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In this work the Casimir-Polder interaction energy between a rubidium atom and a disordered graphene sheet

is investigated beyond the Dirac cone approximation by means of accurate real-space tight-binding calculations.

As a model of defected graphene, we consider a tight-binding model of π electrons on a honeycomb lattice with

a small concentration of vacancies. The optical response of the graphene sheet is evaluated with full spectral

resolution by means of exact Chebyshev polynomial expansions of the Kubo formula in large lattices in excess

of 10 million atoms. At low temperatures, the optical response of defected graphene is found to display two

qualitatively distinct behaviors with a clear transition around finite (nonzero) Fermi energy. In the vicinity of

the Dirac point, the imaginary part of optical conductivity is negative for low frequencies while the real part

is strongly suppressed. On the other hand, for high doping, it has the same features found in the Drude model

within the Dirac cone approximation, namely, a Drude peak at small frequencies and a change of sign in the

imaginary part above the interband threshold. These characteristics translate into a nonmonotonic behavior of

the Casimir-Polder interaction energy with very small variation with doping in the vicinity of the neutrality point

while having the same form of the interaction calculated with Drude’s model at high electronic density.

DOI: 10.1103/PhysRevB.94.235405

I. INTRODUCTION

Dispersive forces—including van der Waals, Casimir, and

Casimir-Polder types—are interactions between neutral, but

polarizable objects, and have their origin in fluctuations of the

vacuum electromagnetic field [1]. The Casimir force involves

interactions between macroscopic objects [2], such as plates,

while Casimir-Polder forces act between a macroscopic object

and a microscopic particle [3]. Van der Waals forces act

between objects in the short-range regime, where effects of

retardation can be neglected. These forces are dominant on

nano- and microscales and their control and manipulation

are important to applications, such as nanoelectromechanical

systems, among others [4,5]. Dispersive forces are strongly

influenced by the shape and material composition, as well

as the dielectric and magnetic responses of the objects they

act upon. It is possible to tailor the sign and magnitude

of dispersive forces by tuning, for example, the dielectric

response of the plate. As a result, the correct modeling of

dispersive forces from a materials science perspective becomes

important [6,7].

Since its isolation, graphene has attracted great attention,

owing to its unconventional low-energy physics described by

the Dirac-Weyl equation for massless excitations in two spatial

dimensions, and a number of desirable physical properties,

including superior mechanical strength, high charge carrier

mobilities, and gate-tunable optical response [8–10]. Intense

theoretical effort has been devoted to the study of Casimir

[11–23] and Casimir-Polder [23–29] interactions in graphene

and related systems [30,31]. The Casimir-Polder energy

of different atoms on single layer has been considered in

Refs. [24,26] and on multilayer graphene in Ref. [29]. The

tunability of interactions have been demonstrated in atom-on-

graphene [28] and in graphene bilayers [20] using external

magnetic fields, and in a graphene-metal system by tuning

the chemical potential [21]. In general, a Dirac cone ap-

proximation is considered where the reflection coefficients of

graphene are calculated either within the hydrodynamic model

or the polarization tensor with a Drude model approach. The

weakness of dispersive interactions on graphene systems is

experimentally challenging and most of theoretical predictions

point to an enhancement of interactions by charge doping

[21,22]. Recently, the control of the interaction between

graphene and naphtalene molecule at short distances (van

der Waals regime) has been achieved by exploiting the high

tunability of the chemical potential [32].

Recent advances in the understanding of dispersive interac-

tions involving graphene and other low-dimensional systems

have shown the importance of a detailed characterization

the electrical response of the layers for the control and
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tailoring of dispersive forces. Although ab initio methods

have been used to model van der Waals forces [30], a more

materials-oriented approach to study Casimir interactions is

still needed. In this article, we consider a realistic model of a

large graphene sheet with vacancies. To determine the Fermi

energy dependence of its optical conductivity, we employ

an accurate large-scale quantum transport approach based

on an exact polynomial representation of disordered Green’s

functions recently introduced in Ref. [33]. The large number

of expansion moments in the numerical evaluation of the Kubo

formula in large graphene lattices allows us to determine the

optical response with fine spectral resolution. This information

is then used to compute the Casimir-Polder force between a

defected graphene sheet and an atom in function of the charge

doping and compare it with the force calculated using the

Drude model. Far from the Dirac point, the Casimir-Polder

force varies linearly with the chemical potential. The Drude

model is found in accord with numerical calculations in that

regime, as expected, but fails to capture the behavior of the

Casimir-Polder force close to the Dirac point. Furthermore,

we find that the strength of the interaction is reduced in

the vicinity of the Dirac point, following the trend of the

dc conductivity [33], and increases again above a certain

Fermi energy scale µ∗ > 0, in contrast with the monotonic

enhancement of interactions predicted by calculations based

on perfect graphene models.

This article is organized as follows. Section II outlines the

real space quantum transport methodology used to extract the

optical conductivity of large disordered graphene lattices. In

Sec. II A, we apply the methodology to a graphene lattice with

a dilute concentration of vacancies. In Sec. III we describe the

calculation of the Casimir-Polder force between the graphene

layer and a rubidium atom and present our results. Finally,

Sec. IV summarizes the main findings of our work.

II. METHODOLOGY

The graphene sheet is modeled by a tight-binding Hamil-

tonian of π electrons defined on a honeycomb lattice

Ĥ = −t
∑

⟨i,j⟩

(â
†
i b̂j + H.c.), (1)

where the operator a
†
i creates an electron at site ri = (xi,yi)

on sublattice A (an equivalent definition holds for sublattice

B), and t = 2.7 eV is the nearest-neighbor hopping integral

[8]. The point defects are introduced by removing sites in

any sublattice at random (compensated vacancies). The defect

concentration is ni = Nd/D, where Nd is the number of

missing carbon atoms and D is the number of sites in the

pristine lattice (see Fig. 1).

The real part of the diagonal optical conductivity at zero

temperature and finite frequency is given by [34]

ℜ σ (ω) =
π

ω $

∫ µ

µ−!ω

dϵ Tr ⟨Ĵx Â(ϵ) Ĵx Â(ϵ + !ω)⟩c, (2)

where Ĵx = (ite/!)
∑

⟨i,j⟩(xi − xj )(â
†
i b̂j − H.c.) is the x com-

ponent of the current density operator, and

Â(ϵ) = −
1

π
ℑ

1

ϵ − Ĥ + iη
, (3)

x

y

FIG. 1. Schematic of a graphene lattice with vacancy defects.

A(B) sublattices are represented by filled (open) circles. Shaded area

shows a vacancy. The numerical simulations in this work have a

computational domain of size 3200 × 3200, with periodic boundary

conditions on both directions (torus).

is the spectral operator of the system. The symbol ⟨...⟩c

denotes configurational average, $ is the area of the lattice,

µ is the chemical potential, and η is a small broadening

parameter required for numerical convergence. Physically,

the broadening η = !/τi mimics the effect of uncorrelated

inelastic scattering processes with lifetime τi (e.g., due to

phonons), and can be viewed as an energy uncertainty due

to coupling of electrons to a bath [35,36].

The response functions of large tight-binding systems can

be assessed numerically by means of specialized spectral

methods [37–42]. A particularly convenient approach is the

kernel polynomial method [43], in which spectral operators

are approximated by accurate matrix polynomial expansions.

The coefficients of the polynomial expansion are computed

recursively thereby bypassing matrix inversion that limits

systems sizes in exact diagonalization schemes. The kernel

polynomial method has been applied intensively to study the

electronic properties of disordered graphene [44–47]. Here, we

make use of an exact Chebyshev polynomial representation

of the resolvent operator recently obtained in Ref. [33], in

order to perform numerically acurate large-scale calculations

of the optical conductivity. The starting point in our approach

is the operator identity (z − ĥ)−1 =
∑∞

n=0 an(z) Tn(ĥ), where

z = (ϵ + iη)/W , ĥ is the rescaled Hamiltonian of disordered

graphene ĥ = Ĥ /W (here W = 3t is half bandwidth), and

Tn(ĥ) are matrix Chebyshev polynomials of first kind (see Ap-

pendix). Using this expansion, the spectral operator [Eq. (3)]

can be recast into the form

Â = −
1

πW

∞
∑

n=0

ℑ[an(z)] Tn(ĥ), (4)

whose action on a given basis set can be computed iteratively

by standard Chebyshev recursion [43].
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FIG. 2. The optical conductivity of graphene with a dilute

vacancy concentration ni = 0.4% at selected values of the chemical

potential µ with η ≈ 8 meV.

In a numerical implementation, the sum in Eq. (4) is

truncated when convergence to a given desired accuracy

is achieved. The N th-order approximation to the optical

conductivity is therefore given by

Re σ (N)(ω) =
π

ω $

N−1
∑

n,m=0

σnm Anm(µ,ω), (5)

where

σnm = Tr ⟨Ĵx Tn(ĥ) Ĵx Tm(ĥ)⟩c, (6)

Anm(µ,ω) =
1

π2W 2

∫ µ

µ−!ω

dϵ αn(ϵ)αm(ϵ + !ω), (7)

and αn(ϵ) is a shorthand for Im {an[(ϵ + iη)/W]}. Clearly, the

problem boils down to the evaluation of {σnm}, which contain

the relevant dynamical information. Once the expansion

moments have been determined, the optical conductivity can

be quickly retrieved using Eq. (5). For a recent review on

the application of Chebyshev expansions in the context of

disordered graphene, we refer the reader to Ref. [47].

A. Optical conductivity of disordered graphene

With the approach described in the previous section we can

study, in a numerically rigorous way, the optical conductivity

of graphene in the presence of strong disorder—for instance,

that created by vacancies, or strongly adsorbed atoms for the

same purpose [44].

As a model system of disordered graphene, we have

simulated a large lattice of size 3200 × 3200 (atoms) with

a dilute vacancy concentration, ni = 0.4% (atomic ratio).

The spectrum of graphene with vacancies is particle-hole

symmetric, and hence for simplicity we assume µ ! 0 in what

follows. Owing to the large system size, it suffices to consider

a single disorder realization when performing configurational

averages. The optical conductivity for a typical broadening

parameter is shown in Fig. 2. To ensure convergence of

the optical conductivity to a good precision [Eq. (5)], we

have computed a very large number of Chebyshev iterations

N2 = 80002. Finally, the trace in Eq. (6) has been performed

0 0.1 0.2 0.3 0.4
0

2

4

6

8

Drude

Numerical

0 0.1 0.2 0.3 0.4
(eV)

0

1

2

3

4

FIG. 3. Fit of numerical optical conductivity data with the

Drude model for µ = 0.5 eV, where !/τ = 0.07 eV is the ad-

justable parameter. The spectral weight is given by σD,0(T ,µ) =
2e2τkBT

π!
log [2 cosh ( µ

2kBT
)].

by means of stochastic trace evaluation (STE) technique [43].

We have used 5000 random vectors in the STE to enable

determination of {σnm} with accuracy better than 1%.

Roughly speaking, we expect that disorder should play a

role at low frequencies, !ω ≪ µ. This is the case if the Fermi

energy is not too small. Indeed, we see in Fig. 2 that for a

Fermi energy of 0.5 eV there is a well-defined step at twice the

Fermi energy. A calculation of the optical conductivity based

on the Boltzmann equation, given by

σD(ω,T ,µ) = σD,0(T ,µ)
1

1 − iωτ
, (8)

where σD,0(T ,µ) = 2e2τkBT

π!
log [2 cosh ( µ

2kBT
)], predicts the

onset of intraband transitions forming a well-defined Drude

peak [48,49]. This becomes clear in Fig. 3 where our large-

scale numerical calculations for µ = 0.5 eV can be well fit by

the Drude model of Eq. (8) with a single adjustable parameter

!/τ ≈ 0.07 eV and the spectral weight σD,0(T ,µ). However,

as the Fermi energy decreases, the Fermi step becomes

progressively less well defined (compare, for example, the

curves in Fig. 2 for 0.3 and 0.20 eV; in the latter there is no

trace of the Fermi step). In Eq. (8), the intensity of the Drude

peak is proportional, at low temperatures, to µ. Therefore, it is

no surprise that the curves in Fig. 2 for Fermi energies of 0.5,

0.3, and 0.2 eV show a progressively smaller intensity of the

Drude peak. Very disordered graphene layers might present a

renormalized spectral weight, as observed experimentally in

CVD graphene [50].

However, for smaller Fermi energy the Drude peak is

completely washed out by disorder. In our simulations with

a dilute vacancy concentration (see Fig. 2), the critical Fermi

energy reads µc ≈ 0.15 eV. We note that, in a realistic scenario,

the precise value for µc will depend on the types and strength of

disorder present in the sample. The drastic change of behavior

in the real part of the optical conductivity has its counterpart

in the imaginary component of this quantity as ensured by
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FIG. 4. Conductivity in the imaginary frequency axis at selected

values of the Fermi energy. The inset shows the same curves over a

wider range of frequencies.

causality. Indeed, for the Fermi energies where the real part has

a well-defined Drude peak, one sees in the inset to Fig. 2 that

the imaginary part of the conductivity changes from negative

to positive as the frequency decreases. This behavior is well

known for the optical conductivity of graphene and signals the

dominance of intraband transitions.

On the contrary, for values of the Fermi energy where

the Drude peak is suppressed, the imaginary part of the

conductivity is always negative in the entire frequency range

(see Fig. 2). This fact has profound consequences in the

interaction of graphene with electromagnetic radiation. Just

to give an example, when Im σ (ω) < 0, graphene does not

support p-polarized surface waves. On the contrary, for the

case of a well-defined Drude peak both p- and s-polarized

waves are supported, albeit in different frequency ranges [51].

The reflection coefficients of a graphene sheet are de-

termined by its optical response. Therefore, we expect that

the behavior of the Casimir-Polder interaction to be strongly

dependent on the details of the optical conductivity, as those

discussed above. Specifically, we expect that for the cases

where the Drude peak was been washed out, the curves of the

Casimir-Polder interaction should bunch, whereas for the case

where the Drude peak is well defined such bunching should

not occur. This is because, in the former case, all conductivity

curves essentially coalesce among themselves.

The two regimes discussed above, that is µ < µ∗ and

µ > µ∗, become quite clear when the optical conductivity

is represented in terms of Matsubara frequencies, as shown

in Fig. 4. In this figure, the regime where a Drude peak

is well define is characterized by an optical conductivity

that presents a positive curvature, whereas in the opposite

case the curvature is negative. Therefore, this way of repre-

senting the optical conductivity data is an effective tool for

separating the two regimes.

III. COMPUTATION OF CASIMIR-POLDER

INTERACTION

Here we compute the Casimir-Polder (CP) energy between

an atom and a graphene sheet with vacancies and discuss

the changes in the CP energy with doping. The optical

properties of graphene, necessary for the calculations, can

be well described by the numerical results presented in the

previous section. We consider a rubidium atom placed at a

distance z above a suspended graphene sheet with chemical

potential µ. The whole system is assumed to be in thermal

equilibrium at sufficiently low temperature T , such that one

can use the conductivity numerical calculations carried out at

T = 0 K. We choose the rubidium atom due to existence of

experimental data of its electric polarizability for wide range

of frequencies [52]. The CP energy interaction is calculated

within the scattering approach [53]

UT (z) =
kBT

ε0c2

∞
∑

l=0

′

ξ 2
l α(iξl)

∫

d2k

(2π )2

e−2κlz

2κl

×
[

rs,s(k,iξl,µ) −
(

1 +
2c2k2

ξ 2
l

)

rp,p(k,iξl,µ)

]

,

(9)

where ξl = 2π lkBT/! are bosonic Matsubara frequencies,

κl =
√

ξ 2
l /c2 + k2 , α(iξ ) is the electric polarizability of

rubidium, and rs,s(k,iξ,µ), rp,p(k,iξ,µ) are the diagonal

reflection coefficients associated with graphene. In Eq. (9),

the prime indicates that the first term of the summation (l = 0)

is halved.

By modeling graphene as a two-dimensional material with

a surface density current K = σ · E|z=0, and applying the

appropriate boundary conditions to the electromagnetic field,

the reflections coefficients are calculated as

rs,s(k,iξ,µ) =
2σxx(iξ,µ)Zh + η2

0σxx(iξ,µ)2

−,(k,iξ,µ)
, (10)

rp,p(k,iξ,µ) =
2σxx(iξ,µ)Ze + η2

0σxx(iξ,µ)2

,(k,iξ,µ)
, (11)

,(k,iξ,µ) = [2 + Zhσxx(iξ,µ)][2 + Zeσxx(iξ,µ)], (12)

where Zh = ξµ0/κ , Ze = κ/(ξϵ0), η2
0 = µ0/ϵ0, and

σxx(iξ,µ) is the longitudinal optical conductivity of graphene

[20,54]. In the absence of an external magnetic field, the

transverse optical conductivity of graphene with vacancies

vanishes.

A key point for the computation of the CP energy is the

correct modeling of the material surface. In our approach,

the characteristics of the material are incorporated in the

longitudinal optical conductivity σxx(ω). Far from the Dirac

point, Drude’s model is expected to work for frequencies

smaller than the chemical potential. However, for low values

of µ, a more accurate calculation must be carried out to

capture the detailed physics of graphene and the effects of

disorder. In our approach, we use the optical conductivity

calculated numerically from a tight-binding Hamiltonian of

graphene with vacancies. For that purpose, we first use

the Kramers-Kronig relations to obtain the conductivities

in the imaginary frequency axis. As shown in Fig. 4, in that

case, the separation between the two regimes becomes more

clear with different characteristic curve inflections for each

regime at for low frequencies.
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FIG. 5. Casimir-Polder energy between a rubidium atom and

a graphene sheet with 0.4% of randomly distributed vacancies

normalized by the CP energy between an atom and a metal plate

as function of the distance z between the atom and the graphene layer

for different values of the Fermi energy. The lower panel shows

the comparison between the energy obtained with the numerical

calculation (solid lines) and Drude’s model (dashed Lines).

Using Eqs. (9)–(12) and the optical conductivities shown

in Fig. 4, we calculate the CP interaction energy between the

graphene sheet and a rubidium atom. Figure 5 presents the

CP energy normalized by the interaction between an atom and

a perfect metallic surface (UCP(d) =
−3!cα(0)

32π2ϵ0d4 ), as a function

of the distance at selected values of µ and T = 10 K. For

µ < µ∗, graphene behaves basically as a dieletric and there is

a bunching of the CP energy curves. In the opposite regime,

the curves are well separated, as expected from the simple

Drude model [Eq. (8)]. The lower panel shows a comparison

between the CP energy calculated using the numerical data

and the Drude model for graphene. Although the optical

conductivity curves present a Drude peak for µ > µ∗, the

Drude model does not fit well the numerical results for the

CP energy, overestimating the CP force for experimentally

accessible distances. Saying it differently, our calculations put

stringent constraints on the values of the Fermi energy needed

to observe the CP effect on graphene. If these are too small

the force is also small and one may not be able to measure the

effect.

We show in Fig. 6 the variation of CP energy as function

of the Fermi energy for z = 2 µm. The strong effect of the

vacancies, reliably captured by the numerical calculation,

results in an almost constant CP energy for a large range of

µ around the Dirac point. For larger values of µ, graphene

behaves as a Dirac metal, leading to the linear increase of CP

energy as a function of µ (see inset). For µ = 0.50 eV, the

CP energy is increased by 50% if compared to the neutrality

point.

It is clear from our results that the dependency of CP

force with the Fermi energy can be tailored by considering

different types of disorder like adatoms and clusters or a

higher concentration of vacancies and can become a route

to manipulate the behavior of dispersive interactions.
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FIG. 6. CP energy for finite µ normalized by CP energy for µ = 0

at z = 2µm as function of chemical potential.

IV. CONCLUSION

In this work we have performed realistic large-scale

calculations of the optical conductivity of graphene, revealing

the role of disorder for small Fermi energies. Our calculations

show that in the latter regime, the Drude peak is washed out

by disorder and the application of the Drude conductivity

for describing the intraband optical conductivity of graphene

becomes unjustifiable. This is an important result, as experi-

ments have been conducted with Fermi energies around 0.2 eV,

where our calculations show that the Drude model is no longer

valid. As expected, this behavior has important consequences

on the Casimir-Polder effect. For large Fermi energies—

µ ∼ 0.5 eV—the optical conductivity of graphene is well

described by a Drude model at low frequencies. However,

at small Fermi energies the Drude model breaks down and one

cannot distinguished the Casimir-Polder interaction energies

for varying Fermi energies. Furthermore, the Drude model

predicts a larger shift of the interaction energy relative to that

of a perfect metallic plane than what will happen in a real

situation. Therefore, the forces experienced by the atom will

be necessarily smaller than that predicted by the idealized

Drude model and may become difficult to measure. Thus for

a meaningful experiment our study reveals that highly doped

graphene is required.
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APPENDIX

The resolvent operator admits an exact representation in

terms of Chebyshev polynomials [33]

(z − ĥ)−1 =

∞
∑

n=0

an(z) Tn(ĥ), (A1)

where z is a complex energy variable with ℑ z > 0, ĥ is

a compact Hamiltonian operator satisfying ||ĥ|| " 1, and

Tn(ĥ) are Chebyshev polynomials of first kind defined by the

recursion relations: T0(ĥ) = 1, T1(ĥ) = ĥ, and

Tn+1(ĥ) = 2ĥ Tn(ĥ) − Tn−1(ĥ) . (A2)

The expansion coefficients are given by

an(z) =
2i−1

1 + δn,0

(z − i
√

1 − z2)n
√

1 − z2
. (A3)

These results allow us to express the spectral operator in the

form given in main text [Eq. (4)].
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