
This is a repository copy of Effects of geometry on the sound field in atria.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/109149/

Version: Accepted Version

Article:

Zhao, W., Kang, J. orcid.org/0000-0001-8995-5636 and Jin, H. (2017) Effects of geometry 
on the sound field in atria. Building Simulation, 10 (1). pp. 25-39. ISSN 1996-3599 

https://doi.org/10.1007/s12273-016-0317-0

The final publication is available at Springer via 
http://dx.doi.org/10.1007/s12273-016-0317-0.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Wei Zhao, Jian Kang & Hong Jin: Building Simulation                   [DOI: 10.1007/s12273-016-0317-0] 

1 

Building Simulation, Volume 10, 2017, Pages 25-39 

Effects of geometry on the sound field in atria 
 

Wei Zhao1, Jian Kang1,2 (*), Hong Jin1 

1. School of Architecture, Harbin Institute of Technology, Harbin, China, 

2. School of Architecture, University of Sheffield, Sheffield S10 2TN, UK 

* Corresponding author 

Abstract: The atria in commercial buildings are widespread. However, the sound 

environment has not been given sufficient consideration. Geometry affects the acoustics 

in the atria. The concept of geometry in this paper includes five parameters, namely, 

length (l), height (h), aspect ratio of length to width (l/w), skylight form and slope, to 

provide suggestions for the acoustic environment design in atria. A series of computer 

models are simulated to analyse the effects of the form parameters on the acoustic 

environment, such as sound pressure level (SPL) and reverberation time (T30 in this 

paper). The results indicate that with an increase in the length or height, the values of 

the average SPL decrease, and the trends of the curves are logarithmic. For an 

increasing length, the T30 increases first sharply and then slowly. With the scattering 

increasing, the increment of the T30 is smaller. For an increasing height, the changes of 

T30 are determined by the absorption and scattering. In terms of the aspect ratio of l/w 

increasing for a given volume and area, the average SPL values approximately decrease 

linearly; furthermore, the T30 decreases unless the atrium is extremely high. The T30 is 

the longest for a flat skylight compared to that of other forms, and it is shorter when the 

skylight has a slope, including either a single or a double-pitch skylight. It can decrease 

nearly by 40% when the angle of the lean-to skylight is 7°. The T30 is lower and the 

amount of decrease is considerably smaller for an increasing slope. When the absorption 

is evenly distributed in the atria, the skylight has minimal effect on the average SPL or 

T30 values. Additionally, the classical formula can approximately calculate the SPL 

distribution unless the atrium is in a form of long space. The Arau-Purchades formula is 

generally appropriate to predict T30 with uneven absorption distributions unless the 

absorption or scattering coefficient is low. 
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1 Introduction 

Atria were first used in Roman houses for a large central space, similar to a courtyard 

(Hung and Chow 2001). With the development of architectural technology, the Atlanta 

Hotel by John Portman brought the renaissance of classical atrium design forms in the 

1960s (Saxon 1986). Thus far, atria have been designed in several types of buildings, such 

as shopping malls, hotels, office buildings, museums, libraries, residential buildings, etc. 

There are numerous literatures on daylighting, ventilation, thermal environment, and 

smoke and fire safety.  

An atrium is a typical non-acoustic space (Kang 2007), where the acoustic indexes, 

discussed in this paper mainly including SPL and reverberation time, influence the sound 

comfort as important indicators. Chen and Kang (2004) indicated that short reverberation 

times and low noise levels were important for a large enclosed atrium in a shopping center, 

in terms of subjective evaluation of acoustic comfort. Furthermore, the reverberation was 

considered a primary factor that could affect acoustic comfort and speech intelligibility 

(Dökmeci et al. 2008). 

A few studies have been conducted on the sound environment in atriums, which are 

based on measurements, simulations, comparisons and transformation designs. Jambro�ić 
et al. (2003) obtained the measurements for an old stone atrium used for concerts, and 

positions of low intelligibility were observed near strong reflective surfaces. Iannace et 

al. (2015) fabricated a transformation of a canopy with sound-absorbing properties to 

reduce the drawbacks emerging from live music in a shopping center atrium based on 

measurements and computer simulations. Using a comparison of measurements, 

simulations and Sabine RTs, Yap et al. (2007) determined that the Sabine formula was 

useful for predicting the mean RT for a large atrium if the sound field was diffuse. 

Moreover, there were other important parameters for predictions, such as volume, shape, 

dimensions, in addition to absorption. Mahdavi et al. (2007) demonstrated that a large 

volume led to a long reverberation time as well as a hard material surface, especially glass, 

using the measurement methods and prediction in five atria. Mei and Kang (2012) 

revealed the basic sound field characteristics of a typical large atrium through on-site 

measurements. It was proposed that the sound fields in large atria spaces had several 

special characteristics due to the large volume, special shape, interactions between the 

main space and the linked smaller spaces, and boundary conditions.  

Generally, the dimensions and forms of the atrium are important factors for 

architectural design and acoustic indices, similar to those in regularly shaped spaces 

where classic room acoustical theory was developed. The classic room acoustical theory 

is based on the assumption of a diffuse sound field (Kuffruff 2009). However, theoretical 

analyses indicated that the sound field in long or flat rooms, with either geometrical (i.e. 
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specular) or diffuse reflecting boundaries, was far from diffuse (Kang 1996a). The classic 

formula is not entirely suitable for all conditions. Kang (1996b, 2002a) analysed the 

reverberation in rectangular long enclosed spaces with geometrically and diffusely 

reflecting boundaries, where with an increase in the source-receiver distance, the 

reverberation time changed continuously. With the same cross-sectional area, the 

reverberation time was the longest when the section was square for geometrical or diffuse 

reflecting boundaries. Sumarac-Pavlovic and Mijic (2007) studied the shape and 

scattering surface of rooms affecting the acoustic response and reverberation. The results 

indicated that the geometrical properties of the rooms affected their reverberation process 

with low absorption.  

Although the measurements, simulations, comparisons between measurements and 

simulations or transformations for atria have been obtained in actual spaces, and certain 

influencing factors on the sound field have been examined in regular and long spaces, 

they are primarily based on the specific space and receiver positions. Furthermore, 

minimal research has been conducted on the tendency of the sound field when the space 

is changing. There is a lack of systematic investigations to illustrate the effects of 

geometry on the sound field for building atriums.  

Therefore, the goal of this paper is to systematically investigate the effects of 

geometry, such as length, height, ratio of length to width, skylight forms and slope, on 

the sound pressure level (SPL) and the reverberation time (T30 in this paper). The SPL 

and T30 are predicated using computer simulations. Moreover, the results of the 

theoretical equations are compared with those of the simulation. This paper first 

introduces the configurations and simulation method and then presents the results and the 

effects of geometry on the sound distribution and reverberation time in the atrium.  

 

2 Method 

A series of parametric studies have been conducted to systematically explore the 

effects of the atrium geometry on the sound environment of the average SPL and the 

T30, which includes the length, height, aspect ratio of length to width, skylight forms 

and slope. 

 

2.1 Configurations 

Some typical characteristics of atria were determined through field and web 

surveys. As shown in Figure 1, the planar schematics of 32 shopping centers in China. It 

is found that there are many kinds of the atria which vary in shape, and they are rather 

different from common public spaces, such as very deep and narrow space, or very flat 

and wide spaces. Moreover, the volumes of the atria are much greater than common 
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public spaces, and the average width of the atria is about 10 m. Furthermore, Figure 2 

presents the photographs of the typical elements in the shopping centers. It is illustrated 

that, in general, the floors are large and slippery with few furniture. The atria are linked 

with the joining spaces of corridors (i.e. atria in commercial street type) or large spaces 

(i.e. atria in some shopping malls). The forms of the skylights are flat, arched and or 

pitched. The architectural characteristics of atria lead to high SPL and long 

reverberation time. Therefore, the type of atrium was examined in this study, i.e., a 

basic quadrangular form with 10 m width and an enclosed atrium with skylight.  

To investigate the effects of geometry on the sound environment and tendency, 

five groups of various configurations have been constructed in the simulation, which 

cover the general dimensions and simplify the forms based on the 32 actual atria, as 

shown in Table 1. Furthermore, it is noted that in all of the above five groups, there is a 

consistent reference model, which has a length of 50 m, width of 10 m and height of 24 

m with the flat skylight form. 

 

 

Figure 1. Planar schematics of 32 shopping centers in China 

 

   

a) Slippery floors of some shopping centers 
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b) Walls, corridors and large spaces of the adjoining spaces for the atria 

   

c) Flat skylight, the arched skylight and the pitched skylight forms of the atria 

Figure 2. Photographs of the typical elements for the atria in the shopping centers  

 

(1) To investigate the effects of length on the sound field, where the first group of 

configurations have a length of 10 m to 80 m in increments of 10 m, width of 10 m, 

height of 24 m, and flat skylight form. There are a total of 8 models.  

To investigate the general effect of length, another group of models has been 

added, with a length of 20 m to 80 m in increments of 10 m, width of 30 m, height of 

24m, and flat skylight form. There are a total of 7 models. 

(2) To investigate the effects of height on the sound field, the second group of 

configurations have a height of 4 m to 64 m in increments of 4 m, width of 10 m, length 

of 50 m, and flat skylight form. There are a total of 16 models.  

To investigate the general effect of height, another group of models has been 

added, with a width of 30 m, length of 50m, height of 4 m, 8 m, 16 m, 32 m and 64 m, 

respectively, and flat skylight form. There are a total of 5 models. 

(3) To investigate the effects of the aspect ratio on the sound field, the third group 

of configurations have an aspect ratio of length to width of 1, 2, 3, 4 and 5, a fixed plan 

area of 500 m2, height of 4 m, 8 m, 16 m, 32 m and 64 m, and flat skylight form. There 

are a total of 25 models.  
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(4) To investigate the effects of the skylight form on the sound field, the fourth 

group of configurations have a flat (0°), single-pitched, double-pitched and arched 

skylight form, as illustrated in Figure 3 a). The plan area is 500 m2, aspect ratios of 1, 3 

and 5 are used for the same volume conditions, and the heights are 12 m, 20 m, 28 m 

and 36 m. There are a total of 48 models.  

The definition of the height in this group is based on the height of flat skylight 

form. To study the effect of skylight form on the sound field, the value of the volume 

would be the consistent among the models with different skylights. Therefore, under the 

conditions of fixed volume and length, the values of the cross-sectional area of other 

models are consistent with that of the flat skylight. This is how the heights in Group 5 

are determined. 

(5) To investigate the effects of the skylight slope on the sound field, the fifth 

group of configurations have a single-pitched skylight form of 0°, 7°, 15° and 22°, as 

illustrated in Figure 3 b). The plan area is 500 m2, aspect ratios of 1, 3 and 5 occur for 

the same volume conditions, and the heights are 12 m, 20 m, 28 m and 36 m. There are 

a total of 48 models.  

 

 

a) Cross-sectional views of atria with flat, single-pitched, double-pitched, and arched skylight forms 

 

b) Cross-sectional views of atria with skylight slopes of 0°, 7°, 15° and 22° 

Figure 3. Cross-sectional views of atria with different skylights with a consistent cross-sectional area

 

 

2.2 Boundary conditions 

From the investigations as mentioned above, it is found that the configurations of 

floors and skylights are relatively simple, however, the conditions of adjoining spaces 

are complicated. The walls boundaries of the adjoining spaces are very different in 

various buildings.  
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Table1 Five groups of parameter configurations for atrium simulations 

Group 
Width

(m) 

Length 

(m) 

Height 

(m) 

Aspect ratio

(l/w) 

Plan 

area 

(m2)

Skylight 

form 

Number of 

simulations

Group 

1.1 
10 

10-80, 

step 

10 

24 — — Flat 8 

Group 

1.2 
30 

20-80, 

step 

10 

24 — — Flat 7 

Group 

2.1 
10 50 

4-64, 

step 4 
— 500 Flat 16 

Group 

2.2 
30 50 

4, 8, 16, 

32, 64 
— 1500 Flat 5 

Group 3 — — 
4, 8, 16, 

32, 64 

1, 2, 3, 4 

and 5 
500 Flat 25 

Group 4 — — 
12, 20, 

28, 36 
1, 3 and 5 500

Flat, single-

pitched, 

double-

pitched, and 

arched 

48 

Group 5 — — 
12, 20, 

28, 36 
1, 3 and 5 500

Single-pitched 

0°, 7°, 15° and 

22° 

48 

 

To simplify and find out a typical atrium, 5 models with a consistent volume, 

constituted by the atrium spaces and the adjoining spaces are tested. The different 

configurations for walls are set as shown in Table 2. Because of the hard materials and 

low absorption coefficients in most atria from the views of the investigations as 

mentioned above, the absorption coefficients of the floor with few furniture, the ceiling 

and the balcony are set as 0.01, 0.01 and 0.03 at 1 kHz for the simulated models, which 

generally corresponds to the marbles or glazed tiles on the floor and glass on the 

skylight and the balcony. It is also considered that in actual cases, the distributions of 

absorption vary considerably. In the first model, the absorption and scattering 

coefficient of the walls are 0.5 and 0.05, respectively. In the second model, these 

coefficients are 0.06 and 0.4, namely low absorption and medium scattering. In the third 

model, the coefficients are 0.06 and 0.05, namely low absorption and scattering, which 

are related to actual cases of street type in the atrium. In the fourth model, these 

coefficients are 0.06 and 0.2, namely low absorption and medium scattering. In the fifth 

model, the coefficients are 0.06 and 0.4, namely low absorption and high scattering in 
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this test. 

 

Table 2. The parameter combinations of the atria and the adjoining spaces 

No. 

w1 of 

atrium 

(m) 

w2 of 

adjoining 

space 

(m) 

Total 

w 

(m) 

l 

(m)

h 

(m)

Positions 

(Absorption coefficient/Scattering 

coefficient) 

Floor Wall Ceiling Balcony 

1 20 0 20 50 24 0.01/0.05 0.5/0.05 0.03/0.05 — 

2 20 0 20 50 24 0.01/0.05 0.06/0.4 0.03/0.05 — 

3 10 10 20 50 24 0.01/0.05 0.06/0.05 0.03/0.05 0.03/0.05

4 10 10 20 50 24 0.01/0.05 0.06/0.2 0.03/0.05 0.03/0.05

5 10 10 20 50 24 0.01/0.05 0.06/0.4 0.03/0.05 0.03/0.05

 

Figure 4 illustrates the average SPL and T30 for each test model. The average SPL 

of Model l is much lower than that of the others, by about 5 dB, due to its higher 

absorption. The values of SPL are rather similar among the Model 2, 3, 4 and 5, which 

illustrated that the scattering and the joining spaces has little effect on SPL.  

 

 

Figure 4. Average SPL and T30 of the 5 test models 

 

Corresponding to SPL, the values of T30 are 8.87 s, 9.69 s, 9.27 s, 8.52 s and 8.69 s 

among the Model 1, 2, 3, 4 and 5. Model 1 is better because the T30 of Model 1 is at the 

medium level among all the five test models, although there is no much difference 

among the five models. In other words, the wall absorption coefficient of 0.5 and the 

scattering coefficient set as 0.05 in this paper could approximately represent the case 

with adjoining spaces.  

 

2.3 Simulation method 

The ODEON Room Acoustics Program version 9.2 is used to simulate the building 
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atrium (Christensen 2003). The accuracy of the ODEON simulations has been proven in 

various types of spaces. Christensen (2013) obtained measurements and performed 

simulations using ODEON in acoustics for a typical auditorium and a large cathedral. 

The results of the comparison between the measurements and the simulations indicated 

a reasonable agreement for both rooms. Gade et al. (2005) simulated the Roman theatre 

of Jerash using ODEON, thus indicating a good agreement with the measurements at 

middle and high frequencies. Bradley and Wang (2007) conducted a comparison 

between a coupled volume concert hall and a computer-generated model of the hall. The 

results demonstrated a high level of accuracy for the high frequency ranges, particularly 

at 1 kHz. Passero and Zannin (2010) conducted an on-site measurement as well as an 

ODEON simulation to determine the reverberation time for a classroom. The results 

indicated that the difference was negligible between the computer simulation data and 

the measurements at a frequency of 500 Hz and a mean RT at octave-band frequencies 

of 125�4000 Hz. In an urban sound environment, Paini et al. (2004) simulated the 

acoustics of public open squares with ODEON and compared it with the measurements, 

which also indicated a good agreement.  

To determine appropriate parameter values in the simulations, the reference model 

was tested three times using different rays, i.e., 50000, 100000 and 500000. The results 

of the average SPL were 67.20 dB, 67.21 dB and 67.15 dB, and the T30 were 4.54 s, 

4.81 s and 4.81 s, thus indicating that the differences were negligible. The 100000-ray 

parameter was selected. The impulse response lengths were set at 10000 ms for all of 

models based on pilot simulations used to determine the RT ranges. The transition order 

(TO) was set at 2 based on previous studies (Paini et al 2004, Wang and Vigeant 2008).  

There are many sound sources in atria, such as elevators, air-condition equipment, 

PA system, and voice. To determine the amount and the position of the sound source in 

the simulations, the reference model was tested three times. The first one is an 

omnidirectional source at the center of the floor. The second one is an omnidirectional 

source at the position of 1 m away from the short wall and 5 m away from the long wall. 

The third one is two omnidirectional sources at the two positions mentioned above. The 

sources were all at a height of 1.5m. The resulted SPL attenuation with increasing 

source-receiver distance is rather similar between the two source positions, with a 

variation of less than 1 dB, and the average SPL with two sources is 3 dB higher than 

those of a single source in both positions, as expected. The reverberation times T30 were 

4.81 s, 4.73 s and 4.78 s, respectively with the three source conditions, which are rather 

consistent. Therefore, one omnidirectional source is selected and a position of (1, 1) 

with a height of 1.5 m, where the centerof the floor is (0, 0) in the atrium. The receivers 

are positioned using a grid of 2 m×2 m evenly distributed on the floor, where 1.2 m 
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corresponds to the height of seated people, as shown in Figure 5. 

Two key acoustic indices, the SPL and the reverberation time, are analysed. The 

former is relevant to communication or noise disturbance while the latter is relevant to 

acoustic comfort and speech intelligibility for conversation and public address (PA) 

systems (Mei and Kang 2012).  

 

 

a) Cross-sectional view b) Plan view 

Figure 5. Configuration of the atrium for source and receivers  

(using l of 50 m and w of 10 m as an example) 

 

The results at 1 kHz are represented in this paper as a typical frequency because of 

the general similarity over the frequency range, which also considers that speech is a 

primary sound source in atria, mainly at mid- and high frequencies. Moreover, the 

simulation results, particularly for Group 1 and Group 2, are compared with the results 

using the classical formula for calculating the SPL (Beranek 1954): ܵܲܮ ൌ ௪ܮ  ͳͲlg	ሺ ொସగమ  ସோሻ                      (1) 

where 

Lw: sound power level of the source, dB 

Q: directivity factor of the source, set at 2 in this paper 

r: source-receiver distance, m 

R: total room constant, ܴ ൌ ሺܵ ൈ ሻߙ ሺͳ െ ሻΤߙ  

S: total area of the boundaries, m2  

Į: average random absorption coefficient of the boundaries 

The simulated T30 are also compared with calculated results using the Arau-

Purchades reverberation formula, a formula for rooms with asymmetric distribution of 

absorption (Araupuchades 1988). In the formula the first portion corresponds to the 

absorption of the materials located parallel to the x axis, the second parallel to the y axis, 

and the third parallel to the z axis: RT ൌ ቂ Ǥଵିௌ୪୬ሺଵିఈೣሻାସ୫ቃೄೄೣ   Ǥଵିௌ୪୬൫ଵିఈ൯ାସ୫൨ೄೄ  ቂ Ǥଵିௌ୪୬ሺଵିఈሻାସ୫ቃೄೄ            (2) 
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where 

m: absorption coefficient of air 

V: volume, m3 

S: total area of the boundaries, m2 

Įx, Įy, Įz: average absorption coefficient of the surfaces of the floor and ceiling, 

average absorption coefficients of the surfaces of the parallel side walls, and average 

absorption coefficients of the surfaces of the front and back walls, respectively 

Sx, Sy , Sz: the area of the surfaces, similarly defined as for Įx, Įy, Įz. 

 

3 Results 

This section presents a series of acoustic simulations of the atria by investigating the 

effects of geometry on the sound distribution, which are length, height, aspect ratio of 

length to width, skylight form and slope.  

 

3.1 Length and scattering 

3.1.1 Length 

To investigate the effects of length on the acoustic characteristics in the atrium, the 

simulations are conducted by increasing the length from 10 m to 80 m, with a width of 

10 m and 30 m respectively as mentioned in Group 1 in Table 1. Figure 6 depicts the 

average SPL for each simulation model. As expected, it can be seen that the average SPL 

has a tendency of attenuating with an increase in the length. It is interesting to note that 

the attenuation decreases as the length increases. The correlations between the average 

SPL and the length have been determined and the curves have also been plotted in Figure 

6. The equations have been elaborated and the trends of the attenuations are found to be 

approximately logarithmic, as shown in Eq. (3) and (4), with coefficients of determination 

R2 as 0.99. The decreases of average SPL when the length is doubled are approximately 

consistent. Average	SPL ൌ ͺͳǤʹͷͻ െ ͵ǤͺͷͶlnሺ݈ሻ   with the width of 10 m   (3) Average	SPL ൌ ͶǤͻ͵ െ ʹǤͻͳlnሺ݈ሻ   with the width of 30 m   (4) 

Figure 7 presents a comparison of the SPL for receivers between theoretical 

calculations and simulations in four models with a width of 10 m and lengths of 20 m, 40 

m, 60 m and 80 m. It can be observed that the values of theory and simulation are nearly 

the same in small spaces, i.e., length of 20 m or 40 m, width of 10 m and height of 24 m, 

and a difference of approximately 1 dB occurs in relatively large spaces, i.e., lengths of 

60 m or 80 m. The theoretical values are approximately 1.2 dB higher than that of the 

simulation when the receivers are extremely close to the source but become less when the 

receivers are in the far field, at a maximum of 1.3 dB. Therefore, the basic characteristics 
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of the sound field distribution can be calculated using a classical equation in the 

configurations similar to the ones studied in Group 1. A similar phenomenon had been 

observed for the cases of long spaces with geometrically reflective boundaries (Kang 

2002a). 

 

 

Figure 6. Average SPL in the atria with the length variation  

 

 

Figure 7. Comparison of SPL between calculations and simulations with the width of 10 m 

 

Corresponding to Figure 6, Figure 8 depicts the average T30 in each simulation model 

with a width of 10 m and 30 m respectively, and the length of the atrium increasing from 

10 m to 80 m, as mentioned in Group 1 in Table 1. As expected, the T30 is increasing with 
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a longer atrium. With the width of 10 m, the T30 increases sharply when the length is from 

10 m to 20 m, by 1.35 s. However, when the length is greater, the increment of T30 

becomes smaller, for example, by 0.73 s from the length of 20 m to 30 m. The increasing 

of T30 is much smaller with further increase of atrium length. The situation with the width 

of 30 m is similar. Overall, it is illustrated that the T30 would increase rapidly with the 

length and only slightly after a certain length. 

 

 

Figure 8. T30 in the atria with the length variation 

 

3.1.2 Scattering 

To investigate the effects of absorption and scattering on the sound field under the 

condition of length variation, different models have been simulated, as shown in Table 3. 

The Models 1-4 represent the walls with medium absorption and increasing scattering, 

and Model 5 represents the walls with low absorption and medium scattering. The Models 

1-5 represent the floors with low absorption and increasing scattering. 

 

Table 3 The models of the different absorption and scattering coefficient for the atrium 

No. 

Positions 

(Absorption coefficient/Scattering coefficient ) 

Floor Wall Ceiling 

1 0.01/0.05 0.5/0.05 0.03/0.05 

2 0.01/0.1 0.5/0.1 0.03/0.05 

3 0.01/0.2 0.5/0.2 0.03/0.05 

4 0.01/0.2 0.5/0.4 0.03/0.05 

5 0.03/0.2 0.06/0.4 0.03/0.05 

 

Figure 9 depicts the average SPL for each simulation model with different absorption 
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0

2

4

6

8

10

12

10 20 30 40 50 60 70 80

T
3

0
(s

)

Length (m)
w=10m w=30m



Wei Zhao, Jian Kang & Hong Jin: Building Simulation                   [DOI: 10.1007/s12273-016-0317-0] 

14 

Building Simulation, Volume 10, 2017, Pages 25-39 

taller atria. The situation is similar to that in Section 3.1.1. With the increasing scattering, 

the average SPL is decreasing. 

Corresponding to Figure 9, the T30 values are presented in Figure 10 for each model. 

It is illustrated that the T30 is increasing with the increasing length. The T30 increases 

rapidly and then slowly, as also mentioned in Section 3.1.1. It can be seen from Models 

1-4 that with a greater scattering, the increment of T30 is becoming smaller. In Model 5, 

the values of T30 are almost consistent when the length is increasing, in which the 

absorptions are very low and the scattering is medium. 

Figure 10 also presents the calculated results using the Arau-Purchades formula for 

Models 1-4 and Model 5. The calculated reverberation times of Models 1-4 are very 

similar to those of Model 4 simulations, possibly because of the medium absorptions and 

scattering. However, the calculated values for Model 5 are higher than those of 

simulations, probably because of the low absorptions. 

 

 

Figure 9. Average SPL of different absorption and scattering coefficients with the length variation 

 

Figure 10. T30 of different absorption and scattering coefficients with the length variation 
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3.2 Height and scattering 

3.2.1 Height  

To examine the effects of the height on the sound field in the atrium, Figure 11 

illustrates the average SPL in each simulation model for an increase in height, as seen in 

Table 1 (Group 2). It can be seen that with a width of 10 m, the average SPL decreases 3 

dB at a height of 8 m with reference to the average SPL of 4 m. With the increasing height, 

the average SPL is decreasing, and the attenuations are also decreasing. The correlation 

between the average SPL and the height has been determined in Eq (5) and the curve has 

been plotted in Figure 11a). The equation has been derived and the trend of the attenuation 

is found to be approximately logarithmic, with a coefficient of determination R2 as 0.98. 

The situation with the width of 30 m is similar, as illustrated in Figure 11b). Average	SPL ൌ ͷǤʹ െ ʹǤͺ͵lnሺ݈ሻ   with width of 10 m  (5) 

 

a) Average SPL with the height variation b) Comparison of average SPL 

Figure 11. Average SPL in the atrium with the height variation 
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similar to that caused by the increasing length (see Figure 7). 

Moreover, the theoretical values compared with the simulation results are depicted 

in Figure 12. For example, for a height of 4 m, using the theory calculation, the SPL 

becomes stable when the receivers are more than 7 m away from the source whereas the 

simulation result indicates that the SPL continuously decreases beyond 7 m. The SPL 

values for theory and simulation become closer when the height is greater than 16 m. This 

result possibly occurs because when the height is smaller, the space is more similar to a 

long space, and the sound field is less diffused (Kang 1996a).  

 

 

Figure 12. SPL as a function of the length between theoretical and simulation results 
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increasing height and then decrease slightly after a certain height. 
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Figure 13. Comparisons of T30 with the height variation 

 

3.2.2 Scattering 

To investigate the effects of absorption and scattering on the sound field when the 

height varies, different configurations have been simulated, as shown in Table 3. 

The average SPLs for each simulation model with different absorption and scattering 

coefficients are shown in Figure 14. It is observed that the changes of average SPL are 

very similar. The average SPL are decreasing and the decrements are smaller with taller 

atria. This situation is similar to that in Section 3.1.  

 

Figure 14. Average SPL of different absorption and scattering coefficients with the height variation 
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calculated values of Models 1-4 are generally close to the simulation results of Model 3 

and 4, because of their medium absorption and scattering. However, for Model 5 the 

calculations are higher than simulations, probably because of the low absorptions, which 

is similar to the case in Section 3.1.2. 

 

 

Figure 15. T30 of different absorption and scattering coefficients with the height variation 

 

3.3 Length-to-width ratio  

To predict the effects of the aspect ratio of length to width, Figure 16 illustrates the 

average SPL for each atrium model, with floor areas of 500 m2 and a height of 4 m, 8 

m, 16 m, 32 m and 64 m, as seen in Table 1 (Group 3). Using a ratio from 1 to 5, the 

average SPL decreases 1 dB, and there is a linear trend for a given height. Comparing 

the different atria heights, the tendencies of the decreased average SPL are consistent. 

Similar to the results of Section 3.2.1, the attenuations of the average SPL become 

smaller with a continuous increase in height, e.g., decreases 8.1 dB for an increase in 

height of 4 m to 64 m at a ratio of 1. 

 

 

Figure 16. Average SPL in the atrium with a variation in the aspect ratio of length to width 
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Corresponding to Figure 16, Figure 17 presents the average T30 for each atrium 

model, as indicated in Group 3 in Table 1. It is determined that the T30 will decrease with 

an increasing ratio. For an aspect ratio from 1 to 5, with a height of 4 m, the T30 declines 

from 3.61 s to 2.87 s, and with a height of 8 m, the T30 declines from 5.1 s to 3.88 s. When 

the height of the atrium is 16 m or 32 m, the T30 decreases approximately 2 s. This result 

likely occurs because a considerably larger ratio of length to width signifies a significantly 

longer perimeter, which results in more wall area for absorption and shorter reverberation 

times. The longest reverberation time occurs in an atrium with a square plan design. 

Furthermore, it can be seen that a considerably longer space could result in a shorter 

reverberation time compared with the same plan area and same height. The result is 

similar to a dining room (Kang 2002b), where for a greater length/width ratio, the EDT 

is consistently approximately 10-20% shorter to improve intelligibility. Moreover, it is 

indicated that the reverberation time increases and then decreases with an increasing 

height, similar to the results of Section 3.2.1. 

 

 

Figure 17. Average T30 in the atrium for a variation in the ratio of length to width 
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Furthermore, in Figure 18, the average SPL is depicted with sound-absorbing 

materials uniformly distributed in the atrium, where the average absorption coefficient of 

all materials is 0.3. In this case, the difference in the average SPL is extremely small 

among the four skylight forms with a consistent volume. In other words, the ceiling 

configurations do not contribute significantly to the SPL in the atria when the absorption 

is evenly distributed.  

 

a) Aspect ratio of 1:1 b) Aspect ratio of 3:1 

 

c) Aspect ratio of 5:1 

Figure 18. Average SPL in the atrium for different ceiling forms 
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the T30 are small for the other three ceiling forms, except for the flat skylight. 

Moreover, based on Figure 18, the average T30 is depicted with the sound-

absorbing material uniformly distributed in the atrium. The T30 is considerably short 

when the absorption is uniformly distributed. It is determined that there is no effect of 

the skylight on the average T30 when the absorption distribution is uniform. 

In Figure 18 a), it can be observed that the effect of the arched skylight form on the 

average SPL is similar to those of other forms. In Figure 18 b) and c), it is seen that the 

performance of the arched skylight is generally better than that of the flat form and 

worse than that of the other non-flat forms. The performance is similar among the cases 

in terms of T30. Based on the above results, the single-pitched skylight form as an 

example has been chosen to investigate in Group 5.  

 

a) Aspect ratio of 1:1 b) Aspect ratio of 3:1 

 

c) Aspect ratio of 5:1 

Figure 19. Average T30 in the atrium for different ceiling forms 
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3.5 Ceiling Slope  

Figure 20 illustrates the average SPL influenced by an increasing slope of 0°, 7°, 

15°, and 22°, as seen in Table 1 (Group 5) for a single pitched skylight. It can be seen 

that for an increasing slope, the average SPL slightly decreases. The 7° increase in the 

skylight slope would decrease the SPL by 0.2-0.4 dB for an aspect ratio of 1 and 0.4-0.7 

dB for a ratio of 5 with reference to a flat skylight. For a steeper slope, the average SPL 

is less, which is possible because the effects of the flutter echoes decrease. Furthermore, 

it can again be noted that for longer spaces, the average SPL is lower. 

 

a) Aspect ratio of 1:1 b) Aspect ratio of 3:1 

 
c) Aspect ratio of 5:1 

Figure 20. Average SPL in the atrium for the slope of a single pitched skylight 
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example, for a ratio of 1 and a height of 12 m, the T30 values are 6 s, 3.44 s, 2.32 s and 

1.76 s for a skylight slope of 0°, 7°, 15°, and 22°, respectively. For a slope of 7°, the T30 

would decrease approximately by 44% compared to that of the flat skylight. It can also 

be seen that with the atrium becoming longer, the reduction in T30 decreases. 

 

Figure 21. Average T30 for a slope of a single pitched skylight with an aspect ratio of 3 
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a) Flat skylight b) Single-pitch roof with 7° 

c) Single-pitch roof with 15° d) Single-pitch roof with 22° 

Figure 22. Early reflection levels at a typical receiver 

 

 

4 Conclusions 

The effects of geometry on the acoustic environment in atria have been studied 

using computer simulation. The results of models using different lengths, heights, 

aspect ratios, skylight forms and slopes are presented.  

With an increase in length, the average SPL decreases, and the tendency of 

attenuation indicates an appropriate logarithmic curve. This result indicates that for a 

longer atria, the attenuation is smaller. The attenuations when the length is doubled are 

consistent. The reverberation time increases sharply in a small space and then slightly 

increases when the length is more than 20 m. With the increasing scattering, the 

increment of the T30 is smaller.  

With an increase in height, the average SPL decreases, and the trend of attenuation 

is also logarithmic. This result indicates that when the height is greater, the attenuation 

is smaller. The changes in T30 are affected by the absorption and scattering. With 

increasing height, when the absorption is at a medium level and the scattering is low, 

T30 is increasing gradually, and then decreasing slowly. When the absorption and 

scattering are at a medium level, T30 is almost consistent with the height variation. 

When the absorption is low and scattering is medium, T30 is increasing gradually and 

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

S
P

L
(d

B
)

Time (ms)

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

S
P

L
(d

B
)

Time (ms)

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

S
P

L
(d

B
)

Time (ms)

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

S
P

L
(d

B
)

Time (ms)



Wei Zhao, Jian Kang & Hong Jin: Building Simulation                   [DOI: 10.1007/s12273-016-0317-0] 

25 

Building Simulation, Volume 10, 2017, Pages 25-39 

slightly, with increasing height. 

With an increase in the length, the theoretical values are approximately 1.2 dB 

more than that of the simulation when the receivers are extremely near; however, the 

values become less when the receivers are in the far field for a maximum of 1.3 dB. 

With an increase in the height, the SPL values for theory and simulation become closer 

for a height greater than 16 m, especially in the far field. 

In terms of the length to width ratio, it increases for a given volume and area of the 

atrium, which signifies that a square atria became rectangular, and the average SPL 

decreases approximately linearly. The average SPL decrease 1 dB for a ratio from 1 to 

5. Furthermore, the T30 decreases unless the atrium is extremely deep, which indicates 

that the longest reverberation time occurs for a square plan form, and a considerably 

longer space can provide a shorter reverberation time for the conditions of the same plan 

area and same height in the atrium. 

For a flat skylight, the average SPL values are relatively larger than that of the 

other forms. The T30 is the longest when the flat skylight is compared to the other 

forms, and it is shorter when the skylight has a slope, including a single or double-pitch 

skylight. For a steeper slope and longer spaces, the attenuations of the average SPL are 

greater. The T30 can decrease nearly by 40% when the angle of a single-pitch skylight is 

7°. With an increase in the skylight slope, the T30 is shorter, and the amount of 

attenuation is considerably smaller. The skylight has minimal effect on the average SPL 

or T30 when the absorption is evenly distributed in the atria. 

The classical formula can approximately calculate the SPL distribution unless the 

atrium is in a form of long space. The Arau-Purchades formula is generally appropriate 

to predict T30 with uneven absorption distributions unless the absorption or scattering 

coefficient is very low. 
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