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Abstract 
 

In meta-analyses, where a continuous outcome is measured with different scales or 

standards, the summary statistic is the mean difference standardised to a common 

metric with a common variance. Where trial treatment is delivered by a person, 

nesting of patients within care providers leads to clustering that may interact with, or 

be limited to, one or more of the arms. Assuming a common standardising variance is 

less tenable and options for scaling the mean difference become numerous. Metrics 

suggested for cluster-randomised trials are within, between and total variances. For 

unequal variances, the control arm or pooled variances. We consider summary 

measures and individual-patient-data (IPD) methods for meta-analysing standardised 

mean differences (SMDs) from trials with two-level nested clustering, relaxing 

independence and common variance assumptions, allowing sample sizes to differ 

across arms. A general metric is proposed with comparable interpretation across 

designs. The relationship between the method of standardisation and choice of model 

is explored, allowing for bias in the estimator and imprecision in the standardising 

metric. A meta-analysis of trials of counselling in primary care motivated this work. 

Assuming equal clustering effects across trials, the proposed random-effects meta-

analysis model gave a pooled SMD of -0.27 (95% CI -0.45 to -0.08) using summary 

measures and -0.26 (95% CI -0.45 to -0.09) with the IPD. While treatment-related 

clustering has rarely been taken into account in trials, it is now recommended that it is 

considered in trials and meta-analyses. This paper contributes to the uptake of this 

guidance. 
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1. INTRODUCTION 

Summary measures approaches to statistical pooling or ‘meta-analysis’ of randomised 

trials first involve extracting a summary statistic, representing a treatment effect, from 

each trial and then calculating a weighted average of them [1, 2]. Where the outcome 

is normally-distributed, for example the severity of depression, the summary statistic 

is often an absolute mean difference. If the outcome is measured with different scales 

or standards across trials, for instance with the HADS-D [3], PHQ-9 [4] and the BDI 

[5], then the relevant summary statistic is the absolute mean difference, standardised 

to a common metric. That is, the standardised mean difference (SMD) or effect size. 

Outcomes are then assumed to be linearly equitable across trials, regardless of the 

measurement tool used, and the summary statistic is interpreted as a mean difference 

given in units of a standard deviation (SD) [6]. Where outcomes can be assumed to be 

independent and their SD homogeneous, the population SMD is defined as the 

difference in means across arms, divided by the common SD of the outcome. 

 

Independence and common variance assumptions are less tenable when the treatment 

a patient receives is delivered by a health professional, such as in talking or physical 

therapies or surgery. Systematic variation or ‘clustering’ in patient outcomes by care 

provider arises when providers differ in characteristics related to outcome, such as 

training, skill, experience or empathy. As with cluster-randomised trials, the resulting 

correlation among outcomes within clusters violates the assumption of independence. 

However, treatment-related clustering also violates the common variance assumption. 

Provider characteristics may also differ across arms, for instance with greater skill or 

different training being required for one treatment than another. There may also be 

greater standardisation of one treatment, or one may be more established so that there 

is greater experience associated with it. The consequence of violations to the standard 

assumptions is that there is no longer a single common metric; the options available 

for scaling the mean difference being numerous. In general, each one is associated 

with a different population parameter and requires a different interpretation. 
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In cluster-randomised trials, typically, treatments are randomly allocated to entire 

clusters in a fully-nested, parallel-group design [7]. It is generally assumed that the 

clustering effect is homogeneous across treatment arms so the between- and within-

cluster variances, which make up the total variance, are the same in both arms and a 

random intercept model appropriate for the analysis of each trial. Under this 

assumption, both White and Thomas [8] and Hedges [9] have suggested population 

SMDs based on the between, within and total SDs respectively. A between-cluster SD 

cannot be defined if there is only one cluster per arm in a trial. Similarly, where 

cluster-level analyses are reported, the within-cluster SD may not be. In both cases it 

would be possible to make assumptions about the intra-cluster correlation (ICC) and 

report and interpret the SMD in units of the total SD. While the choice of metric 

should depend on the inference of interest to a meta-analyst [9], SMDs based on the 

total and within SDs reduce to the standard SMD when outcomes are independent. If 

clustering is ignored in the published analyses, estimates of the between, within, and 

total SDs are unlikely to be readily available. Therefore, their population values may 

be difficult to estimate directly. To circumvent this problem, White and Thomas [8] 

and Hedges [9] suggest replacing the total SD by a ‘naïve’ SD, given by the total 

mean squares, in estimating the total SD SMD, and correcting for a bias that arises in 

doing so. 

 

The simple situation, in which independence and normality assumptions hold but the 

variances differ across two treatment arms, is classically referred to as the Behrens-

Fisher problem [10]. Glass [11] argued that between-trial heterogeneity in the 

treatment arms obscures interpretation when pooling trials in this situation and 

recommended the control arm SD be used as the metric of choice if the comparator is 

no treatment. It is arguable that this advantage is lost if control content also varies 

from trial to trial. As an alternative, Huynh [12] suggested pooling the SDs across 

arms, using the effect size proposed by Cohen [13, p.44]. In contrast to the standard 

SD, sample SDs in this metric estimate different population SDs. While it has been 

argued that the resulting distribution is rather contrived, and requires careful 

interpretation [14], this SMD has the advantage of reducing to the standard SMD 

when the outcome SDs are homogeneous across arms, utilising all available outcome 
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data, and minimises the small-sample bias in the trial SMDs identified by Hedges [6, 

15]. Huynh [12] assumed the sample size is the same in each arm. Where it differs, as 

is often the case, we propose a more general pooled outcome SD that could be used, 

weighting the SDs by the sample size in each arm. A further option might be to use 

the associated baseline SD, a metric more commonly recommended for standardised 

mean change scores [16-20]. This may appeal particularly where eligibility criteria are 

similar across studies. 

 

Use of individual-patient-data (IPD) in meta-analyses of SMDs appears to be limited, 

but see [21-23] for examples. Goldstein et al [24] described an IPD approach with the 

level-1 or within-cluster SD as the common metric. This was illustrated using studies 

of class size where students were nested within classes, schools and studies, and small 

versus large class size represented the treatment arms. The inclusion of a further level 

in the meta-analysis makes their approach especially relevant but, in contrast, schools 

are crossed with arms in their example. And, while they allude to models that allow 

for between-arm or trial heteroscedasticity, they do not consider nested study designs, 

the rationale or implications of the choice of metric, imprecision in the standardising 

SD, or the relationship between the method for standardising outcome data and the 

choice of model for the meta-analysis. 

 

This paper proposes summary measures and IPD approaches to the meta-analysis of 

standardised mean differences from randomised trials with uniform two-level nested 

designs and treatment-related clustering. It builds on earlier work [25], addressing the 

simpler situation in which absolute mean differences are to be pooled, but due to the 

additional complexities here, between-trial homogeneity in the within-trial clustering 

effects is assumed throughout. In both papers, the nested designs considered assume 

there is a single therapist-per-patient. In a fully nested design different care providers 

deliver every treatment, while at least one treatment does not require care providers in 

a partially nested design (see Walwyn and Roberts [26] for further description of the 

full range of therapist designs). The statistical model recommended at the trial-level 

for both nested designs is a two-level heteroscedastic model [27]. This includes a 

random effect for the care provider but allows the provider and patient level variances 
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to differ across arms, constraining the provider variance to zero in arms with no care 

providers for partially nested designs.  

 

We begin in section 2 by outlining the example that motivated this work. In section 3 

we set out the summary measures approach proposed by Hedges [6, 15], highlighting 

the steps involved a standard meta-analysis of SMDs and how it differs from a meta-

analysis of absolute mean differences. In section 4 we extend this approach, and those 

suggested by White and Thomas [8], Hedges [9] and Huynh [12], proposing a general 

metric that simultaneously relaxes independence and between-arm common variance 

assumptions, also allowing the number of patients to differ across arms. In section 5 

we first outline the steps suggested by Goldstein et al [24] for a standard IPD meta-

analysis of SMDs, highlighting how these could be modified to allow for imprecision 

in the standardising metric. We then extend them, initially relaxing the between-arm 

homoscedasticity assumption for the Behrens-Fisher case, and then simultaneously 

relaxing the independence and between-arm homoscedasticity assumptions necessary 

to pool trials with treatment-related clustering. In section 6 we illustrate our methods 

using our motivating example, concluding in section 7 with a discussion and 

limitations. 

 

2. MOTIVATING EXAMPLE 

As in our previous paper on the meta-analysis of absolute mean differences [25], we 

were motivated by Bower and Rowland’s [28] systematic review of the clinical and 

cost-effectiveness of counselling in UK primary care, which included 8 trials. As it is 

usual for counsellors to apply eclectic therapeutic approaches to a very wide range of 

social and clinical problems, the implications of therapist variation [26] are especially 

pertinent in this setting. The largest meta-analysis involved 7 trials [29-35] comparing 

counselling plus care from a general practitioner (GP) to just GP care using short term 

outcomes measuring the level of mental health symptoms.  

 

Four of these trials [30, 31, 34, 35] reported the Beck Depression Inventory (BDI) [5], 

allowing a meta-analysis of the absolute mean differences [25]; the other three trials 
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[29, 32, 33] reported the General Health Questionnaire (GHQ) [36], the depression 

subscale of the Hospital Anxiety and Depression Scale (HADS-D) [3] and a short 

Symptom Index, respectively. All are commonly used self-report questionnaires: the 

BDI and the HADS-D measure severity of depression while the GHQ and Symptom 

Index are global measures of wellbeing. The BDI has 21 items (total scores 0 to 63) 

and the HADS has 7 items relating to depression (subscale scores 0 to 21) with higher 

scores indicating greater severity. The GHQ had 28 items (total scores 0 to 28) with a 

score above 4 indicating the presence of distress. The Symptom Index had 18 items 

(mean scores 0 to 4) with a norm of 0.61. Across these scales, a change of 0.5 SDs is 

generally regarded minimally important.  

 

To pool all 7 trials, it was necessary to first transform the data on all four scales to a 

common metric. The published meta-analysis [28] gave an SMD of -0.24 SDs (95% 

CI -0.38 to -0.10), so, according to Cohen’s [13] classification, the pooled treatment 

effect can be regarded as clinically small but statistically significant. Authors of the 

Cochrane review concluded ‘counselling is associated with modest improvement in 

short-term outcome’ and that it ‘may be a useful addition to mental health services in 

primary care’ [37]. Ignoring the co-intervention of GP care, each trial can be viewed 

as having a partially nested design, with counsellors delivering treatment in the 

intervention but not in the control arm. Across trials, there was a single counsellor per 

patient. The published meta-analysis used a standard summary measures approach, 

assuming independence of patient outcomes within trials and a common variance 

across arms, fitting a fixed-effects meta-analysis model assuming a common 

underlying SMD across trials. 

 

3. THE STANDARD SUMMARY MEASURES APPROACH  

Any summary measures meta-analysis of SMDs, or absolute mean differences for that 

matter, requires the systematic reviewer to assume outcomes are normally-distributed 

and to extract the sample means (khy ), SDs ( khs ) and sizes (khn ) for each arm 

( 1,0k ) of every trial ( Hh ,,1 ). Assuming these are all available from 

published or unpublished trial reports or direct correspondence with authors, the first 
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step is to choose an appropriate metric or SD for scaling the absolute mean difference. 

The SMD is thus a ratio, where the absolute mean difference is not. In the standard 

but also simplest scenario, where independence and homoscedasticity is assumed 

within and across each trial to be pooled, there is only one option for such a metric, 

the common SD . The population SMD is therefore defined [6, 15] as 


 01 SMD  (1) 

 
with the difference in population means of the treatment and control arm respectively 

in the numerator and a common standardising metric in the denominator. The second 

step specific to meta-analyses of SMDs is to choose an estimator for the denominator. 

Usually the population metric can be estimated, within each trial, by the sample SD in 

the treatment or control arm, hs1 , hs0  or by the sample SD pooled across arms, hs . A 

third step is then to determine the sampling distribution for the chosen estimator of 

the denominator of the SMD, obtaining the relevant degrees of freedom. This tends to 

be the pooled sample SD hs  because it maximises the degrees of freedom available, 

utilising all of the available data. As in the standard case the pooled sample variance 

is simply the mean squares error, that is hh MSEs 
2 , it follows that its sampling 

distribution is exactly proportional to a chi-square with 201  hh nn  degrees of 

freedom hdf . Since hs is a direct estimator of  in the standard case, a fourth step of 

calculating a bias, relating to the choice of estimator for the metric, is avoided. Once 

one has a sampling distribution for the standardising metric, a fifth step, which is 

common to all meta-analyses, is to obtain the sampling distribution of the sample 

estimate of the population parameter so as to select an unbiased summary statistic and 

determine its standard error. There are two sample estimates of the population SMD. 

In the standard case, the first is commonly referred to as Cohen’s d  [13], the second 

as Hedges’ g [15]. Cohen’s d is the large-sample estimate of the population SMD and 

is given by simply replacing the population parameters by their sample equivalents in 

each trial as follows, 

h

hh
hdsCohen s

yy




 01

,'̂      (2) 



9 
 

 

This makes no allowance for imprecision in the standardising SD, instead assuming 

that all the trial sample sizes are large so all the hdf  are also large. Its sampling 

distribution is given asymptotically [15] by 
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As Cohen’s d  is a ratio of a mean difference to a standardising SD, its standard error 

is equal to the standard error of the absolute mean difference plus a term that relates to 

the SD, the latter depending on the population parameter. As such, in contrast to a 

meta-analysis of absolute mean differences, in a meta-analysis of SMDs, the sample 

estimate and its standard error can be seen to depend on the variance of the outcome. 

If any of the trial sample sizes (hn ) are small, and particularly if hdf 10 , Hedges 

[15] showed that Cohen’s d  is biased for SMD , and derived an alternative estimator, 

to correct for this, 
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1

01

11~












hh
h nn

n  and   
14

3
1

2

1

22 















 









h

hhh
h df

dfdfdf
dfc  

 

Hedges’ g is the unbiased estimate of the population SMD, appropriate regardless of 

the degrees of freedom, hdf , available for estimating the standardising metric,2
hs . It is 

therefore preferred over Cohen’s d . Hedges’ g  converges to Cohen’s d  as the trial 

sample sizes increase but is uniformly smaller than Cohen’s d otherwise [15]. Since 

Hedges [6, 15] originally suggested substituting 2
,'

ˆ
hgHedges  for 2

SMD  when estimating 

the standard error, this is widely done in software. White and Thomas [8, p.150] 

showed that this introduces bias because the expectation of a squared estimate is equal 

to the squared parameter plus the variance of the estimate, not simply the squared 
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parameter (that is   2
ˆ

22ˆ
 E ). So they proposed a refined estimator for the exact 

sampling variance, given by 

 

  






 











hh

h
hgHedges

hh dfdfc

df

nnhgHedges 2
2

,'
01

2
ˆ

2
1ˆ11ˆ

,'


      (5) 

 

The first term clearly relates to the variance of the numerator of the trial SMD and the 

second to the variance of its denominator. This was originally derived by Hedges [38 

p.391]. 

 

Again common to all meta-analyses, once one has an unbiased summary statistic (e.g. 

Equation (4)) and an unbiased estimate of its standard error (e.g. Equation (5)) a sixth 

step is to pool summary statistics using fixed or random-effects meta-analysis models 

[39]. The choice between a fixed or random-effects meta-analysis is based on whether 

it is reasonable to assume there is an underlying SMD common across trials. If it is, a 

fixed effects model may be fitted. In the more likely scenario where population SMDs 

vary across trials, a random-effects model should be fitted. Where there is substantial 

heterogeneity in SMDs across trials, it is important to explore possible explanations 

for this, perhaps in the context of a meta-regression [40], or give a tolerance interval 

for the effect in a new study [41]. Methods to allow for between-trial heterogeneity 

are beyond the scope of this paper, however. The uniformly minimum variance 

unbiased estimate (UMVUE) of any pooled treatment effect   is given by the 

following weighted average [42, 43] 







 H

h
h

H

h
hh

w

w

1

1

ˆ
ˆ


       (6) 

where the trial weights,hw , are the inverse of the sampling variance of the summary 

statistic. In a random-effects meta-analysis model, the weights are the inverse of the 

total sampling variance, given by the sum of the within, 2
ˆ

,'
ˆ

hgHedges , and between, 2ˆ LD , 

trial variances, where the latter is often estimated using DerSimonian-Laird’s (D-L) 

[44] methods of moments estimator. In a fixed-effects meta-analysis the between trial 
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variance is simply zero. It is usual for 
2

ĥ
  and 

2

h
  to be replaced by their respective 

estimators
2
ˆˆ
h

  and 
2ˆ
h

  here, although Sidik and Jonkman [45] suggest an alternative 

approach that is robust to sampling errors in the estimated weights.  

 

A seventh step, recommended for summary measures SMD meta-analyses [6] but 

unnecessary when the summary statistic is an absolute mean difference, is to plug the 

pooled estimate of the population SMD from Equation (6) back into the estimate of 

the within trial variance given in Equation (5), which is used in estimating the trial 

weights, hw , and to continue iterating until convergence. While this step is not always 

implemented in software, and it may not be desirable where there is any suspicion of 

heterogeneity in the SMD across trials, it is important because the initial weights 

depend on the trial estimate of the SMD. As the size of the weights increase as a 

function of SMD, particularly if the degrees of freedom available for estimating the 

standardising SD are low, omitting this step may lead to the pooled treatment effect 

being unduly affected by a single trial with an extreme SMD. Hedges [6] argued that 

when the degrees of freedom relating to the standardising SD are all large this step 

can be ignored.  

 

Once you have converged estimates of the trial weightshw , the eighth step is common 

to all meta-analyses. It is to calculate the standard error of the estimated parameter̂ , 

simply by 

2/1

1
ˆ













 

H

h
hw


       (7) 

 

so that an approximate two-sided  1100 %  confidence interval for ̂  is given by 
 

  ˆ2/1
ˆ

 z         (8) 

 

4. A MORE GENERAL SUMMARY MEASURES APPROACH 

The eight steps outlined above, hold specifically for the situation in which 

independence, normality and homoscedasticity can be assumed. When the 
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assumptions of independence and homoscedasticity no longer hold, the first five steps 

need to be modified. That is, (i) an appropriate SD for scaling the absolute mean 

difference must be chosen, (ii) an estimator for this SD found, (iii) the sampling 

distribution for this SD estimate determined, in order to obtain the relevant degrees of 

freedom, (iv) a bias relating to the choice of SD estimator calculated, and (v) the 

sampling distribution of the SMD estimate determined in order to obtain an unbiased 

summary statistic and its exact standard error. The final three steps (six to eight) are 

the same as in any meta-analysis of SMDs. 

 

4.1 Choice of SD for Scaling the Absolute Mean Difference 
A general population SMD can be defined as 

den
SMD 

 01   (9) 

 

with the form of den depending on the choice of standardising SD. As we have seen, 

in relation to Cohen’s d and Hedges’ g ,  den for the standard SMD. For Glass’[2]  

SMD, the standardising metric is the control arm SD ( 0 den , where  0 ). For 

Huynh’s [12] SMD, the standardising metric is a simple average of the treatment and 

control arm SDs ( den    22
0

2
1   ). And for White and Thomas’ [8] or Hedges’ 

[9] SMDs, the standardising metrics are the total, within or between cluster SDs 

respectively ( den T , W  or B ). The issue faced when pooling SMDs from trials 

with treatment-related clustering is the presence of between-arm heteroscedasticity. 

Here, the need for a common metric across arms results in two options. The first is a 

metric that has a direct interpretation. One option is Glass’ SMD, another is a SMD 

based on the baseline SD. Here, the standardising metric has a clear interpretation but 

only where trial designs are comparable. The second is a metric that requires pooling 

potentially different population SDs. This could be the within, between or total SDs. 

We argue that the most general standardising SD is what we will refer to as the pooled 

total SD. The population SMD based on this is given by 
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It applies to fully-nested trials with treatment-related clustering but reduces to a range 

of other SMDs in more restrictive scenarios. For partially-nested trials, the total SD in 

the control arm is the standard control arm SD so 00  T  in Equation (10). If the 

sample size is unequal across arms in the Behrens-Fisher case00  T and 11  T  

in Equation (10). If  the sample size is equal in this case then Equation (10) reduces to 

Huynh’s [12] SMD. If the sample sizes, within and between cluster SDs are all equal 

across the arms, then Equation (10) reduces to White and Thomas’[8] and Hedges’ [9] 

SMD based onT . Consequently, all these metrics can be viewed as special cases of 

the more general metric proposed here, making the pooled total SMD an appealing 

option, compared to a pooled ‘within’ or pooled ‘between’ SMD. We will return to 

this issue in the discussion. 

 

4.2 Choice of Estimator for the Standardising SD  
White and Thomas [8] and Hedges [9] both give two options for estimating the total 

SD. Either it is estimated directly using the total SD (Ths ) in every trial ( Hh ,,1 ), 

or if clustering is ignored in published analyses, and estimates of the total SDs are not 

readily available, it is estimated indirectly using the naïve SD (hs ), given, as with the 

standard case (Equations (2) and (4)), by the total mean squares. Sample estimates of 

the pooled total SD for the fully nested case are therefore given by 
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respectively, where khSSW and khSSB are sums of squares within- and between-clusters 

in each arm ( 1,0k ) of every trial ( Hh ,,1 ), assuming cluster sizes are equal 

within trial arms. The sample SD in both Equations (11) and (12) is now a linear 

combination of mean squares terms rather than simply a single mean squares term (i.e. 

the mean square error) as it was assuming independence and homoscedasticity. 

Estimators of the pooled total and naïve SD are given in Table I, in terms of the sums 

of squares (SS), for the fully nested case and under the more restrictive scenarios. 

Note that the term for the total mean squares is biased for the pooled total variance, 

where clustering is present (see Section 4.4 for details of the implications of this). 

 
[Insert Table I about here] 

4.3 Sampling Distributions for Estimators of the Standardising SD  
One consequence of the sample SDs in Equations (11) and (12) now being linear 

combinations of mean squares terms is that their sampling distributions are also no 

longer exactly proportional to chi-squares with 201  hh nn  degrees of freedom hdf . 

Instead, they have sampling distributions approximately proportional to chi-squares 

with degrees of freedom given, using a Satterthwaite approximation [46] by  
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respectively, where h0̂ and h1̂ are estimated control and treatment ICCs respectively, 

2
Wkhs estimated within-cluster variances, khm the cluster size, khC the number of clusters 
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and 2
khs  the naïve variances in arm 1,0k  of trial Hh ,,1 . Derivations are given 

in Appendix A and B respectively as supporting web materials.  

 

It is possible to rewrite Equation (13) in terms of total variances by replacing 2
Wkhs  

 khTkh  12 . The degrees of freedom given in Equations (13) and (14) simplify under 

more restrictive scenarios to those summarised in Table II. Under independence the 

degrees of freedom are equal for the pooled total and naïve variances. Huynh [12 

p.21] gave the degrees of freedom for his pooled SD. We give the degrees of freedom 

for the more general Behrens-Fisher situation but also those valid under a random-

intercept model for the pooled total SD, correcting typographical errors in White and 

Thomas [8 p.151] and Hedges [9 p.364], and for the pooled naïve SD as given by 

Hedges [9 p.156], thereby correcting a further typographical error in White and 

Thomas [8 p.151]. 

[Insert Table II  about here] 

4.4 Bias Relating to the Choice of SD Estimator 
The expectation of the pooled naïve variance under a two-level heteroscedastic model 

is given by 

 
         (15) 
 

 

with 00 h  and 2
0

2
0 hhT    where trials are partially-nested (see Appendix C under 

supporting web materials for the derivation). Under independence, where 001   , 

it can be seen that 1hb  and the naïve SD is unbiased. Hedges [9] gave the bias under 

a random intercept model as  
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As before, the bias in Equation (16) is a special case of that given in Equation (15). In 

all cases, the naïve variance underestimates the total variance by a factor linked to the 

design effect. 
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4.5 Sampling Distributions of the SMD Estimates 
Huynh [12 p.4-6] and Hedges [9 p.360-2] have derived sampling distributions for 

large-sample (extending Cohen’s d ) and unbiased (extending Hedges’ g ) estimators 

of SMDs based on pooled and total SDs, respectively. These have a similar form and 

can be extended to give yet more general sampling distributions for the pooled total 

SMD. Suppose that, for each of h  trials, the absolute mean difference in outcome 

observed between the treatment and control arms is distributed as 
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where the expectation ( hh yyE 01  ) and sampling variance (2
01 hh yy  ) of the absolute 

mean difference are unknown but the   khkhTkh ma 11   denote known constants. 

If   hhdenptotal bsE /2
,

2  , where hdens , is given by Equation (11) or (12) and hb , given in 

Equation (15, also a known constant), the large-sample estimator of ptota l  is given by 
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where 
hhdft , is a non-central t-distribution with degrees of freedom hdf  given in Table 

II  and non-centrality parameter equal to  2
,

2

01

ˆ
hdenyyptota lh ss

hh
 . A derivation for 

Equation (18) is given in Appendix D as supporting web materials.  
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It follows from the definition of a non-central t-distribution (see Huynh [12 p.4] and 

White and Thomas [8 p.150]) that, where 2hdf , 
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with the asymptotic standard error of hLS,̂  given by 
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correcting typographical errors in Huynh [12 p.5] and Hedges [9 p.361]. Note that, in 

Hedges [9], hhh cbdf 2 due to his use of Box’s [47] generalisation of Satterthwaite’s 

approximation [46] for the degrees of freedom. The result in Equation (19) implies 

that the unbiased estimator of ptota l  is 
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Note that the adjustment White and Thomas [8] recommend for Hedges’ g (Equation 

(5)) has been made to the estimated standard error in Equation (21).  

 

Where 2hdf , the expectation and sampling variance for the general unbiased SMD 

estimate are given by Huynh [12 p.6] and White and Thomas [8 p.143] respectively as 

SMD  and       222
,

22

01
2 SMDSMDhdenyyhhh ssdfdfdfc

hh
   . Given that the degrees of 

freedom are approximate so is the estimated standard error. It is worth noting that the 

accuracy of Satterthwaite [46] approximations may depend on the imprecision of the 

estimated component parameters. Equation (21) again simplifies. It is Hedges’ g  in 
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the standard case. It is Huynh’s [12 p.6]h  in his case. It is White and Thomas’ [8 

p.150] adjg in their case and it is Hedges’ [9 p.362]  cbDJ /2  in his. 

 

The sampling distributions of the SMD estimators considered further in this paper are 

given in Table III . It can be seen that clustering and heteroscedasticity affect the trial 

SMD estimate and its standard error via the degrees of freedom, the trial SMD 

estimate via the denominator and its associated bias (where applicable), and finally, 

the standard error via 2
,

2

01 hdenyy ss
hh

. 

[Insert Table III  about here] 

 

5. META-ANALYSIS METHODS USING THE IPD 

Any IPD meta-analysis will require the systematic reviewer to obtain the trial datasets 

in which patients are linked to trials, interventions and outcomes. If clustering by care 

provider is also to be considered, provider identifiers linking patients to providers will 

additionally be required. Assuming all necessary data are available, the first step is to 

prepare the data for analysis and the second step is to fit the associated meta-analysis 

model.  

 

5.1 Data Preparation 
In preparing the data, Goldstein et al [24] suggest that it is necessary to standardise 

the outcome, giving it a common origin and metric. Firstly, by subtracting the mean in 

the control arm from observed patient-level outcomes, the outcomes within trials are 

given a common origin, transforming them to differences from this origin. This is 

important when trials use different measurement scales since standardised means, like 

absolute means, are expected to vary from trial to trial [24]; it is differences between 

standardised means that are assumed to be comparable. If measurement scales are the 

same across trials, the outcomes would already have a common origin, making this 

unnecessary [24]. Secondly, by dividing the differences by a common SD, outcomes 

are given a common metric. If the interpretation of an SMD is to be meaningful its 

metric should not be confounded with the mean differences within the trials (see 

Greenland [48] for a similar argument regarding standardised regression coefficients). 
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For this reason, the standardising metric must be common to all arms of a trial. In the 

standard case, where independence and common variance assumptions hold, the data 

would therefore be transformed, prior to analysis, as follows 

h

hikhdsCohen
ikh s

yy
y




 0'      (22) 

 
where ikhy is the outcome for patient i of treatment arm k  of study h , hy0  is the mean 

in the control arm and hs  the standardising metric from Equation (12). 

 

Goldstein et al [24] assumed that the population value of the SD is known, and equal 

to the sample estimate, thereby ignoring Hedges’ [15] small-sample bias. If  all trials 

have large effective sample sizes, as in their example, this will have little impact, but 

as previously discussed it will lead to bias otherwise, even where the total sample size 

is large. This can be avoided by first dividing the metric by its correction factor hdfc  

using Equation (4) as follows 
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A similar transformation would be appropriate in the simple Behrens-Fisher situation. 

The difference here is that the divisor hs  is now a linear combination of mean square 

terms so the degrees of freedom are not simply 201  hh nn  as they are for Equation 

(23) but are taken from Table II . 

 

In their example of studies of small versus large class size, where students are nested 

within classes, schools and studies, with schools crossed with interventions, Goldstein 

et al [24] suggested the following transformation, 

W

hjijkhCrossed
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yy
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where ijkhy is the outcome for patient i  in schoolj  of treatment arm k  of study h , 

hjy 0  is the cluster-level mean in the control arm and Ws  the standardising metric. By 

standardising at the cluster-level, Goldstein et al [24] adopted a cluster-specific or 
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conditional approach. This is only possible because their studies had a crossed design 

(whereby schools had small and large class sizes) so absolute mean differences could 

be calculated at either the school or study level. Summary measures meta-analyses 

adopt a population-average or marginal approach, defining the origin at the trial-level. 

Defining the origin at the trial-level is necessary for nested designs as well since 

clusters relate only to one treatment arm. In line with their cluster-specific approach, 

Goldstein et al [24] used the within-cluster or level-1 SD as the metric within trials. 

They therefore implicitly assumed a random-intercept or random-coefficient model 

for the trials. 

 

Where clusters are nested within interventions, as in our example, we suggest 

subtracting the marginal meanhy0  rather than the conditional meanhjy 0  from ijkhy . To 

be consistent with a two-level heteroscedastic model for the trials, we suggest as 

previously the relevant common metric is the pooled total SD within trials. Again, the 

small-sample bias can be avoided by dividing this metric by its correction 

factor  hdfc  using Equation (4), with respect to the degrees of freedom in Table II . If 

the total SDs are used the transformation we suggest is simply, 
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If the total mean squares are used, then it becomes, 
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5.2 Meta-Analysis Models 
Once the outcome data have been transformed, the next step is to fit the appropriate 

model. Suppose iy is the transformed outcome for the thi patient, where Ni ,,1 , 

and that it is normally-distributed. Suppose also that h  represents the standardised 

mean outcome in the control arm of trialh  (a fixed effect), and į is a fixed treatment 

effect with iK  being an indicator variable for the intervention versus control arm. 

Using Goldstein’s [49] notation for random effects, the standard fixed-effects meta-

analysis model would be 
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)1(

iihi eKy        (27) 

 

where and )1(
ie  represents the level-1 random effect for patients and  1,0~)1( Nei . We 

suggest that in the standard case (see Equations (22) and (23)), the following random-

effects meta-analysis model should be fitted, 

 
)1()2(

)( iiitria lihi eKKy         (28) 

 

where )2(
)(itr ia l  represents the level-2 random effect mapping patients to trials and 

 2)2(
)( ,0~  Nitria l . Here, the trial effect is fixed but the treatment effect randomly 

varies across trials. In contrast to a fixed-effects meta-analysis model, Equation (28) 

respects the method by which data were standardised (accounting for the dependence 

induced by the data-driven transformation), defining the origin and metric at a trial-

level. A fixed-effects meta-analysis model would be appropriate if outcomes were 

standardised across trials using 0y  as the origin and s  as the metric. However, 

defining the origin and metric at a meta-analysis level would only be appropriate if  

outcomes are standardised but measured with the same scales and standards across 

trials. This is relatively uncommon and not the case in our motivating example. 

 

When the pooled within-treatment standard deviation hs  is used in the context of the 

Behrens-Fisher problem, one possible parameterisation of the appropriate random-

effects meta-analysis model is 
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where ike  are patient-level random errors for the control and treatment respectively 

and  2
0

)1(
0 ,0~ el Ne   and  2

1
)1(

1 ,0~ el Ne   with     12/11 10
2
11

2
00  nnnn ee  . 

Model (29) is appropriate because it respects the fact that the data were standardised 

with a pooled patient-level SD. 

 



22 
 

If , as described in Equations (25) and (26), the pooled total hTs  or the pooled naïve 

hs  SDs are used for meta-analysing fully-nested designs, we suggest extending 

Model (29) to allow for clustering within the trials under a common two-level 

heteroscedastic model for the trials, as follows 
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where )2(
0)(itherapistu  and )2(

1)(itherapistu  are random intercepts for therapist j  in the control 

and intervention arms, respectively, with  2
0

)2(
)(0 ,0~ ultherapist Nu  ,  2

1
)2(

)(1 ,0~ ultherapist Nu   

and 010 uu . Here, the level-2 and level-1 variances are allowed to differ between 

arms. It is the average of the total variances, i.e.     2
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2
00 11 eueu nn    

2/ 10  nn , that is equal to 1 now. It is important to note that Model (30) assumes 

the therapist ICC is equal across trials within arms. As we showed in our paper on the 

meta-analysis of absolute mean differences [25], this may be a strong assumption. 

 

The assumption of between-trial homogeneity in the therapist ICC is more clearly 

respected when the data are standardised using the pooled naïve SD because the ICC 

used in the degrees of freedom and bias correction in Equation (26) can be taken from 

the pooled estimate across trials. When the pooled total SD is used directly (Equation 

(25)), an unstructured random structure is implicitly assumed. More complex models 

could be fitted, in theory, such as meta-regressions of the random parameters (see 

[25]), but for simplicity they were not considered here. If all trials are partially nested, 

)2(
0)(itherapistu is constrained to zero, and the term omitted from Model (30). 

 

Where it is appropriate to assume a common random intercept model across trials, as 

may be the case for cluster randomised trials, Model (30) simplifies to 
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6. APPLICATION TO THE MOTIVATING EXAMPLE 

Short-term outcomes relating to the BDI [5], the GHQ [36], the HADS-D [3] and the 

Symptom Index were available for 850 patients from seven [29-35] counselling in 

primary care trials. Of these, 494 (58%) were allocated counselling with one of 56 

counsellors. Overall, the cluster sizes ranged from 1 to 47, with a median of 4.5 and 

an interquartile range of 2-10.5. Data were available for five or more patients for 33 of 

the counsellors. Table IV gives descriptive statistics for the seven included trials. The 

total mean squares (i.e. the pooled naïve variance) and the pooled total variance 

estimates are similar indicating the bias arising from using the pooled naïve SD to 

estimate the pooled total SD is likely to be minimal here. The published meta-analysis 

used a slightly different subset of patients as we excluded 18 patients with missing 

counsellor identifiers from all analyses. 

 
[Insert Table IV about here] 

 

6.1 Summary-Data Meta-Analyses 
Sample estimates of parameters used in estimating the SMDs are given in Table V. 

ANOVA estimates of the counsellor ICC range from -0.14 to 0.29. The possibility of 

negative ICC estimates arises as ANOVA estimation is consistent with a common 

correlation model rather than a variance components model [50]. By definition, the 

lower bound on the ICC is zero for a variance components model because a between-

cluster variance cannot be negative. It is the design effect that cannot be negative in 

ANOVA estimation. Design effects based on the raw ICCs range from 0.20 for 

Hemmings [33] to 1.73 for Harvey [32]. The negative ICCs found here are likely to be 

a consequence of sampling error arising from limited counsellors per trial and a small 

population ICC. As no evidence of heterogeneity was found in the ICCs between 

trials [51], to simplify our summary-data meta-analyses, we assumed a common 

counsellor ICC of 0.022, using a weighted average of these throughout, regardless of 

the model. We will return to this assumption in the discussion. Using this assumed 

fixed ICC, design effects vary from 1.04 for Chilvers [30] to 1.80 for Hemmings [33]. 

To reflect a general lack of knowledge about cluster size distributions, we assumed 
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equal cluster sizes as well. This assumption is questionable, as a few counsellors were 

responsible for the majority of counselling in Chilvers [30] and King [34]. 

 
[Insert Table V about here] 

 
Table V gives sample estimates for Satterthwaite degrees of freedom, Hedges small-

sample bias and the bias associated with the choice of estimator for the standardising 

metric for each case and for each included trial. The degrees of freedom drop for the 

Behrens-Fisher, pooled total and pooled naïve cases compared to the standard Hedges 

g. However this has limited impact, with the correction factor for the small-sample 

bias, c(df), being close to one and generally unaffected by the choice of model. As we 

expected, comparing the total mean squares and pooled total variance, the correction 

factor for using the naïve SD is also close to one: it is precisely one in all other cases. 

 

Table VI gives summary-data estimates and associated standard errors for fixed- and 

random-effects meta-analyses of SMDs based on four standardising metrics: Hedges g 

is the standard case against which the Behrens-Fisher, pooled total and pooled naïve 

cases are compared. We also present the impact of iterating estimates of the standard 

errors for the weights, giving the estimates and associated standard errors from both 

the initial (i.e. not iterated) and iterated models. Using the reduced dataset and fixed-

effects meta-analysis, the initial standard pooled SMD was estimated to be -0.24 (SE 

= 0.013; 95% CI -0.27 to -0.22) while the iterated equivalent was -0.26 (SE = 0.072; 

95% CI -0.40 to -0.12), similar to the published result (SMD= -0.24, 95% CI -0.38 to 

-0.10). This highlights the importance of iterating here, as the standard error of the 

pooled SMD is underestimated initially, leading to over-precise confidence intervals. 

 
[Insert Table VI about here] 

 
The pooled SMD and its associated standard error are similar for the fixed-effects 

models for all four SMDs, increasing only slightly for the Behrens-Fisher, pooled 

total and pooled naïve cases compared to the standard case. The recommended model 

in each case is a random-effects meta-analysis model. Initial and iterated estimates are 

much more similar here. The pooled SMD and its associated standard error are also 
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almost identical across the four cases as well. This is because the between-trial 

variance dominates. A possible explanation for this is differences in the counselling 

provided and in the patients included across trials.  

 

One reason for the limited impact of accounting for treatment-related clustering in the 

summary-data meta-analyses could be the size of the ICC assumed. So we performed 

a sensitivity analysis, increasing the assumed ICC in analyses reported in Table VI. 

The conclusions remain unchanged. However, as expected and contrary to trial 

estimates of absolute mean differences [25], trial estimates of SMDs were pulled 

towards the pooled treatment effect estimate as the ICC increased, although not 

perceptibly in the range of the ICC expected here. Random-effects meta-analysis 

estimates remained more stable than their fixed-effects counterparts, providing further 

support for the conclusion that treatment-related clustering has more impact on fixed-

effects than on random-effects meta-analyses. The DerSimonian-Laird estimate of the 

between-trial variance increased until the ICC was in mid-range, decreasing again up 

to its maximum, illustrating that the total and naïve SMDs are a function of the ICC. 

The cluster sizes were known in our example. If the cluster sizes had been assumed, 

further analyses would be recommended to assess the sensitivity of the conclusions to 

these assumptions.   

 

6.2 IPD Meta-Analyses 
In contrast to summary-data meta-analyses, those based on IPD make it practical to 

relax assumptions relating to the cluster size distribution. They also make it clearer 

what is being assumed. Data were prepared separately for each case using the relevant 

degrees of freedom and correction factors for (i) the small-sample bias and (ii) bias 

associated with the choice of estimator for the standardising metric using Equations 

(25) and (26). IPD models were implemented using Restricted Maximum Likelihood 

(REML) [49] with the mixed command in Stata 13 (see Table VII) and with Restricted 

Iterative Generalised Least Squares (RIGLS) [49] in MLwiN. Both gave comparable 

results. Details of programming code for Stata are given as supporting web materials. 

 
[Insert Table VII  about here] 
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Table VII gives IPD estimates and associated standard errors for fixed- and random-

effects meta-analyses of SMDs based on the four standardising metrics as before. The 

IPD counterparts to the summary-data estimates reported in Table VI are very similar 

(Table VIII gives a summary of the summary-data and IPD results), with the standard 

pooled SMD from the fixed-effects meta-analysis being -0.261 (SE = 0.071; 95% CI -

0.40 to -0.12). This indicates that little is gained by using a full-likelihood approach 

and accounting for variability in cluster sizes here. The patient-level variance estimate 

is 0.992. To interpret the SMD in SD units, this should be precisely equal to one. That 

it is not suggests the SMD is slightly under estimated, as -0.261/0.992 = -0.263. The 

same can be said for the standard random-effects estimate, where Model (28) applies: 

here -0.263/0.987 = -0.266.  

 
[Insert Table VIII  about here] 

 

In the Behrens-Fisher case, the appropriate model explicitly allows for between-arm 

heteroscedasticity at the patient-level. The relevant SMD is the extension of Huynh’s 

[12] SMD that allows for a ratio of sample sizes between arms other than one. Boot et 

al [29], Harvey et al [32] and Hemmings [33] all had unequal sample sizes favouring 

the counselling arm, making this issue pertinent to this example. Under the random-

effects model given in Model (29), the pooled SMD was estimated to be -0.263 (SE = 

0.093) with the IPD. In this case, it is the average of the patient-level variances i.e. 

((494-1)*0.867+(356-1)*1.153)/(850-2)=0.987 that defines the metric. This again 

implies that the SMD is slightly under-estimated, as -0.263/0.987=-0.266.  

 

In the pooled total and pooled naïve cases, the appropriate model explicitly allows for 

between-arm heteroscedasticity at the counsellor- and at the patient-levels. Estimates 

from the random-effects meta-analysis model given in Model (30) are identical, with 

the pooled SMD estimated to be -0.264 (SE = 0.092). Under this model, the metric is  

((494-1)*(0.842+0.035)+(356-1)*1.154)/(850-2)=0.993 for the pooled total case and 

((494-1)*(0.841+0.037)+(356-1)*1.151)/(850-2)=0.992 for the pooled naïve case. It is 

therefore close to one, with the final SMD estimated to be -0.264/0.993=-0.266 (SE = 
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0.092; 95% CI -0.45 to -0.09) in favour of the counselling arm. This indicates that 

counselling reduces short-term mental health symptoms by an average of 0.266 SDs 

compared to no counselling and that this reduction remains statistically significant at 

the 5% level. According to Cohen [13], an effect size of 0.2 equates to a small effect. 

The confidence interval is wide including moderate effect sizes as well as trivial ones. 

Heterogeneity in the size of effects between counsellors and trials suggests that more 

could be done to optimise counselling in primary care. 

 

7. DISCUSSION 

As we have highlighted, the meta-analysis of SMDs is more complicated than that of 

absolute mean differences (see [25]), especially where clustering associated with care 

providers is probable. This is partly because an SMD is a ratio and partly because its 

denominator is also estimated. This leads to the data-driven transformations seen in 

the IPD case. So, in contrast to the meta-analysis of absolute mean differences, use of 

a fixed effects meta-analysis model is less defensible, summary statistics are biased in 

small samples [6, 15], their sampling variance depends on the population parameter 

(see Equation (4)) and their sampling distribution follows a non-central t-distribution 

(Equation (18)). These are true of all meta-analyses of SMDs. Where there is 

between-arm heteroscedasticity in provider and patient level variances, the size of the 

SMD, its small-sample bias, its sampling variance and interpretation additionally 

depend on the choice of standardising metric.  

 

A general approach has been described which allows for treatment-related clustering 

in the meta-analysis of normally-distributed outcomes from randomised trials with 

two-level nested designs. Building on the work of Hedges [9], Huynh [12], Goldstein 

et al [24] and White and Thomas [8], we have recommended a pooled total SD as the 

standardising metric, using the pooled naïve SD to estimate this where a pooled total 

SD is not available in trial reports. The advantages of the pooled total SMD are that i) 

it is general, in the sense that it encompasses Hedges’, Huynh’s and White and 

Thomas’ estimators as special cases, allowing the assumptions of independence and 

common variance to simultaneously be relaxed within trials but also their sample 
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sizes to differ across arms, ii) it can be estimated using the pooled naïve SD where 

published data is limited and iii) its interpretation is comparable across trial designs, 

allowing extensions for pooling mixed trial designs. 

 

In our example, all trials had partially-nested designs, so that the counsellor variance 

was equal to zero in the control arm. Some of the trials also had unequal sample sizes 

across arms. As a result, the methods described by White and Thomas [8] and Hedges 

[9] could not be applied. In the context of the IPD, a random-intercept model could 

have been assumed for the trials, but a choice would have had to be made between 

including patients in the control arm as clusters of size one or as clusters of size 0hn . 

If clusters of size one were used, the within-cluster SD would not be defined for the 

control arm and would be estimated solely within the treatment arm; the between-

cluster SD would be available in both arms, but it would unlikely be equal. If clusters 

of size 0hn  were used, the between-cluster SD would not be defined in the control arm 

and would be estimated solely from the treatment arm. Also while the within-cluster 

SD is available in both arms, the number of clusters is unequal, giving greater weight 

to the treatment arm. In neither case is a random-intercept model appropriate. 

 

We could have extended Glass’ SMD [11], using the control arm SD as the metric of 

choice. This option was initially quite appealing for our example as the point estimate 

would be independent of treatment-related clustering, minimising impact of between-

trial heterogeneity in the ICC. The drawback became clear when the corresponding 

IPD meta-analysis model was considered. If the control arm SD is used as the metric 

then the denominator of the ICC is the patient SD in the control, not treatment, arm. 

This mis-specifies the variance-covariance structure of the two-level heteroscedastic 

model assumed for the trials and makes interpretation of random effects less straight-

forward. The proposed SMD based on the pooled total SD addresses these limitations. 

 

Using our proposed metric for our example of counselling in primary care, we found 

that the impact of treatment-related clustering on the pooled SMD estimate and its 

standard error was not important. Our sensitivity analyses for the meta-analysis 
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published by Bower and Rowland [28] did not change their conclusions. In hindsight, 

the reasons for this are obvious: (i) the ICC and the cluster sizes were both small, so 

the variance inflation factors were small, (ii) a larger number of patients were 

allocated to counselling compared to no counselling, and (iii) the between-trial 

heterogeneity in the treatment effect was dominant. It is therefore unsurprising that 

the conclusions of the published meta-analysis remain unchanged.  

 

However, on top of this, in our summary-data meta-analyses, we assumed the 

population counsellor ICCs were the same across trials, and equal to our pooled 

estimate. Making this assumption simplified our analyses but it is clearly a limitation 

of our approach. It was motivated by separately finding no evidence of heterogeneity 

[51]. Further work is needed to explore the implications of allowing the ICCs to vary 

across trials, and of using (truncated) ICC estimates in such analyses, where this 

assumption is not reasonable. Although it is unlikely that the conclusions of the meta-

analysis would change if a more complex summary-data model had been fitted, it is 

possible that this contributed to the limited impact of treatment-related clustering 

observed here. Impact may not be limited in general, however. While treatment-

related clustering has historically rarely been taken into account in trials, it is now 

recommended that it is considered in trials of non-pharmacological treatments [52]. 

Similar broad guidance is made by Cochrane [53] with regard to meta-analyses, 

although the methods are just becoming available. This paper contributes to the 

literature supporting the uptake of this guidance. 

 

A key assumption made in all meta-analyses of SMDs is that patient outcomes are 

normally-distributed within trials. This assumption allows the standardising metric to 

be distributed proportionally to a chi-square with known degrees of freedom in the 

standard case, and with degrees of freedom given using a Satterthwaite approximation 

otherwise. Further work is needed to explore the impact of departures from normality. 

Alternative approaches might also be investigated, such as the use of robust estimates 

of the variance of the standardising metric, particularly for small samples. Another 

assumption is that Hedges’ small-sample bias should be corrected for using Hedges’ g 

instead of Cohen’s d. In moderate to large samples this will be unimportant, but it is 
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the effective sample size rather than the number of observations that determines the 

impact of this bias so where the ICC or cluster size is large, Hedges’ correction may 

still be important. 

 

Our IPD meta-analyses start to show how the model chosen depends on the choice of 

metric. Specifically we explored the relationship between the choice of metric and the 

model that preserves the interpretation of that metric. We found the metric implied by 

each model was not precisely what we expected, which implies that there is a further 

bias not identified here. In the standard case, we suggest that a random-effects meta-

analysis model is appropriate since the SD estimate tends to be trial-specific. For the 

Behrens-Fisher case, we suggest the metric and model should reflect heterogeneity in 

the patient SD across arms. For nested designs with treatment-related clustering, we 

propose that the patient and cluster-level SDs should be allowed to vary across arms. 

Where this was so, we expected the relevant SD estimated from the model to equal 

one, so the SMD can simply be interpreted as a mean difference given in SD units and 

the counsellor variance directly estimates the counsellor ICC. Two explanations for 

this disparity could be explored further. The first relates to the relative weighting of 

data by the standardising SD and REML, the second to between-trial heterogeneity in 

counsellor ICCs affecting the standardising metric. Secondly, it also became clear that 

the model depends on the level at which data is standardised when contrasting our 

models with those proposed by Goldstein [24]. A population-average model is 

arguably more appropriate for meta-analysing nested designs. More work is needed to 

investigate the implications of this in meta-analyses incorporating treatment-related 

clustering, generalising the methods proposed by Bohning et al [54] and Viechtbauer 

[55]. Thirdly, it may not always be safe to assume a common origin across trials. If a 

random trial intercept was included in an IPD model, correlation can be estimated 

between heterogeneity in a SMD and its origin. While this is regarded as a nuisance in 

summary-data meta-analyses, it may be worth considering in IPD meta-analyses. 

Further work is needed to understand these issues more, and the potential biases 

associated with them. 
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The focus of this paper has been on meta-analyses of SMDs where all included trials 

are not only addressing the same research question, but also have comparable designs. 

In our motivating example, all seven trials had a partially nested design. It would be 

straightforward to extend the methods outlined here to situations where all the trials 

have fully nested designs. In both cases, the assumption of between-trial homogeneity 

in the random effects is arguably tenable. We have previously argued [25] that this is 

not the case for meta-analyses of mixed clustered trial designs. There, we argue ICCs 

vary not only between trial arms but also between trial designs. An implication of this 

for meta-analyses of SMDs is that the metric would vary systematically between trials 

with different designs. It becomes crucial that a metric has comparable interpretations 

across trial designs so variation in the size of the standardising metric is a reflection 

only of the use of different trial designs to address a common research question. It is 

important that these issues are considered if mixed trial designs are to be included in a 

meta-analysis: the general metric we have proposed is only half the story. Models that 

preserve the interpretation of that metric in different situations are also needed.  

In our motivating example, there was the potential for clustering by the GP. GP care 

tended to be a co-intervention, with GPs crossed with treatment arms. As GPs were 

not blinded, an interaction between GPs and treatment arm is plausible. Information 

on GP involvement was limited, however, with GP identifiers only recorded in one or 

two of the trials. We recommend future trials record identifiers for all significant care 

providers, whether they are delivering the trial intervention or not. This will enable 

meta-analysts to incorporate, or explore incorporating, trials with multiple therapist-

per-patient designs extending [56]. Our motivating example also included additional 

levels, in that repeated measures were available over time. As the follow-up periods 

included as “short-term outcomes” ranged from 6 weeks to 6 months, and most of the 

trials included more than one outcome visit, further work is planned to fit realistic 

meta-analysis models to the IPD available, building on this methodological work and 

that of others (e.g. [57] and [58]), aimed more at a clinical audience. 

 

None of the seven trials we included had accounted for treatment-related clustering in 

their published analyses. This made it important to take account of treatment-related 

clustering in our meta-analysis. If  they had done so appropriately, then we would not 
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have needed to take additional account of it in our summary-data meta-analyses as the 

trial estimates and their standard errors could be pooled directly. IPD meta-analyses 

would remain as outlined however. As we had access to all of the relevant IPD, we 

had maximum flexibility. As we have shown here, the pooled treatment effect and its 

95% confidence interval are very similar for summary-data and IPD meta-analyses. 

Beyond standard access to sample sizes, means and SDs by trial arm, we assumed 

access to average cluster sizes and a range of realistic ICCs by trial arm. Based on our 

experience with our motivating example, these are likely to be readily available from 

trial reports and the more general literature (e.g. [59]). Use of the total mean squares 

(or naïve SD) typically reported is possible in place of the pooled total SD as we have 

described. 

 

In conclusion, in the presence of treatment-related clustering, meta-analysis of SMDs 

is more complicated than that of absolute mean differences, and hence more difficult 

to interpret, but it is possible if sufficient care is taken using the methods described 

here and extensions to these. Specific guidance is needed in the Cochrane Handbook 

to facilitate the uptake of these methods. The code used to program them in Stata is 

available from the first author on request.  
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