IN ™Condl | 2 mins |Eyes closed, heafing ofindows closed.
a controlled environment. These tests are primarily targeted ;555 mins |Eyes open, heating offindows closed.
towards evaluating various functionalities of the human brain™ cond3™ | 5 mins |Eyes open, heating on, windows closed.
such as planning, working memory, reasoning etc. However|  cond4 5 mins |Eyes open, heatingn, windows open.
recent research has brought in its spectrum the analysis of cond5 5 mins |Eyes open, heating off, windows open.
sensor-based physiological signals (e.g. electrocardiogram, condé | 5 mins [Eyes open, heating offindows closed.
EEG) with respect to changing behavioral factors (e.g.

physical exercises [9], sleep [10], fatigue [11], etc.) and V. METHODS

environmental factors (e.g. temperature [2],.C%)), thereby An overview of the methodology has been illustrated in

nullifying the subjective quotient involved with cognitive testFigure 1. We first discus the processing of the EEG signal

administration/reporting. followed by the environment data.

A recent study [2] focused on analyzing the effect of ====< —— & —————

changing temperature and emotional status on the brain,wa\A s Feature|Extraction

which to the best of our knowledge appears to be the md ggmme | © — lEEGdﬂfa

recent work in terms of relating cognitive process, temperatu queéssl Environmental|  Functional

and emotional status. However, they mainly looked into the — — — |~ —__EEG Datal(co-irian)||Connectivityl(£C)

cross-correlation between the EEG channels to trace the Pre-Processing s s s rC

movement of the emotional information when the brain carries  [penoisingll| © o rocessnd

out its activities under the influence of widely changing & (Ba;ﬁ::ss @

temperature valueMoreover, analyzing emotional status has ~ [Vindowing 129 features

been well researched using brain connectivity measures [12]. W;E':Z"t“ —

Hence, in our study we make a first attempt to analyze the Roduction Ranking & Selection

effects of three environmental parameters {&, T) on the

cognitive process by analyzifgC measures (moving beyond Epoch,

the ‘single electrode level analysis’) extracted from EEG Avenﬁ?af:mss ‘T’ai“i“g Validation Tes“—

signals. ¥ setcmss validsaleetmodel&ses:zt:l Evaluat

”I DATA ACQUISITION parameters . model
. | (multiple Ii?\n:adrerle ression) vali-lc-iraatI::?nidel|
In this study we chose to measure three common = =

environmental parametersGO,, T, Rh and a physiological Figure 1. Overview of the methodology.

signal- EEG from three patrticipants who gave their consent,

in an independent room within a naturally ventilated building The EEG recordings were pre-processed with a band pass
The room was well lit up, had two glass windows and coulilter having a cut-off frequency of 0.5 Hz - 42 Hz and further
hold up to four people. Each individual participant spergrocessing involved the following stagesrtifact reduction,
approximately half an hour in the room accompanied by thgpoching and feature extraction. The acquired EEG data,
researcher, seated on a standard height chair by a table. dtwtaminated by artifacts (primarily due to eye-blinking and
participants were exposed to six different environment@hvoluntary body-head movements of the participants during
conditions, representative of a realistic workplace scenario (¢he experimenjswas de-noised using the artifact reduction
Table I).CO,, T and Rh data were measured using a HOB@Igorithm - WPT-EMD [7] prior to epoching. The WPT-EMD
sensorssampling at 1 sample/sec. EEG signals were recordedes the resting state EEG, while the subject has their eye
throughout the experimental duration using the wirelegsosed (condll EEG epochs of 8 seconds (deemed sufficient
Enobio system [13] with 19 channels according to th® capture vital information) were extracted from the pre-
International 10-20 system with a sampling frequency of 5Qftocessed data for all the six conditions, obtaining an ensemble
Hz. It is important to note that throughout the experiments thgf epochs for each experimental condition. A threshold of 200
subjects were instructed to perform no cognitive tasks (ej@v was applied on the epochs and those selected within the
reading, computer work, etc.) as we wished to analyze ttiresholds were averaged and used for feature extraction.
baseline cognitive effects of the changing environmental , .

condition. The data in cond1 was primarily targeted towards Functional connectivityRC) - EEG

acquiring the resting stage EEG data used for the artifactHermes Toolbox was used to generate thE@®easures;
removal algorithm used in post-processing the data. The resich of these is a matrix with sizex19 (19 being the number

of the 5 conditions (cond2 cond6) each lasting for duration of electrodes). Among the measures, described in Table
of 5 minutes were representative of the realistic office scenafmur connectivity measures related to the phase



synchronization®§ between two signals (i.e. 5-8) have beesignal energy; frequency-domain: maximum and minimum
estimated for each individual band (in Hz) (4-8), « (8-12), amplitude of the power spectral density using fast Fourier
B (12-32),y (32-42) and all band®$-42), resulting in total of transform (fft), energy content of the fft signal; time-frequency

[(4%x5) + 9] 29 features.

Phase Indexes

derivative

D. Feature extraction: Brain connectivity toolbox (BCT)

a. Detailed description of the measures have been prowiggd

representation: energy content of discrete Wavelet transform
(dwt) coefficients for three levels of signal decomposition,

TABLE II. FUNCTIONAL CONNECTIVITY MEASURES using using ‘haar/daubechiésvavelets.
No.|  Measures Description This concludes the feature extraction process resulting in
1. |CrossCorrelatio|linear correlation between two signals as a fun| 129 features eXtraCtEd from EEG and 45 features in total from
of time the three environmental parameters §COT, Rh)
2. |Correlation Pearson’s correlation coefficient (at zero lag) corresponding to each of the three participants.
3. |[Coherence linear correlation between two signals as a fun V. FEATURE RANKING AND MODELLING
of frequency ] o
4. |Phase Slope |estimation of the flow direction of informati In this work, our target was to formulate a predictive model
Index __|between two signals as a function of time_ that relates the EEG data with the environmental data. We
5. Chﬁse('ﬁ?ﬁz'”g E)PS inter-trial _Va”f‘b"'tY of the phase differen  rank and select the five best features from either of the feature
alue etween two signals at time t . N ; 3
6. |Phase-Lag Indg(PS similar to PLV, however rejects phg sets (IEEtG_ 1|29' CO,, T,bRI'? 15 each), Ltl)Slngdthe low "
(PLI distributions centered around zero ComP exity ¢ ass-sgpara ity meas‘,”e_ . ased on scatter
7. P Index (PS based on Shannon entropy, quantiies|] ~Mmaitrices. The aIgonthm ranks ea_ch individual feature for a
deviation of the distribution of the cyclic relatf ~ Multiple-class scenario where a high rank represents a small
_______|phase from the uniform distribution within-class variance and a large between-class distance
8. |Directionality |(P9 Analysis of the temporal evolution of the ph among the data points in the respective feature space [14]

(BP)) The selected feature set for each of EEG,;,dQRh are
9. [Granger linear parametric method, measures if sign used within a multiple linear regression model for each of the
T g;‘fs"’]}gtry f’s“r’]‘c’)'r‘:zzgﬁqde't‘ﬁ::"en:’ggsrz‘rzts'ot’; 221?1:23:%”;' Y| six environmental conditions. We consider the environment
Entropy information flow from signals xtoy features CO;, T, Rh) as the predictors/independent va_nables
11. |Partial Directed|a frequency domain measure of Granger caud ~ and the EEG features as the response/dependent variable. For
Coherence  |based on modelling time series by muttival €ach of the condition, we randomly separate the 15 data
autoregressive (MAR) processes samples (5 features x 3 participants) into a training set (10
12 Direct_ Transfer _similar to PDC, h_owever use a Hermitian transj samples) and a test set (5 samples). The training samples are
Function instead of a Fourier transform modelled and validated through a 10-f@¥ step and the
13. |Mutual measures the amount of information shared bet model parameters of the corresponding step which produces
Information two signals

the least root mean square error (rmse) are used to
prospectively predict the EEG values of the 5 test samples.
The process is repeated for 10 runs, selecting a random split
of 10 and 5 data samples in each run. This process is repeated

BCT uses graph theory analysis on B@measures except for each of the 6 conditions and the model parameters
for 1, 3, 4, 11, 12 (cf. Table IlI) and also the measuresgproducing the least rmse for the predicted EEG values are
Modularity, Radius and Diameter were not computed for theelected as the optimal model.
five DPI bands (cf. 8, Table II). Hence this yields a total of 129

features [24Cx 6 GT- 15]. VI. RESULTS
TABLE . GRAPHTHEORETICMEASURES The_ besf[ .ranked feature; se_lected for  the
__ modelling/validation and prospective testing phase for EEG
’;‘0- #"eas‘ﬂt'_re_f Descr'pt'onf fon e T - and environmental data are listed in Table V. The rmse values
. |Transitivity |measure of segregation (i.e. how many ) . : :
neighbors are connected among themselves) as :jesltlilt of 1(:]rufnsh Of610 fod_v using the Im?ar rﬁg:je_fsfsmn
2. |Modularity |measure of segregation; it measures how muc| model ior eac _O_t e 6 conditions _representlngt e difrerence
network can be divided into subgroups with dg between the original and the predicted EEG values has been
links within-groups and few links between-group listed in Table VI. The parameters for the best model derived
3. |Characteristimeasure of integration; measures the average di which produces the least rmse (cond2) across the six
path length |between nodes across the entire network . L .
4. |Global measure of integration; it is the inverse of theadlisg conditions is given in (1
efficiency _[between nodes _ : EEG=0.6- 0.652Q— 0.277— 0.02BH (1)
5. |Radius measure of shape of network-minimum eccentric
6. |Diameter measure of shape of network- maximum eccentri

b. Detailed description of the measures have been providél i

TABLE IV. LIST OF THE BEST FEATURES SELECTED ACROSS THE SIX
CONDITIONS FOR THREE PARTICIPANTS COMBINED

E. Feature extraction: Environment data

List of best Features
RadiusPLI(p)]; Radius[PLI{)]; Radius[PLI¢)];
Efficiency[PLV(all bandy; Efficiency [PLI{)]
Mean; Energy_db33; Energy_db3I2; Energy _db3_I1
Energy _haar_I3

We preprocess theCO,, T and Rh data using a moving FT—
average smoothing filter and divide the data into segments gfEs
8 seconds with an overlap of 1 sample. The following features
were extracted from all the windowstime-domain: mean, [CG;
standard deviation (std), kurtosis, skewness, sample entropy,




T Mean,; std; FFT_power; PSD_max; Energy_haar_I1 inherent in workplaces having manual control over

Rh Mean; std; Kurtosis; Energy_db3; Energy_db3l2 environmental conditions.
TABLE V. RMSEFOR THEG CONDITIONS AS A RESULTS OHLORUNS Hence, this study sets the pathway for the following
OF 10-FOLD CROSSVALIDATION OF THE LINEAR REGRESSION MODEL exploration in the near future: 1) analyzing the
Conditons RVISE evolution/change .ofFC measures 'computed on each 8
condl 0.484 seconds epochs (instead of averaging) along with the change
cond2 0.156 in the feature values computed on the environmental
cond3 0.387 parameters; 2) change in the sequence and duration (longer
cond4 0.272 than 5-minute) of the environmental conditions and seeing
cond5 0.232 how it affects the models and the corresponding res@js;
cond6 0.437 having the participants perform some cognitive tasks while

their EEG is recorded along with changes in environmental

Cond2 represents a stable condition when none of the pferameters A predictive model using the environmental
existing (since the start of the experiment) environmentghrameters and the cognitive process (quantified by EEG
parameters undergo any change. Although we return backsg@tures) will lay the foundation for intelligent workplace
same state in cond6 but only after transiting through statggsign which could help the occupants to perform at optimal

accumulative effect of these changing environmental
conditions on the EEG data is quantified by the relbtikiggh
rmse between the predictor and response variables. ]
The five best EEG features having a large variance among
all the competing classes (i.e. conditions) used fa th
modelling represents the graph theory based parameter@]-
Radius and Global_efficiency chosen for B@measures PLI
and PLV (phase synchronization and lag) across different
frequency bands computed on the EEG data [6]. The Radiak
represents the shape of the network (minimum distance of a
node from all other nodeswvhereas the Global_efficiency
represents the degree of information integration within tHel
graphical network. The best features selected from the
environmental data reflect the importance of the energy
components of the dwt coefficients which is a time-frequenc
representation of the signal, besides highlighting simple tim®!
domain features such as mean,, seflecting change in
environmental parameters over time. [7]

VIlI. DISCUSSION

In this paper, we describe a systematic exploration using
several EEG features and time/frequency domain features
extracted from three types of environmental data collected
across six different environmental conditions on threl!
subjects, to formulate a linear model. Using this linear
relationship (obtained through 10 runs of 10-fGM) and the [10]
best ranked features it is possible to predict the EEG using the
CO,, T and Rh data. Our results show that using mainly the
wavelet coefficients and few time domain features on tHé!!
environmental data we can prospectively predict the EEG data
represented by two graph theoretic measuré&adius and |12
Global_efficiency computed on the phase information. The
prospective prediction produces the minimal error (rmse) for
the second condition out of the six experimental condition3!
primarily due to the absence of any external environmentﬁl4]
modulation.

This exploratioris aimed at a ‘proof-of-concept first study
to relate three environmental parameters to the cognitiv
processing represented by a network of active functional units
of the brain. It is important to note that here we represent the
six conditions for a very small duration (5 mins) each having
a small difference in the range of the individual values. This
simple case-study is representative of the minimal variations
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