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Abstract

Background— Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high
mortality. 
Methods—We conducted a comprehensive study of plasma metabolites using ultra-performance 
liquid chromatography mass-spectrometry to (1) identify patients at high risk of early death, (2) 
identify patients who respond well to treatment and (3) provide novel molecular insights into 
disease pathogenesis.
Results— 53 circulating metabolites distinguished well-phenotyped patients with idiopathic or 
heritable PAH (n=365) from healthy controls (n=121) following correction for multiple testing 
(p<7.3e-5) and confounding factors, including drug therapy, renal and hepatic impairment. A 
subset of 20/53 metabolites also discriminated PAH patients from disease controls (symptomatic 
patients without pulmonary hypertension, n=139). 62 metabolites were prognostic in PAH, with 
36/62 independent of established prognostic markers. Increased levels of tRNA-specific 
modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), TCA cycle intermediates 
(malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan and polyamine metabolites 
and decreased levels of steroids, sphingomyelins and phosphatidylcholines distinguished patients 
from controls. The largest differences correlated with increased risk of death and correction of 
several metabolites over time was associated with a better outcome. Patients who responded to 
calcium channel blocker therapy had metabolic profiles similar to healthy controls. 
Conclusions— Metabolic profiles in PAH are strongly related to survival and should be 
considered part of the deep phenotypic characterisation of this disease. Our results support the 
investigation of targeted therapeutic strategies that seek to address the alterations in translational 
regulation and energy metabolism that characterise these patients.  

Key-words: metabolome; metabolomics; metabolism; pulmonary circulation; pulmonary 
hypertension 

o co o s. e a gest d e e ces co e a ed w c eased s o dea a d co ec o od
everal metabolites over time was associated with a better outcome. Patients who o rereespspspononondededed d d tototo 

calcium channel blocker therapy had metabolic profiles similar to healthy controlslss...
Conclusions— Metabolic profiles in PAH are strongly related to survival and should be —
considered part of the deep phenotypic characterisation of this disease. Our results support the
nvestigation of targeted therapeutic strategies that seek to address the alterations in translational 
egulalalatititiononon aaandndnd eeneerrgy metabolism that characterisese these patientss.  

Keyyy--words: metaaboboloommme; mememetabolooomimmics; metabbolilismsm;; pulmmmonononaryy circculu atttioioion; pulllmmom nanaary 
hypepepertrr ension 
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Clinical Perspective

What is new? 

This study provides a comprehensive analysis of circulating metabolite levels in patients

with pulmonary arterial hypertension (PAH) and controls.

It is the first to relate metabolite levels to clinical outcomes in PAH.

Increases in circulating modified nucleosides originating from transfer RNAs, energy

metabolism intermediates, tryptophan and polyamine metabolites, and decreased steroids,

sphingomyelins and phosphatidylcholines independently discriminate PAH patients from

controls and predict survival.

Correction of metabolite levels over time is linked to better clinical outcomes and

patients who respond well to calcium-channel blocker therapy have metabolic profiles

comparable with healthy controls.

What are the clinical implications?

Energy metabolism and stress-response pathways are disturbed in PAH.

Monitoring plasma metabolites that report on these pathways over time could be useful to

assess disease progression and response to therapy.

Therapeutic strategies targeted against metabolic disturbances in PAH, particularly

translational regulation and energy metabolism, merit further investigation

comparable with healthy controls.

What are the clinical implications?

EnEEnererergygygy meetaba olism and stress-response paathththways are distuturbr edd iin PAH.

Monito iiringg plaasmsmsmaa a mememetatatabobobolililitett ss tthat reppoort t oon ttthehehesese pppaata hwhwwayaayss ovover tttimimimee cococouluu d bebebe uuseseefufuful to

assess ddisii eaease pprogrrressssion and reesponsse too ttheeerararapypypy.

TTTheheherararapepep ututicicic sstrtrtratata egegieiess s tatatargrgrgeteteteded aaagagagaininnststst mmmetettababa olololicicic dddisisistutuurbrbrbananncecess ininn PPAHAHAH, papapartrtrticicuulularara lyly

l i l l i d b li i f h i i i
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Introduction

Pulmonary arterial hypertension (PAH) is a progressive vascular disorder that leads to increased 

pulmonary vascular resistance, right ventricular (RV) dysfunction 1 and premature death 2. The 

pathogenesis of the vascular pathology is poorly understood 3, 4. Several genetic mutations have 

been reported in hereditary and isolated idiopathic presentations of PAH, providing insight into 

perturbed signalling pathways 5, 6, and genome sequencing of clinically well characterised patient 

cohorts is underway in anticipation of finding new mutations. A complementary approach to 

identifying the molecular drivers of PAH is to conduct deep molecular phenotyping of patients 

beyond standard clinical tests.

Metabolomic technologies, such as ultra-performance liquid chromatography mass spectrometry, 

enable the detection and semi-quantitative measurement of hundreds of unique metabolites, 

representing a broad range of metabolic pathways, in small volumes of biofluids 7. These 

approaches have identified differences in circulating metabolites that distinguish physiological 

and disease states, such as diabetes and systemic cardiovascular disorders, and predict clinical 

outcomes 8-10. As yet, few metabolomics studies have been undertaken in patients with 

pulmonary vascular disease.  Evidence of abnormal oxidation, arginine and sphingosine 

pathways have been found from mass spectrometry analysis of lung tissue from PAH patients 11, 

12 and analysis of breath samples showed exhaled volatile compounds discriminate between 

severe idiopathic PAH and healthy volunteers 13. A targeted analysis of 105 circulating plasma 

metabolites in PAH, primarily amino acids, nucleosides and their derivatives, showed abnormal 

levels of tryptophan, purine and tricarboxylic acid cycle metabolites correlated to haemodynamic 

measures 14.

Metabolomic technologies, such as ultra-performance liquid chromatography massss ssspepepectctctroroomememettrt y

enable the detection and semi-quantitative measurement of hundreds of unique metabolites, 

epresenting a broad range of metabolic pathways, in small volumes of biofluids 7. These 

apprprp oooaches havvvee e idddenee titit fififiededed difififfefeferereencncnces iin n circulululatining mememetatat bobobolill teess thhhatat ddisistingngnguiuiuishshsh ppphysisis ololologogo icicicalaa

and d d ddid sease staata eese ,, ssuchch as dididiaba etes andd ssystemimim c cacardddioioiovavav ssculular ddiisordeders,, aana d prededdiictt cclinicaal 

outcomes 8-1001 . As yet, fef w metabolol mics studies hhave been unddertaken ini  patients withh 
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In this study, we used a broad metabolomics platform to analyse 1416 metabolites in plasma 

from patients with idiopathic or heritable PAH (n=365) in three distinct cohorts and compared 

circulating levels with both healthy (n=121) and disease controls (n=139). We identified specific 

metabolites that both discriminate PAH patients from healthy and disease controls and 

independently predict survival. These metabolites included several modified nucleosides specific 

to transfer RNAs that indicate alterations in cell proliferation and translation of disease-related 

proteins as well as several constituents of energy metabolism.

Methods 

Sample collection

Samples were obtained from patients with idiopathic or heritable PAH attending the National 

Pulmonary Hypertension Service at Hammersmith Hospital, London between 2002-2015 and 

from patients recruited from other UK national centres as part of the National Cohort Study of 

Idiopathic and Heritable Pulmonary Arterial Hypertension (ClinicalTrials.gov NCT01907295). 

Control plasma samples were obtained from healthy subjects and disease controls, the latter 

being symptomatic patients presenting to the service but in whom pulmonary hypertension was 

excluded by cardiac catheterisation. The diagnosis of PAH was based on standard criteria from 

the most recent guidelines 1. Vasoresponders were defined as those who dropped their mean 

pulmonary artery pressure >10 mmHg to <40 mmHg, with preserved cardiac output, in response 

to an acute pulmonary vasodilator challenge and remained stable on calcium channel blocker 

therapy alone for at least 1 year 1. Whole-genome sequencing data from the UK National 

Institute of Health Research Biomedical Research Centres Inherited Diseases Genetic Evaluation 

Sample collection

Samples were obtained from patients with idiopathic or heritable PAH attending the National 

Pulmonary y Hypertension Service at Hammersmith Hospital, London between 2002-2015 and 

frommm patients rererecrc uiuiuited d d frfrfromomo ooothththererer UUUK nan tionalala  cenentresss aaasss papapartrr ooff f thhhee NaNationnnalalal CoCoCohohh rt SStututudydydy ooof 

diooopapap thic anddd HHHerriitabble Puulu mmom naryyy Artrteerial HyHyH peerrtennnsisisionono ((ClCClinicaalTriaials.gg.gov NCTTT010199072955)). 

Control l plasma samplles were obtaini ed ffrom healthhy subjects and ddisease controlls, the llatter 
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(BRIDGE) consortium were used to determine which patients had known pathogenic mutations 

in the gene encoding the bone morphogenetic protein type II receptor (BMPR2) 5.

Venous blood samples were drawn from the antecubital fossa and collected in EDTA 

Vacutainer tubes (BD, Oxford, UK), immediately put on ice, centrifuged (1,300g, 15 minutes) 

within 30 minutes and stored at -80 C until required.  WHO functional class and six minute walk 

distance at sample date and clinical biochemical data (within 30 days) were recorded. All 

subjects provided informed written consent and local research ethics committees approved the 

study. A subset of patients consented to provide additional samples at later dates whilst attending 

follow-up clinical appointments.

Metabolomics 

Metabolomic profiling by ultra-performance liquid chromatography mass spectrometry was 

conducted by Metabolon (Durham, NC, USA) 7, who provided semi-quantitative assessment of 

949 named and 467 unnamed metabolite levels, annotated with pathways. Named compounds 

identified based on mass and fragmentation analysis but yet to be confirmed with standards are 

indicated by asterisks. Details can be found in the supplementary materials. 

Angiogenin 

Plasma angiogenin levels were determined by ELISA (Ref:DAN00, R&D Systems, Abingdon, 

UK) as per manufacturer’s guidelines, with EDTA plasma diluted 1:800 before assay. 

Statistical Analysis

To prevent skewing of results by outliers, initial group comparisons between controls and 

patients were performed using non-parametric Mann Whitney U tests. Prior to modelling, 

metabolites whose distribution was not normal were transformed either by log10 or power 

transformations (xY, with Y from -2 to 2 in 0.5 steps, as performed for Box-Cox transformations 

Metabolomics 

Metabolomic profiling by ultra-performance liquid chromatography mass spectrometry was

conducucucteteted d bybyby MMetttababolon (Durham, NC, USA) 7, whwhho provided seemim -ququaantitative assessment of 

9499 9 nnan med and 46677 unnnananameeed d d metaaaboboboliitee levells,, annnnotttatatated wwwittth ppatthwaayys. NaNaNamedd d cccompmppounddds

denntititififified basassededed onn maasss andndd fffragmmmenenentaaatitition aaananan lysisis bububut yet t t totot  bee ccoc nffirirmeeed d d withh sssttat ndndards aaree 

ndicated by asterisks Details can be found in the supplementary materials
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15), whichever best normalised the data based on Kolmogorov-Smirnov tests, or ranked if no test 

met p>0.05. Samples where metabolites were undetected were imputed with the minimum 

detected level for the metabolite. Data in all groups were z-score transformed based on the mean 

and standard deviation in all healthy controls for ease of comparisons. Data are presented as 

absolute numbers, percentages, mean or median (±standard deviation, SD) and percentile range.  

Linear regression analysis was conducted to assess the relationships between metabolite levels, 

diagnoses and potential confounders to determine whether differences in metabolite levels 

between groups was independent of age, gender, ethnicity, body mass index, drugs, renal and 

hepatic dysfunction. In the disease control and PAH cohorts, preserved renal function was 

defined as creatinine <75 μmol/L, and liver function as bilirubin <21 μmol/L. Logistic regression 

was conducted to determine metabolites that independently distinguished between diagnostic 

groups. Orthogonal partial least squares discriminant analysis (OPLS-DA) modelling was used to 

test the performance of these metabolites. R2 scores indicate model performance and Q2 scores 

estimate reproducibility, based on cross validation (subjects were divided into 7 groups and their 

diagnosis was predicted based on the other subjects in seven analyses). Pathway enrichment 

analysis was conducted on discriminating and prognostic metabolites using Fisher’s exact test. 

All survival analyses were performed using time from sampling to death/census. Cox regression 

analysis was used to identify prognostic predictors, with proportional hazard assumptions tested 

and Kaplan-Meier plots used to illustrate events from time of sampling in relation to metabolite 

levels. Receiver Operating Characteristic (ROC) curves were used to assess discriminating and 

prognostic value of metabolites against diagnosis and all-cause mortality respectively. 

Hierarchical clustering based on Euclidean distances was used to assess if metabolites and 

patients clustered by functional pathways and phenotypes, respectively. 

defined as creatinine <75 μmol/L, and liver function as bilirubin <21 μmol/L. Logigistststicicic rrregegegrereressssssion

was conducted to determine metabolites that independently distinguished between diagnostic 

groups. Orthogonal partial least squares discriminant analysis (OPLS-DA) modelling was used to

estt ttthhhe performmmananancecc ooof ff thththesese e mememetatatabobobolitetes. R2 scscs oreses indndndicicicatatate e e momodededell l pep rfrformamamancncnce e e anana d QQQ2 scscscorororesee

estiiimmam te reprodududuciibbiliityy, baaaseeed on cross validaata iionn (subububjejejecttcts wew ree ddividdeed inntn o 7 grrrooupsps and theheir

diagnosis was preddici ted d based on the othher subjej cts in seven analyses). PaP thway enrichhment 
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Network analysis was performed by calculating second order Spearman’s rank correlations using 

ParCorA 16, 17 and visualised using Cytoscape 18. ‘Hub’ nodes are metabolites with the most 

‘edges’ (correlations) to other metabolites.

Statistical analysis was performed using IBM SPSS Statistics 22 (International Business 

Machines Corporation, New York, USA), Matlab (Matrix Laboratory, MathWorks, Natick, 

Massachusetts, USA), Microsoft Excel (Microsoft, Redmond, Washington, USA), SIMCA-P

software, (Umetrics, Umea, Sweden) and R with RStudio and associated packages 19.  

Results

Metabolites distinguishing between PAH and controls

We first compared plasma metabolite profiles from 116 consecutive patients with idiopathic or 

heritable PAH attending Hammersmith Hospital between November 2011 and August 2013 and 

58 healthy controls (Table 1). To minimise confounding factors, only PAH patients aged 19-70 

were compared with age- and sex-matched healthy controls in this analysis. Results were 

validated in 75 PAH patients recruited between 2002 and 2015 against a separate control group 

(n=63). A second validation analysis used 174 PAH patients recruited from other specialist 

centres in the UK from August 2013 to June 2015 and compared to all controls. Metabolites 

identified as xenobiotics or detected in less than 95% of samples were excluded from the 

analysis, leaving 686 well-quantified biological metabolites.

Circulating levels of 97 metabolites distinguished PAH from healthy subjects in all three 

analyses following Bonferroni correction (p<7.3e-5). Of these metabolites, 53 distinguished 

healthy and PAH subjects after correcting for potential confounders, including age, gender, 

ethnicity, body mass index, creatinine, bilirubin and drug therapies (p<0.05, Table S1, Fig. 1). 

Metabolites distinguishing between PAH and controls

We first compared plasma metabolite profiles from 116 consecutive patients with idiopathic or 

heritable PAH attending Hammersmith Hospital between November 2011 and August 2013 and 

58 hheeealthy connntrrtrolllss (TTTababablelele 1).).). TTTo o o mimiminimim se connnfounundingngng fffacacactototorss,, onononlyly PPAHA pppatata ieieientntn s agggededed 1119-9-9-7077  

wererere compared d d wiwiw thh aagge- annndd d sex-matcchhed healala thyy cooontntntrororolslsl iiinn thiis anaalyysiiis.s  Resultstst wweere 

validated in 75 PAAH H patients recruited between 200002 and 20155 against a separate control group 
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The most common confounders associated with metabolite levels were liver function (bilirubin) 

and renal function (creatinine). To determine whether these metabolite differences could be 

detected prior to initiation of PAH therapies, we performed a sub-analysis comparing 40 patients 

who were treatment naïve at the time of sampling and all 53 metabolites distinguished this group 

from healthy controls (p<0.05, Table S1). Patients with pathogenic BMPR2 mutations (n=42) 

had similar metabolite levels to PAH patients without these mutations (Fig. S1, Table S1).

Given that many metabolic alterations might occur in a chronic disease such as PAH, we set out 

to prioritise more disease-specific metabolites by comparing the PAH patients with disease 

controls, the latter comprising symptomatic patients in whom pulmonary hypertension had been 

excluded. We again adopted a discovery and validation design, with two groups of disease 

controls (n=70 and 69). A subset (20/53) of the metabolites distinguished PAH patients from 

disease controls after correcting for potential confounders (p<0.05, Table S1). These ‘PAH-

specific’ differences in metabolites included increases in purine, polyamine and tricarboxylic 

acid (TCA) cycle metabolites, and decreases in phosphocholines and sphingomyelins (Fig. 2A), 

with network analysis showing the importance of ‘hub’ metabolites N2,N2-dimethylguanosine 

and malate (Fig. 2B). 

Discriminant analyses to distinguish PAH and control groups 

To identify a minimal set of metabolites which could in combination best distinguish PAH 

patients, we performed logistic regression analysis. We found 7/53 metabolites – 

dehydroisoandrosterone sulfate (DHEA-S), methionine sulfone, N1-methylinosine, 

oleoylcarnitine, palmitoylcholine, sphingomyelin (d18:1/20:0, d16:1/22:0)* and X-24513 – 

independently distinguished PAH (aged 19-70) and healthy subjects in the discovery analysis, 

with 90% accuracy in an orthogonal partial least squares discriminant analysis (OPLS-DA, 

excluded. We again adopted a discovery and validation design, with two groups ofof dddisisiseaeaeasesee 

controls (n=70 and 69). A subset (20/53) of the metabolites distinguished PAH patients from

disease controls after correcting for potential confounders (p<0.05, Table S1). These ‘PAH-ff

peccififific’ differrrenenencececes innn mmmetete abbbolololititi eseses inccluluded innncrc eaeases ininin pppurururinii e,e, pppololo yayamim neee aaandndnd tttririr carbrbrboxoxoxylylylicicic 

aciddd (((TCA) cycycyclell mmetababolitttesss, and decrreeases innn phohosppphohohochchchollolinnes aand ssphp ininnggog myelllinni s (FFig. 2AA), 

with networkk analyl sis showing the importance of ‘hhub’ metabolites N2,NN2-did methylguanosine 
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R2=0.64, Q2=0.61). This model classified healthy and PAH subjects in the two validation 

analyses with 89% and 84% accuracy, respectively. In addition, 90% (9/10) of PAH 

vasoresponders in the discovery cohort had metabolite levels typical of healthy controls (Fig. 

3A-B).

Out of the 20 ‘PAH-specific’ metabolites, four – N-acetylaspartate, octadecanedioate, 

palmitoylcholine and X-13737 – distinguished PAH patients and disease controls with 83% 

accuracy in the discovery analysis (R2=0.49, Q2=0.47).  This model classified disease controls 

and PAH subjects in the two validation analyses with 69% and 67% accuracy, respectively (Fig. 

3C-D).

Survival analysis of plasma peaks of interest in PAH 

We hypothesised that metabolites most closely related to the disease pathobiology would be 

associated with clinical outcomes. To identify metabolites associated with disease progression 

and mortality, we performed survival analyses. 28/116 and 25/75 patients died in the discovery 

and first validation PAH groups, with an average follow-up of 3.3±1.0 and 4.5±4.0 years, 

respectively. The length of patient follow-up in the second validation cohort was insufficient to 

permit analysis. After controlling for creatinine and diuretic use, no other potentially 

confounding factor was associated with survival. Of the 686 well-quantified metabolites, 640 

met the assumptions of Cox regression analysis, and 62 of these were prognostic after accounting 

for creatinine and diuretic use in both analyses. ROC analysis at 3 years of follow-up confirmed 

these metabolites were prognostic and identified optimal cut-offs (Fig. S2, p<0.05).  

To identify metabolites that report on novel pathways independent of current prognostic 

estimates, we compared the 62 prognostic metabolites with three markers previously found to 

best predict survival in our patients – namely, N-terminal brain natriuretic peptide (NT-proBNP), 

Survival analysis of plasma peaks of interest in PAH 

We hypothesised that metabolites most closely related to the disease pathobiology would be 

associated with clinical outcomes. To identify metabolites associated with disease progression 
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six minute walk distance (6MWD) and red cell distribution width (RDW) 20. 36/62 of the 

metabolites were independent of these measures (p<0.05, Fig. 4A, Table S2) and network 

analysis indicated two main clusters with ‘hub’ metabolites including again, among others, 

N2,N2-dimethylguanosine (Fig. 4B).  

Enrichment and clustering of metabolites of interest

The above analyses identified and validated, after controlling for confounders, a total of 100 

metabolites that were either discriminating or prognostic in PAH, representing twenty five 

metabolic pathways. Six pathways in particular were enriched with metabolites of interest, 

including fatty acid (acyl carnitines), polyamine and nucleoside metabolism (Table S3, p<0.05). 

Sixteen of these metabolites both discriminated PAH and were prognostic; these, along with the 

three other metabolites which were selected by logistic regression modelling to best distinguish 

PAH and healthy subjects, clustered into defined metabolic pathways (Fig. 5).  

Analysis of serial samples 

Changes in metabolite levels in individuals over time may indicate pathways that report clinical 

improvement or whose correction itself leads to improved outcomes. We analysed serial samples 

from 86 patients who were followed up for a minimum of 1 year (median 1.50, interquartile 

range 1.33-2.95 years) after the second sample. Twenty nine patients died during follow-up. 

Changes in metabolite levels between the two samples (median time between samples 1.75, IQR 

1.07-2.58 years) were compared between ‘survivors’ and ‘non-survivors’. 

Changes in 27/100 metabolites were significantly different between survivors and non-survivors 

(p<0.05), including several modified amino acids and nucleosides. ROC analysis confirmed 

these associations (Table S4) and identified prognostic cut-offs (Fig. 6).

Sixteen of these metabolites both discriminated PAH and were prognostic; these, alallononong g g wiwiwiththth ttthehh  

hree other metabolites which were selected by logistic regression modelling to best distinguish

PAH and healthy subjects, clustered into defined metabolic pathways (Fig. 5).  
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Association of elevated modified nucleosides with elevated plasma angiogenin 

Modified nucleosides can be released into the circulation during stress following cleavage of 

tRNAs by the ribonuclease angiogenin 21. To determine whether this mechanism was relevant to 

PAH, we measured plasma angiogenin in a representative subset of age- and sex-matched 

healthy controls and PAH patients from the discovery analysis (Table S5). Angiogenin levels 

were elevated in plasma from PAH patients and correlated with N2,N2-dimethylguanosine levels 

(Rho:0.49, p<0.001, Fig. 7). The strength of correlation was similar in male and female subjects 

(data not shown). 

Discussion

This study represents the most comprehensive analysis of circulating metabolites in patients with 

PAH to date. It is the first to robustly identify and validate differences in comparison to both 

healthy and symptomatic disease controls without pulmonary hypertension, and to associate 

metabolic profiles with outcomes in PAH, strengthening the evidence that the pathways 

identified could be important modifiers of disease progression. Changes in the levels of 

metabolites over time were associated with survival in a direction that suggests that correction of 

these disturbances is linked to improved outcomes. In agreement with this, patients defined as 

vasoresponders, who have excellent outcomes on calcium channel blocker therapies, 

demonstrated metabolic profiles more similar to healthy controls than other patients. Metabolic 

profiles seen in incident cases were similar to those with established PAH, emphasising that 

metabolic dysregulation is not corrected in the majority of cases by current therapy. 

Discussion

This study represents the most comprehensive analysis of circulating metabolites in patients with

PAH to date. It is the first to robustly identify and validate differences in comparison to both 
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Modified nucleosides 

Two of the most robust distinguishing and prognostic differences identified in PAH patients 

were increased levels of N1-methylinosine and N2,N2-dimethylguanosine. These are recognised 

epigenetic, post-transcriptional modifications of transfer RNA (tRNA) 21-23, and other tRNA 

modifications also found to be increased and prognostic included pseudouridine, N6-

carbamoylthreonyladenosine and N1-methyladenosine. N2,N2-dimethylguanosine is found in the 

majority of tRNAs at position 26, upstream of the anticodon sequence at positions 34-36, and 

promotes the folding of tRNAs towards the classical clover-leaf structure 24. N1-methylinosine is 

found 3' adjacent to the anticodon at position 37 of eukaryotic tRNAs and is formed from inosine 

by a specific S-adenosylmethionine-dependent methylase 25. Increased serum and urine levels of 

N2,N2-dimethylguanosine, as well as pseudouridine and 1-methylinosine, have been observed in 

multiple solid tumour malignancies 26 and may reflect the general upregulation of the 

translational apparatus, including tRNA turnover, in hyperproliferative cancerous cells 27.

Increased circulating 1-methyladenosine has also been shown to be an early indicator of 

oxidative stress, cell damage and mortality in kidney disease 28.

 Intracellular tRNA pools are dynamically regulated. For example under stress, tRNAs 

required for the translation of stress response proteins are preferentially expressed 21. The altered 

levels of specific nucleoside modifications in PAH patients may reflect preferential expression of 

tRNAs that harbour them, as part of a switch towards translation of disease-related proteins. In 

addition, stress-induced cleavage of tRNA produces fragments that propagate the stress response 

and interfere with eukaryotic initiation factor (eIF)-4G and eIF4F21 -4 

-tRNA, suppressing general 

protein synthesis and activating stress-inducible transcription factors, is mutated and causally 

by a specific S-adenosylmethionine-dependent methylase 25. Increased serum and d urururininineee lelelevevevelslsls of 

N2,N2-dimethylguanosine, as well as pseudouridine and 1-methylinosine, have been observed in

multiple solid tumour malignancies 26 and may reflect the general upregulation of the 

rannslslslational apppppap rararatus,s,s iiincncnclulul dididingngng tttRNRR A A turnovvvere , inn hypypyperererprprproloo ififeere atata ivi e e cac ncccerererouououss s cellllss 277..
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implicated in some cases of pulmonary vascular disease 29. Mutations in tRNA genes themselves 

have also been reported to cause pulmonary hypertension driven by mitochondrial dysfunction 30.

The initial cleavage of tRNAs is mediated by angiogenin 21, which we showed to be 

elevated in the plasma of PAH patients in concert with elevated levels of modified nucleosides. 

Angiogenin is also upregulated in cancer cells, mediating angiogenesis, cell proliferation and 

protection from apoptosis 31, and is increased in breath condensates from patients with 

pulmonary hypertension 32, indicating a possible pulmonary origin in this disease. 

Angioproliferative plexiform vascular lesions are characteristic of advanced PAH and the pro-

angiogenic activity of angiogenin is inhibited by mutation of its ribonuclease active site 33,

suggesting that elevated angiogenin and nucleoside levels may report patients developing this 

type of pulmonary vascular remodelling. Alterations in tRNA biology appear to be capable of 

driving the development of rare forms of pulmonary hypertension and are closely linked to the 

progression of PAH, and circulating levels of modified nucleosides may reflect increases in both 

pulmonary vascular cell proliferation and stress.  

Energy metabolism 

Significant alterations were observed in several pathways related to cellular energy production, 

with accumulation of multiple acylcarnitines, glutamate and TCA cycle intermediates. Their 

accumulation in PAH patients may represent a failed attempt to increase utility of fatty acids as 

an energy source, perhaps reflecting the inability of fatty acid beta-oxidation to keep pace with 

the demands of the overburdened right ventricle. Glutaminolysis is another alternative energy 

production pathway to glucose oxidation, with the product glutamate entering the TCA cycle as 

-ketoglutarate.  Inhibition of glutaminolysis and restoration of glucose oxidation has beneficial 

effects in rat models of right ventricular hypertrophy 34. Increased circulating glutamate levels 

uggesting that elevated angiogenin and nucleoside levels may report patients devevelololopipp ngngng ttthihihisss

ype of pulmonary vascular remodelling. Alterations in tRNA biology appear to be capable of 

driving the development of rare forms of pulmonary hypertension and are closely linked to the
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have previously been seen in cancer patients 35, however, anti-glutaminolysis therapeutic targets 

have demonstrated toxic side effects 36. The build-up of TCA intermediates and the precursors to 

the molecules that enter the cycle (acylcarnitines and glutamate) may indicate dysfunction of this 

cycle, or at least the inability to keep pace with the demands of the most active cells, such as 

proliferating pulmonary vascular cells. Increased levels of citrate, succinate and fatty acid 

metabolites have been demonstrated in lung tissue from PAH patients 11, suggesting 

dysfunctional energy metabolism is a feature of the diseased tissue. Restoration of glucose 

oxidation by dichloroacetate therapy is under investigation as a treatment for PAH 37, and 

maximising the capacity of the TCA cycle to process the acetyl-CoA produced may be a 

complementary therapeutic approach.  

Consistent with previous reports we found a significant increase in the circulating levels 

of long-chain acylcarnitines (oleoylcarnitine) 38, and also short- (myristoylcarnitine, 

acetylcarnitine, hydroxbutyrylcarnitine) and medium- (adipoylcarnitine, suberoylcarnitine) chain 

products.  The accumulation of acylcarnitines may itself be detrimental, effecting cardiac 

electrophysiological changes and arrhythmias 39. There is also increasing evidence that 

accumulation of long chain acylcarnitines may contribute to insulin resistance 40, which is itself 

common and associated with prognosis in PAH 41.

Lipids, steroids, polyamines and tryptophan metabolites 

Multiple sphingomyelin and phosphatidylcholine lipid species were significantly reduced in 

PAH patients, relating to increased mortality. Sphingomyelins are the most abundant subclass of 

sphingolipids, with other subclasses including sphinogosines, ceramides and glycophospholipids 

42. In patients with chronic obstructive pulmonary disease (COPD), low plasma levels of several

sphingomyelins relate to disease severity 43. As a membrane constituent, sphingomyelins are 

complementary therapeutic approach.  

Consistent with previous reports we found a significant increase in the circulating levels 

of long-chain acylcarnitines (oleoylcarnitine) 38, and also short- (myristoylcarnitine, 
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implicated in trans-membrane signalling and are generated from phosphatidylcholine and 

ceramide by sphingomyelin synthase, knockout of which leads to mitochondrial dysfunction and 

reduced insulin release 44. Sphingomyelins may also be considered a source of ceramide, which 

directly (and indirectly through other active lipid products) regulates cell proliferation, apoptosis, 

cell migration and autophagy 45.

Reduced lineoyl-GPC has been shown to be an early marker of insulin resistance in non-

diabetics 46, and decreased circulating levels of several phosphatidylcholines were seen in 

patients with severe heart failure 47. Phospholipids are also sources of multiple cellular signalling 

molecules including eicosanoids such as prostacyclin 48, levels of which are known to be reduced 

in pulmonary hypertension, with replacement an established treatment option.  

Circulating levels of DHEA-S and its metabolites (androsterone, epiandrosterone and 

androstenediol/4-androsten-3beta, 17beta-diol disulfate) were reduced in PAH patients compared 

to healthy controls, consistent with a recent report of reduced circulating levels of DHEA-S in a 

small cohort of 23 male PAH patients compared to healthy controls 49. Differences in DHEA-S

between PAH and controls were independent of the more subtle effects of both gender and age 

(Fig. S3), and lower DHEA-S levels were independently associated with mortality. Treatment 

with DHEA or DHEA-S has repeatedly been shown to prevent and reverse pulmonary 

hypertension in experimental rat models 50, with clinical trials ongoing in COPD-associated 

pulmonary hypertension (ClinicalTrials.gov NCT00581087).  

 We found increased levels of a breakdown product of N1-acetylspermidine, acisoga. 

Other metabolites of polyamine metabolism (4-acetamidobutanoate and N-acetylputrescine) 

were increased in PAH in relation to bilirubin levels and were prognostic in 2 distinct PAH 

cohorts, independent of established prognostic markers. Several animal models of pulmonary 

n pulmonary hypertension, with replacement an established treatment option.  

Circulating levels of DHEA-S and its metabolites (androsterone, epiandrosterone and 

androstenediol/4-androsten-3beta, 17beta-diol disulfate) were reduced in PAH patients compared
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hypertension have demonstrated evidence of increased polyamine levels and metabolism  in lung 

tissue 51. Administration of monocrotaline to rats led to significantly increased levels of 

polyamines and the development of pulmonary hypertension and right ventricular hypertrophy, 

which could be prevented by the administration of an inhibitor of polyamine biosynthesis 52,

suggesting these molecules may be novel therapeutic targets. 

 In our study, we validated findings of elevated circulating tryptophan metabolites 14 with 

increased C-glycosyltryptophan and kynurenine in PAH patients compared to healthy controls, 

but changes in kynurenine were related to increased bilirubin levels and liver dysfunction. Levels 

of tryptophan and its other major metabolite, serotonin, were not significantly altered in our 

analysis. 

Limitations

The majority of patients included in this study were prevalent cases on established treatments. A 

sub-analysis was conducted with 40 incident cases and showed similar results. Corrections were 

also made for potential treatment effects in the main analyses, including PAH-specific and 

comorbidity-related therapies, as well as demographics and renal/hepatic function.

Patients and controls were sampled in the non-fasting state and information on insulin resistance 

was not available for all cases. Patients were also sampled from a peripheral vein. The stronger 

performance of discriminating models in discovery analyses suggests that optimisation could 

further improve their performance in distinct cohorts. Strongly correlated metabolites would not 

have been selected in the discriminant modelling, so each metabolite used in the final models 

may represent clusters of multiple metabolites. Evidence of tissue specificity and the source of 

circulating metabolites in pulmonary hypertension require further studies, for example, by 

transpulmonary sampling and direct measurements from tissue samples, to better localise the 

analysis. 

Limitations

The majority of patients included in this study were prevalent cases on established treatments. A 
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source of informative metabolites. Plasma levels of metabolites may not reflect levels in the most 

important tissues, for example increased bile acid metabolites have been demonstrated in PAH 

lung tissue 53 but no differences were seen in circulating levels in our study. 

Summary and conclusions

Increased circulating modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), TCA 

cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines and polyamine 

metabolites and decreased levels of steroids, sphingomyelins and phosphatidylcholines are a 

characteristic of patients with PAH that distinguish them from symptomatic patients without 

pulmonary hypertension. Improvements in circulating metabolite levels are associated with a 

better prognosis and could be used to monitor response to PAH treatments. Indeed, our results 

support the investigation of therapeutic strategies targeted at alterations in energy metabolism in 

PAH and suggest options for correcting translational regulation also merit further study. 
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Table 1. Cohort Characteristics. Means and standard deviations or counts are given. BMI, body mass index; NT-proBNP, N-terminal 
brain natriuretic peptide at time of sample; RDW, red cell distribution width; HC, healthy controls; DC, disease controls; COPD, 
chronic obstructive pulmonary disease; CAD, coronary artery disease; IHD, ischaemic heart disease; AF, atrial fibrillations; PDE5, 
phosphodiesterase 5; ERA, endothelin receptor antagonists; CCB, calcium channel blocker; ACE, angiotensin converting enzyme. 
Ethnicity is shown for subjects who self-declared.

Discovery Validation 1 Validation 2
HC         

(n=58)
DC         

(n=70)
PAH (19-70) 

(n=88)
PAH (>70)    

(n=28)
HC       

(n=63)
DC       

(n=69)
PAH        

(n=75)
PAH-2
(n=174)

Age at sampling, years 48+/-13.5 56.5+/-15.9 48.1+/-13.8 75.9+/-4.8 49.1+/-16.1 55.9+/-18.5 52+/-16.3 52+/-15
Sex, Female:Male (ratio) 38:20 (1.9:1) 48:22 (2.2:1) 61:27 (2.3:1) 19:9 (2.1:1) 40:23 (1.7:1) 48:21 (2.3:1) 52:23 (2.3:1) 127:47 (2.7:1)
Ethnicity, % non-Caucasian 32.5 56.9 17.0 14.8 38.1 44.1 18.6 8.1
BMI, kg/m2 30.5+/-10.5 27.9+/-6 28.7+/-8.2 27.9+/-5.7 26+/-4.1 27.4+/-5.9 30.1+/-7.2 29.2+/-7
Baseline haemodynamics at diagnosis
Pulmonary capillary wedge pressure, mmHg 11.6+/-4.5 11.9+/-6 12.1+/-4.6 10.8+/-3.5 10.8+/-4.9 9.4+/-3.8
Mean pulmonary artery pressure, mmHg 19.3+/-4.1 53.1+/-14.3 46.3+/-14.6 19.1+/-4.7 53.7+/-11.1 56.2+/-15.2
Pulmonary vascular resistance, Woods units 12.3+/-5.7 8.6+/-4.7 12.4+/-5.8 13+/-6.4
Mean right atrial pressure, mmHg 7.3+/-3.4 10.0+/-5.7 9.3+/-4.9 6.3+/-3.2 11.8+/-5.8 9.2+/-5.3
Cardiac output, L/min 4.4+/-1.7 4.5+/-1.8 4.0+/-1.7 4.0+/-1.3
Functional status and pathology
Six minute walk distance, m 279.4+/-153.4 197.9+/-158.7 271.3+/-169.5 334.8+/-119.0
WHO Functional Class, I/II/III/IV 2/11/65/10 0/2/23/1 0/7/52/9 2/24/119/18
RDW, % 14.8+/-2.1 15.0+/-1.1 16.0+/-2.9 14.7+/-3.3
NT-proBNP, pmol/L 735+/-882 1137+/-1123 895+/-1244
Creatinine, umol/L 76.3+/-21.8 81.2+/-29.1 107.6+/-35.7 87+/-40.6 92.7+/-32.6 89.9+/-25.1
Bilirubin, umol/L 13.9+/-13.9 15.6+/-10.7 12.4+/-8.5 16.3+/-22.8 17.2+/-10.4 12.1+/-9.0
Comorbidities
Asthma/COPD 17.1 11.4 11.1 11.6 17.1 17.6
Diabetes 8.6 17.0 48.1 13.0 24.3 14.2
CAD/IHD 10.0 12.5 37.0 11.6 12.9 8.3
AF/flutter 14.3 18.2 25.9 17.4 8.6 5.9
Systemic hypertension 22.9 19.3 77.8 36.2 22.9 17.2
Hypercholesterolaemia/lipidaemia 12.9 12.5 22.2 10.1 15.7 6.5
Drug therapy 
Anticoagulation 32.9 71.6 78.6 34.8 65.3 66.7
PDE5 inhibitors 0.0 65.9 67.9 0.0 48.0 77.8
ERA 0.0 48.0 30.8 0.0 33.8 64.3
Diuretics 12.9 37.5 75.0 21.7 53.3 54.4

emale:Male (ratio) 38:20 (1.9:1) 48:22 (2.2:1) 61:27 (2.3:1) 19:9 (2.1:1) 40:23 (1.7:1) 48:21 (2.3:1) 52:2:22333 (2.333:1))) 12227:47 (2
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Aldosterone antagonists 7.1 31.8 21.4 1.4 34.7 8.2
Statins/lipid lowering drugs 25.7 22.7 57.1 33.3 24.0 24.0
CCB 10.0 14.8 28.6 24.6 14.7 21.1
Cardiac glycosides 7.1 17.0 14.3 8.7 21.3 9.4
Antidiabetic drugs 8.6 12.5 35.7 10.1 18.7 9.4
Prostanoids 0.0 9.1 0.0 0.0 6.7 33.3
Iron replacement therapy 4.3 13.6 25.0 5.8 4.0 10.5
ACE inhibitors 27.1 17.0 60.7 37.7 28.0 16.4
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Figure Legends

Figure 1. Analysis flow chart. Summary of analytical workflow showing numbers of metabolites 

that distinguish PAH from controls, and/or are prognostic in PAH.  

Figure 2. Metabolites which discriminate PAH and control subjects. (A) Average metabolite 

levels in PAH and control subjects for 20 metabolites found to significantly distinguish PAH and 

both healthy and disease controls, independent of potential confounders. Values plotted are z-

scores calculated based on mean and standard deviation of all healthy volunteers in study - 

negative values indicate metabolites at lower levels in patients versus healthy controls and 

positive values indicate higher levels of metabolites in patients. For the discovery analysis only 

data from PAH patients aged 19-70 is plotted and for the validation analysis all patients data are 

shown. (B) Network analysis of the same 20 metabolites based on second order correlations. 

Line thickness indicates strength of correlations (all p<0.0001). *probable metabolite identity, 

but unconfirmed (see methods). EPE,eicosapentaenoyl; DHE,docosahexaenoyl; 

DPE,docosapentaenoyl; DHEA-S,dehydroisoandrosterone sulphate; GPC, 

glycerophosphocholine; SM, sphingomyelin. 

Figure 3. Discriminant analysis models based on low numbers of metabolites distinguish PAH 

patients from controls. (A&C) Dotplots showing individual subjects’ model scores in healthy 

controls (HC), PAH patients, vasoresponders and disease controls (DC) in discovery and 

validation analyses. Metabolites were selected by logistic regression of PAH-HC (A) and PAH-

negative values indicate metabolites at lower levels in patients versus healthy contntroroolslsls aaandndnd 

positive values indicate higher levels of metabolites in patients. For the discovery analysis only 

data from PAH patients aged 19-70 is plotted and for the validation analysis all patients data are

howowownn. (B) Netete wowoworkrkrk aaananaalylylysiss s s ofofof ttthehehe samme 20 mmmete ababolitteseses bbasasasedee oonn n sesecoondn ooordrdrdererer cccoroo relalal tititiononons.s.s. 

Linenee tthicknessss iiindndn iccattes strenenength of corrrrelationnnss (aalll ppp<0<0<0 00.00000011). *p*probaabblee e mmem tabolilil tte iddentityy, 

but unconfirmed (s( ee methods). EPEP ,eicosapentaenoyl; DHE,ddocosahexaenoyl;
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DC (C) comparisons, respectively. (B&D) ROC curves showing performance of models in 

distinguishing PAH and HC (B) and DC (D) subjects. 

Figure 4. Prognostic metabolites independent of established risk factors. (A) Hazard ratios after 

correcting for creatinine and diuretic use of 36 metabolites which were prognostic in PAH 

patients independent of RDW, NT-proBNP and six minute walk distance. Hazard ratios indicate 

the risk of a change in each metabolite of 1 standard deviation, for ease of comparison. Patients 

of all ages were included in both discovery and validation survival analyses. (B) Network 

analysis of the same 36 metabolites based on second order correlations. Line thickness indicates 

strength of correlations (all p<0.0001). Red lines indicate negative correlations. *probable 

metabolite identity, but unconfirmed (see methods). EPE,eicosapentaenoyl; 

DHE,docosahexaenoyl; DPE,docosapentaenoyl; DHEA-S,dehydroisoandrosterone sulphate; 

GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine. 

Figure 5. Hierarchical clustering of 19 discriminating and prognostic metabolites in PAH 

patients. (A) Venn diagram shows overlap between metabolites that discriminate PAH from 

healthy controls in all 3 cohorts, from logistic regression between PAH and healthy controls and 

prognostic metabolites in the discovery and first validation cohorts. (B) Clustering of the 19 

overlapping metabolites from A. is shown between healthy controls (n=58), PAH survivors 

(n=110, alive at 3 years post-sample) and non-survivors (n=24) in the discovery analysis. Red 

indicates metabolite levels that are increased (and blue levels that are decreased) in PAH versus 

controls. *probable metabolite identity, but unconfirmed (see methods), ‡metabolites also 

trength of correlations (all p<0.0001). Red lines indicate negative correlations. *prprrobobobababblelele 

metabolite identity, but unconfirmed (see methods). EPE,eicosapentaenoyl; 

DHE,docosahexaenoyl; DPE,docosapentaenoyl; DHEA-S,dehydroisoandrosterone sulphate; 

GPC,C,C, glycerophphphosssphpp ococo hohoholililinenee;;; GPGPGPE,E,E, glylycerophhhoso phphoethththanananolololamama ininne.. 

Figure 5. Hiierarchhici al clustering of 19 did scrimiinatiing and prognostic metabolites in PPAHA  
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distinguish PAH from disease controls. GPC, glycerophosphocholine; EPE, eicosapentaenoyl; 

SM, sphingomyelin. 

Figure 6. Analysis of serial samples. (A) ROC analysis of changes in metabolite levels and 

survival status at last follow-up. (B&D) Changes in individual patient metabolite levels, grouped 

by survival status at last follow-up. (C) Kaplan-Meier analysis illustrating survival over time in 

PAH patients divided into groups according to the changes in N-acetyl-methionine levels 

between serial samples.

Figure 7. Circulating angiogenin levels. (A) Plasma angiogenin levels determined by ELISA in 

healthy controls and PAH patients. (B) Scatter-plot of plasma N2,N2-dimethylguanosine versus 

plasma angiogenin in controls and PAH patients. Statistics shown are from Spearman’s Rank 

test.

Figure 7. Circulating angiogenin levels. (A) Plasma angiogenin levels determinedd bbbyy y ELELELISISISA A A inii  

healthy controls and PAH patients. (B) Scatter-plot of plasma N2,N2-dimethylguanosine versus 

plasma anggiogenin in controls and PAH patients. Statistics shown are from Spearman’s Rank 

estt.
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62 prognostic, independent 
of creatinine and diuretic 
use, in PAH patients in 2 

analyses (p<0.05) 

36 independent of 
established prognostic 
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Alanine and Aspartate
Polyamine

TCA Cycle

Fatty Acid, Acyl Choline
Fatty Acid, Dicarboxylate
Lysolipid
Mevalonate
Phospholipid
Sphingolipid

Purine, Adenine
Pyrimidine, Uracil

Unknown

Amino acid metabolism

Energy metabolism

Lipid metabolism

Nucleoside metabolism

Unidentified metabolites

N1-methylinosine 

N2,N2-dimethyl
guanosine 1-linoleoyl-2-EPE-

GPC (18:2/20:5)* 

1-DPE-GPC 
(22:5n3)* 

3-hydroxy-3-
methylglutarate 

malate 

SM (d18:1/20:0, 
d16:1/22:0)* 

SM 
(d18:1/22:1, 
d18:2/22:0, 
d16:1/24:1)* 

xanthine 

X - 13737
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X - 21796
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SM (d18:1/21:0, 
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octadecanedioate 

N-acetyl 
aspartate 
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palmitoylcholine 

X - 12688

-2 -1 0 1 2
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Average metabolite levels in groups

-2 -1 0 1 2
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Alanine and Aspartate 
Histidine 
Met, Cys, SAM and Taur
Polyamine 

Acyl carnitine
Lysolipid
Phospholipid 
Steroid

Purine, Adenine
Pyrimidine, Uracil

Unknown

Amino acid metabolism Lipid metabolismNucleoside metabolism

Unidentified metabolites

1-linoleoyl-2-DHE-
GPC (18:2/22:6)* 

1-methylimida
-zoleacetate 

DHEA-S

N-acetyl
methionine 

N-acetyl
putrescine 
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Metabolomic profiling methodology 

Samples were prepared with use of an automated MicroLab STAR system (Hamilton 

Company, Reno, NV, USA). For quality control (QC), a pooled sample from all experimental 

samples was used throughout the experiment, and a mixture of Metabolon QC standards were 

spiked into all experimental samples to monitor instrument performance and chromatographic 

alignment.  Samples were randomised prior to experimentation.  

 

Experiments were conducted on Waters Acuity ultra-performance liquid chromatography 

(UPLC) systems (Waters Corporation, Milford, MA, USA) using Thermo Scientific Q-

Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray 
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ionization (HESI-II) source and Orbitrap mass analyser (Thermo Fisher Scientific, MA, 

USA).  

 

The analysis platform used four methods for Ultrahigh Performance Liquid Chromatography-

Tandem Mass Spectroscopy (UPLC-MS/MS) including a) positive ion mode electrospray 

ionisation (ESI), b) positive ion mode optimised for hydrophobic compounds, c) negative ion 

mode ESI and d) negative ionisation following elution from a hydrophilic interaction 

chromatography (HILIC) column. Scan time varied between methods and covered 70-

1000m/z.   

 

The resulting spectra were compared to the in-house Metabolon standard library using 

retention time, mass (m/z), adducts and MS/MS spectra. Analysis using this platform has 

been applied to measure metabolite levels in human plasma in control 1, 2 and disease 

populations 3, 4. All experiments and runs were conducted on the same day.    
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Table S1 (below). Metabolites distinguishing pulmonary arterial hypertension (PAH) from healthy (HC) and disease controls (DC). 97 metabolites 

that are significantly different between PAH and healthy controls in 3 cohorts (p<7.3e-5) are shown. Mean values are given and the data is scaled to the 

healthy control group. Significance from linear regression is shown (p value), and for metabolites with p>0.05 in PAH HC linear regression, the significant 

confounder is shown. Significance is also shown for Mann Whitney U test between PAH treatment naïve patients versus all HC, and PAH bone 

morphogenetic protein type 2 receptor (BMPR2) mutation carriers versus patients with no BMPR2 mutation. GPC, glycerophosphocholine. *probable 

metabolite identity, but unconfirmed (see methods).  
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  Group averages (z-score relative to healthy control levels) Statistics (p-values) and major confounders 

Metabolite Metabolic Pathway Discovery Validation1 Validation2 PAH BMPR2 Linear Regression Confounder Sub-analyses 

  HC DC 
PAH            

(19-70) 
HC DC PAH PAH2 Naïve Mutation 

HC vs               
PAH 

HC+DC 
vs            

PAH 

HC vs                        
PAH 

PAH 
Naïve 

vs HC 

BMPR2 
vs PAH 

Increased in PAH vs HC and DC (independent of confounders) 

N-acetylaspartate (NAA) Alanine & Aspartate  0.12 0.21 1.13 -0.11 0.64 1.32 0.87 1.47 0.93 2.3E-04 4.6E-03  3.0E-09 0.46 

octadecanedioate 
Fatty Acid, 

Dicarboxylate 
0.07 0.12 0.82 -0.07 0.34 0.93 0.35 0.95 0.43 1.5E-02 1.3E-02  7.3E-06 0.25 

3-hydroxy-3-methylglutarate Mevalonate  -0.07 0.57 0.89 0.07 0.57 1.15 0.76 1.20 0.75 3.5E-02 3.0E-02  1.6E-09 0.12 

acisoga Polyamine  -0.10 1.07 1.42 0.09 1.14 1.95 1.22 1.93 1.04 1.9E-04 1.5E-02  2.7E-11 2.9E-02 

N1-methylinosine 
Purine, Hypo- 
Xanthine/Inosine  

-0.22 0.58 1.50 0.20 0.86 1.85 1.29 1.78 1.50 8.1E-04 2.2E-02  1.5E-13 0.48 

xanthine 
Purine, Hypo- 

Xanthine/Inosine  
0.11 0.56 0.98 -0.10 0.62 1.06 1.00 1.35 1.16 2.0E-07 2.8E-03  3.4E-09 0.19 

N2,N2-dimethylguanosine Purine, Guanine  -0.11 0.83 1.56 0.10 1.15 2.00 1.39 1.95 1.36 1.1E-02 3.9E-02  2.2E-13 0.11 

3-ureidopropionate Pyrimidine, Uracil  -0.14 0.22 0.62 0.13 0.09 1.16 0.54 1.16 0.47 1.7E-02 9.0E-04  4.0E-09 0.36 

malate TCA Cycle -0.18 0.60 1.17 0.17 0.69 1.64 1.02 1.81 1.11 8.8E-04 9.1E-03  1.5E-14 0.35 

X - 12688 Unknown -0.11 1.01 1.50 0.10 1.14 1.70 1.26 1.76 0.99 4.9E-05 3.2E-02  6.4E-13 1.6E-02 

X - 13737 Unknown -0.05 0.19 0.97 0.05 0.38 1.03 0.91 1.15 0.94 1.8E-02 6.1E-03  1.9E-08 0.70 

X - 21796 Unknown 0.07 0.19 0.96 -0.07 0.44 1.06 0.73 1.33 0.83 5.0E-03 1.3E-02  1.9E-12 0.83 

Decreased in PAH vs HC and DC (independent of confounders)                         

palmitoylcholine 
Fatty Acid  (Acyl 

Choline) 
-0.05 -0.14 -1.33 0.05 -0.35 -0.73 -1.10 -0.94 -1.35 1.7E-03 8.3E-03  3.9E-05 4.8E-02 

1-arachidonoyl-GPC 
(20:4n6)* 

Lysolipid -0.08 -0.14 -1.09 0.08 -0.25 -0.74 -0.81 -0.81 -1.00 1.2E-02 3.2E-02  5.9E-05 0.27 

1-docosapentaenoyl-GPC 

(22:5n3)* 
Lysolipid -0.03 -0.17 -1.03 0.03 -0.21 -0.80 -0.84 -0.79 -1.02 9.0E-03 6.7E-03  1.6E-05 0.23 

1-linoleoyl-2-

eicosapentaenoyl-GPC 
(18:2/20:5)* 

Phospholipid  0.03 -0.39 -0.81 -0.03 -0.13 -1.13 -0.81 -1.16 -0.77 2.4E-02 1.2E-02  3.4E-08 0.68 

sphingomyelin (d18:1/20:0, 

d16:1/22:0)* 
Sphingolipid  0.05 -0.43 -1.02 -0.05 -0.38 -1.09 -1.05 -1.24 -0.93 1.3E-02 7.7E-03  1.2E-08 0.49 

sphingomyelin (d18:1/21:0, 

d17:1/22:0, d16:1/23:0)* 
Sphingolipid  0.03 -0.44 -0.89 -0.03 -0.32 -0.93 -0.76 -1.04 -0.83 2.7E-03 4.0E-02  1.4E-08 0.78 

sphingomyelin (d18:1/22:1, 
d18:2/22:0, d16:1/24:1)* 

Sphingolipid  0.07 -0.37 -1.09 -0.06 -0.32 -1.16 -1.03 -1.21 -1.12 2.6E-03 7.2E-04  1.8E-07 0.95 

sphingomyelin (d18:2/23:0, 

d18:1/23:1, d17:1/24:1)* 
Sphingolipid  0.04 -0.27 -0.63 -0.04 -0.17 -0.60 -0.54 -0.68 -0.66 4.9E-04 4.4E-02  1.0E-06 0.40 
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Increased in PAH vs HC (independent of confounders)                           

oleoyl ethanolamide Endocannabinoid 0.10 1.02 0.88 -0.09 1.15 1.02 0.52 0.84 0.29 1.3E-03 2.2E-01  5.6E-05 5.4E-03 

3-hydroxybutyrylcarnitine 
(1) 

Fatty Acid (Acyl 
Carnitine) 

0.02 0.52 0.91 -0.01 0.81 0.97 0.60 1.11 0.62 6.1E-05 1.1E-01  7.3E-09 4.5E-02 

3-hydroxybutyrylcarnitine 

(2) 

Fatty Acid (Acyl 

Carnitine) 
0.07 0.76 1.26 -0.06 1.02 1.24 0.90 1.49 0.81 4.7E-03 6.8E-01  3.4E-09 3.8E-02 

acetylcarnitine 
Fatty Acid (Acyl 
Carnitine) 

0.11 0.43 1.02 -0.10 0.77 0.88 0.59 0.94 0.56 1.2E-02 2.9E-01  5.7E-06 3.1E-02 

adipoylcarnitine 
Fatty Acid (Acyl 

Carnitine) 
-0.04 0.41 1.44 0.04 0.94 1.69 1.25 1.77 1.20 4.6E-02 3.9E-01  5.8E-10 0.09 

myristoleoylcarnitine* 
Fatty Acid (Acyl 
Carnitine) 

0.04 0.33 0.75 -0.04 0.64 0.85 0.53 0.91 0.37 1.6E-02 4.6E-01  6.2E-05 1.0E-02 

myristoylcarnitine 
Fatty Acid (Acyl 

Carnitine) 
0.01 0.46 0.81 -0.01 0.87 1.06 0.60 1.07 0.44 4.1E-02 9.5E-01  9.4E-06 1.1E-02 

oleoylcarnitine 
Fatty Acid (Acyl 
Carnitine) 

0.03 0.53 0.96 -0.03 0.83 1.39 1.20 1.22 0.87 1.8E-02 6.7E-01  3.2E-07 0.10 

palmitoleoylcarnitine* 
Fatty Acid (Acyl 

Carnitine) 
0.08 0.56 0.91 -0.07 0.90 1.23 0.85 1.14 0.69 8.5E-03 8.9E-01  7.9E-07 4.1E-02 

suberoylcarnitine 
Fatty Acid (Acyl 
Carnitine) 

0.10 0.55 1.40 -0.09 0.98 1.61 1.23 1.66 1.03 7.1E-03 3.5E-01  1.3E-09 2.9E-02 

glutamate Glutamate  0.16 0.47 1.13 -0.14 0.41 0.98 0.71 1.12 0.83 2.9E-02 1.4E-01  2.7E-07 0.98 

methionine sulfone 
Met, Cys, SAM & 

Tau 
-0.03 0.49 1.57 0.03 0.98 1.79 1.40 1.56 1.29 3.6E-02 4.9E-01  1.8E-09 0.14 

N-acetylmethionine 
Met, Cys, SAM & 

Tau 
-0.04 0.48 1.08 0.04 0.63 1.27 0.60 1.30 0.80 3.3E-03 1.6E-01  1.3E-09 0.22 

N-acetyltaurine 
Met, Cys, SAM & 

Tau 
0.07 0.56 1.02 -0.06 0.71 1.15 0.63 1.15 0.37 1.0E-03 7.1E-02  2.7E-07 9.7E-04 

N-formylmethionine 
Met, Cys, SAM & 
Tau 

-0.17 0.49 1.08 0.16 0.69 1.53 0.78 1.59 0.85 4.8E-02 3.0E-01  5.8E-10 0.10 

5,6-dihydrothymine 
Pyrimidine, 

Thymine  
-0.22 0.65 1.33 0.20 0.96 1.37 0.62 1.38 0.71 2.0E-04 6.7E-02  1.2E-08 0.15 

alpha-ketoglutarate TCA Cycle -0.04 0.45 0.68 0.04 0.71 1.57 1.13 1.61 1.14 2.2E-02 2.4E-01  2.6E-13 1.00 

fumarate TCA Cycle -0.15 0.30 0.65 0.13 0.45 1.14 0.56 1.23 0.31 2.1E-02 9.8E-02  3.5E-16 0.28 

C-glycosyltryptophan Tryptophan  -0.05 0.55 1.11 0.05 0.84 1.37 0.76 1.30 0.59 4.8E-02 3.9E-01  5.9E-07 4.7E-03 

X - 12127 Unknown 0.06 0.63 0.85 -0.06 0.61 1.05 0.67 1.07 0.73 1.6E-02 4.4E-01  1.6E-08 0.53 

X - 12472 Unknown -0.04 0.71 1.03 0.04 0.82 1.05 0.96 1.15 0.93 3.4E-03 8.2E-01  2.5E-07 0.59 

X - 12739 Unknown -0.09 0.87 1.02 0.08 1.11 1.12 0.99 1.18 0.97 2.4E-02 1.8E-01  6.8E-07 0.35 

X - 12824 Unknown -0.02 0.54 0.85 0.02 0.74 1.08 0.79 1.16 0.78 2.0E-02 6.8E-01  9.5E-08 0.44 

X - 17327 Unknown 0.03 0.66 0.86 -0.03 0.81 0.97 0.82 1.02 0.78 2.6E-02 7.0E-01  2.4E-06 0.34 

X - 21829 Unknown -0.07 0.44 0.82 0.06 0.65 1.24 0.66 1.41 0.62 2.5E-02 5.6E-01  2.4E-10 0.10 

X - 24307 Unknown 0.04 0.68 0.70 -0.04 0.52 1.18 0.97 1.09 0.94 6.9E-05 7.2E-02  1.2E-07 0.88 
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X - 24513 Unknown -0.10 0.67 1.05 0.09 0.92 1.44 0.98 1.30 0.77 2.4E-02 4.8E-01  1.4E-07 9.1E-03 

X - 24527 Unknown -0.08 0.86 1.11 0.08 1.17 1.22 1.06 1.22 0.94 3.5E-02 1.9E-01  2.2E-06 0.25 

X - 24678 Unknown 0.21 0.74 1.20 -0.19 0.62 1.34 0.70 1.33 0.83 4.9E-03 1.2E-01  3.6E-11 0.42 

X - 24766 Unknown -0.31 0.45 0.82 0.28 0.60 1.07 0.85 0.89 0.92 1.9E-02 3.9E-01  5.1E-07 0.78 

Decreased in PAH vs HC (independent of confounders)                           

asparagine Alanine & Aspartate  -0.06 -0.58 -0.88 0.05 -0.55 -1.00 -0.90 -1.22 -0.95 8.7E-04 8.5E-02  2.3E-07 0.64 

dehydroisoandrosterone 
sulfate (DHEA-S) 

Steroid -0.05 -1.17 -1.53 0.04 -0.95 -1.74 -1.77 -1.53 -1.56 2.5E-02 4.1E-01  1.3E-09 0.46 

X - 23765 Unknown 0.09 -0.50 -0.72 -0.08 -0.50 -0.90 -0.90 -1.02 -1.08 8.1E-04 2.0E-01  9.7E-07 0.15 

Increased in PAH vs HC                           

N-acetylalanine Alanine & Aspartate  -0.11 0.55 0.76 0.10 0.88 1.15 0.66 1.04 0.50 9.9E-01 2.3E-01 Diuretics 3.2E-05 1.6E-02 

N-acetylneuraminate Aminosugar  -0.11 0.50 0.93 0.11 0.63 0.88 0.47 0.76 0.28 7.4E-02 2.4E-01 Age 1.8E-04 1.0E-03 

erythronate* Aminosugar  -0.11 0.45 0.71 0.10 0.68 1.16 0.59 1.10 0.37 7.1E-01 6.5E-01 Bilirubin 5.4E-06 6.0E-03 

N-acetylglucosamine/N-

acetylgalactosamine 
Aminosugar  -0.14 0.50 0.72 0.13 0.89 0.95 0.58 0.62 0.54 1.0E-01 7.3E-01 Gender 1.8E-03 4.4E-02 

gulonic acid* 
Ascorbate & 

Aldarate  
-0.08 0.49 0.61 0.07 0.57 0.79 0.61 0.81 0.47 8.5E-01 5.3E-01 Age 4.5E-05 2.8E-02 

palmitoylcarnitine 
Fatty Acid (Acyl 

Carnitine) 
-0.03 0.49 0.91 0.03 1.03 1.28 0.95 1.23 0.90 6.0E-02 9.2E-01 Bilirubin 1.6E-07 0.43 

malonylcarnitine Fatty Acid Synthesis 0.00 0.20 0.56 0.00 0.29 0.94 0.48 0.96 0.57 1.3E-01 3.8E-02 Bilirubin 3.8E-09 0.53 

N-acetylserine 
Glycine, Serine & 

Threonine  
-0.16 0.63 1.00 0.15 1.04 1.49 0.97 1.38 0.85 5.2E-01 4.0E-01 Bilirubin 6.9E-08 0.05 

N-acetylthreonine 
Glycine, Serine & 
Threonine  

-0.22 0.31 0.68 0.20 0.64 0.99 0.55 1.10 0.47 6.5E-01 9.7E-01 Bilirubin 4.4E-07 2.0E-02 

1-methylimidazoleacetate Histidine  -0.05 0.52 0.86 0.04 0.50 1.32 0.86 1.02 0.74 6.0E-02 9.5E-02 Age 7.9E-07 0.08 

imidazole propionate Histidine  -0.21 0.44 0.84 0.19 0.71 0.99 0.79 0.98 0.84 1.4E-01 8.1E-01 Bilirubin 1.1E-07 0.54 

quinolinate 
Nicotinate & 
Nicotinamide  

-0.11 0.46 0.76 0.10 0.68 1.19 0.86 0.95 0.58 6.0E-01 5.0E-01 Bilirubin 1.8E-04 3.8E-02 

vanillylmandelate (VMA) 
Phenylalanine & 

Tyrosine  
-0.21 0.35 1.00 0.19 0.37 1.52 0.83 1.75 0.96 2.3E-01 1.5E-02 Age 6.3E-12 0.37 

4-acetamidobutanoate Polyamine  -0.10 0.72 1.22 0.09 0.90 1.93 1.26 1.83 1.19 8.6E-01 7.0E-01 Bilirubin 1.0E-11 0.15 

N-acetylputrescine Polyamine  -0.16 0.66 0.84 0.15 0.72 1.32 0.66 0.93 0.53 5.8E-01 6.2E-01 Bilirubin 3.0E-06 3.8E-02 

N6-carbamoylthreonyl 

adenosine 
Purine, Adenine  -0.12 0.58 1.04 0.11 0.90 1.49 1.06 1.31 0.92 1.7E-01 4.5E-01 Age 8.4E-09 4.6E-02 

N1-methyladenosine Purine, Adenine  -0.21 0.70 0.94 0.19 0.91 1.26 0.65 1.03 0.46 8.6E-01 1.4E-01 Bilirubin 2.4E-05 4.4E-03 

N6-succinyladenosine Purine, Adenine  -0.06 0.38 0.63 0.05 0.43 0.86 0.50 0.94 0.44 1.5E-01 2.7E-01 Bilirubin 1.2E-09 2.7E-03 

N4-acetylcytidine 
Pyrimidine, 

Cytidine  
0.07 0.55 1.31 -0.06 0.77 1.50 1.22 1.33 1.19 2.7E-01 6.7E-01 Bilirubin 1.3E-08 0.47 

orotidine Pyrimidine, Orotate  -0.11 0.58 1.07 0.10 0.95 1.27 0.96 1.27 0.83 2.8E-01 5.3E-01 Bilirubin 1.4E-08 0.08 

pseudouridine Pyrimidine, Uracil  -0.08 0.77 1.22 0.08 1.05 1.66 1.17 1.68 0.97 1.5E-01 8.6E-01 Bilirubin 5.2E-11 1.4E-02 
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kynurenine Tryptophan  -0.14 0.29 1.00 0.13 0.57 1.37 0.77 1.44 0.68 5.6E-01 3.3E-01 Bilirubin 1.2E-08 0.07 

X - 12100 Unknown -0.13 0.49 1.04 0.12 0.85 1.26 0.88 1.28 0.75 1.3E-01 4.6E-01 Age 9.8E-08 0.06 

X - 11564 Unknown -0.13 0.51 0.94 0.12 0.90 1.48 0.83 1.43 0.73 9.6E-01 8.8E-01 Bilirubin 3.5E-07 0.06 

X - 12026 Unknown -0.16 0.69 1.58 0.14 1.01 2.01 1.36 2.20 1.26 6.9E-01 7.7E-01 Bilirubin 3.8E-12 0.07 

X - 12117 Unknown -0.12 0.66 1.18 0.11 0.98 1.55 1.35 1.50 1.20 6.7E-01 3.6E-01 Bilirubin 7.7E-09 0.19 

X - 15503 Unknown -0.17 0.28 1.04 0.15 0.70 1.64 1.06 1.68 1.33 6.3E-01 5.6E-02 Bilirubin 2.5E-10 0.63 

X - 11429 Unknown -0.07 0.88 1.52 0.07 1.31 1.98 1.45 1.88 1.18 9.1E-02 8.4E-01 Diuretics 3.4E-10 2.0E-02 

X - 21736 Unknown -0.06 0.33 1.04 0.06 0.59 1.46 0.92 1.57 0.95 2.7E-01 3.5E-01 Diuretics 1.1E-10 0.42 

pro-hydroxy-pro 
Urea cycle; 

Arginine & Proline  
-0.03 0.32 0.87 0.03 0.51 1.24 0.90 1.07 0.98 9.6E-01 6.9E-01 Diuretics 2.9E-06 0.95 

Decreased in PAH vs HC                         

histidine Histidine  -0.07 -0.74 -1.57 0.06 -0.91 -1.89 -1.71 -1.78 -1.60 6.1E-02 8.2E-03 Prostanoids 1.2E-11 4.2E-01 

1-linoleoyl-GPC (18:2) Lysolipid -0.10 -0.59 -1.22 0.09 -0.51 -1.14 -1.12 -1.33 -1.10 5.8E-02 2.4E-02 Bilirubin 1.3E-07 5.2E-01 

2-linoleoyl-GPC (18:2)* Lysolipid -0.11 -0.55 -1.23 0.10 -0.42 -0.97 -1.09 -1.35 -1.15 9.4E-02 2.9E-02 Bilirubin 4.5E-08 9.6E-01 

1-dihomo-linoleoyl-GPC 
(20:2)* 

Lysolipid 0.00 -0.39 -0.95 0.00 -0.49 -0.86 -1.14 -0.98 -1.30 2.4E-01 4.3E-01 Statins 5.5E-05 1.2E-01 

1-(1-enyl-palmitoyl)-2-

linoleoyl-GPC (P-
16:0/18:2)* 

Plasmalogen 0.01 -0.38 -1.06 -0.01 -0.17 -1.13 -0.98 -1.28 -1.08 2.3E-01 1.5E-01 PDE5 inhib 5.1E-08 9.4E-01 

behenoyl sphingomyelin 

(d18:1/22:0)* 
Sphingolipid  0.02 -0.22 -0.75 -0.01 -0.20 -0.71 -0.92 -0.78 -0.77 1.4E-01 3.0E-02 Gender 3.6E-06 8.4E-01 

4-androsten-3beta,17beta-

diol disulfate (1) 
Steroid -0.04 -0.64 -0.87 0.03 -0.47 -0.81 -1.14 -0.55 -1.06 2.4E-01 5.4E-01 Gender 4.0E-03 6.8E-01 

4-androsten-3beta,17beta-

diol monosulfate (1) 
Steroid -0.01 -0.85 -1.15 0.01 -0.68 -1.30 -1.40 -1.18 -1.32 5.6E-02 3.7E-01 Gender 5.8E-07 9.3E-01 

androsterone sulfate Steroid -0.02 -0.70 -1.33 0.02 -0.69 -1.40 -1.40 -1.14 -1.33 1.5E-01 2.0E-01 Gender 4.6E-06 7.3E-01 

epiandrosterone sulfate Steroid -0.02 -0.86 -1.42 0.01 -0.72 -1.50 -1.49 -1.23 -1.40 1.3E-01 3.9E-01 Gender 1.1E-06 6.4E-01 

pregn steroid monosulfate* Steroid -0.08 -0.83 -0.88 0.07 -0.68 -0.93 -1.04 -0.71 -0.84 1.0E-01 6.7E-01 Gender 3.3E-04 2.6E-01 

X - 23749 Unknown 0.04 -0.16 -1.10 -0.03 -0.34 -1.05 -1.12 -0.94 -1.41 2.0E-01 2.7E-01 BMI 5.4E-05 0.02 

arginine 
Urea cycle; 
Arginine & Proline  

-0.05 -0.67 -1.05 0.04 -0.79 -1.40 -1.47 -1.80 -1.32 1.1E-01 3.1E-01 DM drugs 2.1E-11 6.5E-01 

homoarginine 
Urea cycle; 

Arginine & Proline  
-0.05 -0.70 -0.91 0.05 -0.59 -1.13 -1.06 -1.11 -0.86 5.1E-02 2.1E-01 Ethnicity 4.8E-07 7.6E-02 
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Table S1. Metabolites distinguishing pulmonary arterial hypertension (PAH) from healthy (HC) and disease controls (DC). 97 metabolites that are 

significantly different between PAH and healthy controls in 3 cohorts (p<7.3e-5) are shown. Mean values are given and the data is scaled to the healthy 

control group. Significance from linear regression is shown (p value), and for metabolites with p>0.05 in PAH HC linear regression, the significant 

confounder is shown. Significance is also shown for Mann Whitney U test between PAH treatment naïve patients versus all HC, and PAH bone 

morphogenetic protein type 2 receptor (BMPR2) mutation carriers versus patients with no BMPR2 mutation. GPC, glycerophosphocholine. *probable 

metabolite identity, but unconfirmed (see methods).  

 

 

 

 

 

 

 

 



 
Supplementary Materials 

 

Table S2. (below) Survival analysis. 

Metabolite Metabolic Pathway Discovery  Validation1 

   Hazard Ratio  Sig Hazard Ratio Sig 

Higher value indicates mortality. Independent of established prognostic markers 

N-acetylalanine Alanine and Aspartate  2.02 (1.22-3.36) 6.43E-03 2.08 (1.12-3.86) 2.04E-02 

pimeloylcarnitine/3-methyladipoylcarnitine Fatty Acid (Acyl Carnitine) 2.16 (1.28-3.66) 4.03E-03 2.52 (1.24-5.10) 1.04E-02 

1-methylimidazoleacetate Histidine  2.26 (1.37-3.73) 1.43E-03 1.74 (1.03-2.93) 3.93E-02 

N-acetylmethionine Methionine, Cysteine, SAM and Taurine  2.36 (1.41-3.96) 1.16E-03 2.29 (1.18-4.43) 1.44E-02 

N-formylmethionine Methionine, Cysteine, SAM and Taurine  1.79 (1.20-2.68) 4.50E-03 1.98 (1.20-3.25) 7.15E-03 

4-acetamidobutanoate Polyamine  2.20 (1.45-3.35) 2.19E-04 2.02 (1.30-3.14) 1.83E-03 

N-acetylputrescine Polyamine  1.74 (1.04-2.91) 3.54E-02 2.92 (1.51-5.66) 1.50E-03 

N1-methylinosine Purine , (Hypo)Xanthine/Inosine  2.82 (1.74-4.57) 2.42E-05 1.73 (1.09-2.77) 2.11E-02 

urate Purine , (Hypo)Xanthine/Inosine  1.61 (1.06-2.42) 2.43E-02 2.14 (1.26-3.64) 4.73E-03 

N6-succinyladenosine Purine , Adenine  3.89 (1.40-10.82) 9.18E-03 8.31 (1.94-35.54) 4.29E-03 

N6-carbamoylthreonyladenosine Purine , Adenine  3.10 (1.60-6.00) 8.04E-04 2.08 (1.08-4.00) 2.81E-02 

N1-methyladenosine Purine , Adenine  1.94 (1.25-3.01) 2.92E-03 1.93 (1.12-3.32) 1.75E-02 

N2,N2-dimethylguanosine Purine , Guanine  2.53 (1.57-4.08) 1.35E-04 1.86 (1.14-3.03) 1.25E-02 

pseudouridine Pyrimidine , Uracil  1.78 (1.07-2.94) 2.54E-02 2.75 (1.48-5.12) 1.45E-03 

X - 24020 Unknown 2.47 (1.42-4.30) 1.36E-03 1.84 (1.00-3.39) 4.94E-02 

X - 24513 Unknown 2.34 (1.28-4.29) 5.92E-03 2.18 (1.11-4.29) 2.34E-02 

X - 12472 Unknown 2.24 (1.44-3.47) 3.11E-04 1.57 (1.00-2.46) 4.97E-02 

X - 12739 Unknown 2.07 (1.41-3.04) 2.07E-04 1.56 (1.06-2.28) 2.28E-02 

X - 24527 Unknown 1.85 (1.38-2.48) 4.09E-05 1.43 (1.03-1.99) 3.12E-02 

X - 12688 Unknown 1.81 (1.23-2.68) 2.83E-03 2.02 (1.27-3.19) 2.80E-03 

X - 24728 Unknown 1.70 (1.09-2.64) 1.96E-02 2.04 (1.09-3.79) 2.50E-02 

X - 15503 Unknown 1.67 (1.11-2.52) 1.38E-02 1.51 (1.03-2.22) 3.48E-02 

X - 11564 Unknown 1.62 (1.10-2.38) 1.49E-02 1.60 (1.03-2.47) 3.51E-02 
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X - 24411 Unknown 1.54 (1.04-2.27) 3.05E-02 2.16 (1.32-3.54) 2.17E-03 

X - 11429 Unknown 1.47 (1.05-2.06) 2.65E-02 1.79 (1.18-2.71) 5.76E-03 

Lower value indicates mortality. Independent of established prognostic markers 

1-eicosapentaenoyl-GPE (20:5)* Lysolipid 0.60 (0.43-0.84) 2.65E-03 0.62 (0.39-1.00) 4.98E-02 

1-eicosapentaenoyl-GPC (20:5)* Lysolipid 0.47 (0.31-0.73) 6.30E-04 0.50 (0.31-0.82) 6.05E-03 

1-linoleoyl-2-docosahexaenoyl-GPC (18:2/22:6)* Phospholipid  0.64 (0.46-0.89) 7.40E-03 0.65 (0.47-0.91) 1.27E-02 

1-oleoyl-2-docosapentaenoyl-GPC (18:1/22:5n6)* Phospholipid  0.64 (0.47-0.87) 4.11E-03 0.62 (0.43-0.90) 1.06E-02 

1-myristoyl-2-arachidonoyl-GPC (14:0/20:4)* Phospholipid  0.57 (0.39-0.83) 3.68E-03 0.68 (0.48-0.96) 2.66E-02 

phosphatidylcholine (18:0/20:5, 16:0/22:5n6)* Phospholipid  0.54 (0.37-0.77) 7.30E-04 0.42 (0.25-0.72) 1.44E-03 

1-palmitoyl-2-eicosapentaenoyl-GPC (16:0/20:5)* Phospholipid  0.53 (0.37-0.75) 4.11E-04 0.43 (0.26-0.74) 1.96E-03 

1-linoleoyl-2-eicosapentaenoyl-GPC (18:2/20:5)* Phospholipid  0.48 (0.33-0.70) 1.38E-04 0.60 (0.41-0.88) 8.59E-03 

1-myristoyl-2-docosahexaenoyl-GPC (14:0/22:6)* Phospholipid  0.47 (0.31-0.72) 4.84E-04 0.49 (0.29-0.81) 5.62E-03 

dehydroisoandrosterone sulfate (DHEA-S) Steroid 0.71 (0.52-0.97) 3.19E-02 0.55 (0.33-0.91) 2.06E-02 

X - 24041 Unknown 0.46 (0.29-0.72) 6.88E-04 0.61 (0.38-0.99) 4.45E-02 

Higher value indicates mortality 

hexadecanedioate Fatty Acid, Dicarboxylate 1.53 (1.09-2.14) 1.40E-02 1.67 (1.16-2.41) 5.58E-03 

N-acetyltaurine Methionine, Cysteine, SAM and Taurine  1.97 (1.16-3.35) 1.19E-02 2.24 (1.13-4.43) 2.05E-02 

3-hydroxy-3-methylglutarate Mevalonate  1.68 (1.03-2.74) 3.78E-02 2.08 (1.02-4.23) 4.40E-02 

vanillylmandelate (VMA) Phenylalanine and Tyrosine  1.48 (1.06-2.06) 2.02E-02 1.58 (1.06-2.34) 2.38E-02 

N-acetyl-beta-alanine Pyrimidine , Uracil  1.54 (1.08-2.21) 1.80E-02 1.65 (1.18-2.32) 3.65E-03 

fumarate TCA Cycle 1.70 (1.00-2.88) 4.97E-02 2.57 (1.09-6.06) 3.09E-02 

N2,N5-diacetylornithine Urea cycle; Arginine and Proline  2.15 (1.27-3.63) 4.37E-03 2.15 (1.13-4.09) 1.95E-02 

Lower value indicates mortality 

valine Leucine, Isoleucine and Valine  0.66 (0.49-0.89) 6.80E-03 0.68 (0.48-0.95) 2.21E-02 

1-docosahexaenoyl-GPE (22:6)* Lysolipid 0.68 (0.49-0.94) 1.86E-02 0.54 (0.34-0.85) 8.27E-03 

1-dihomo-linolenoyl-GPC (20:3n3 or 6)* Lysolipid 0.57 (0.41-0.79) 7.43E-04 0.71 (0.53-0.96) 2.82E-02 

1-docosahexaenoyl-GPC (22:6)* Lysolipid 0.54 (0.35-0.81) 3.17E-03 0.57 (0.35-0.93) 2.32E-02 

phosphatidylcholine (16:0/22:5n3, 18:1/20:4)* Phospholipid  0.68 (0.48-0.96) 2.64E-02 0.59 (0.36-0.98) 4.16E-02 

1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6)* Phospholipid  0.64 (0.47-0.88) 5.99E-03 0.52 (0.32-0.85) 8.73E-03 

1-palmitoleoyl-2-docosahexaenoyl-GPC (16:1/22:6)* Phospholipid  0.62 (0.43-0.90) 1.09E-02 0.50 (0.28-0.88) 1.67E-02 
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1-pentadecanoyl-2-docosahexaenoyl-GPC (15:0/22:6)* Phospholipid  0.62 (0.42-0.90) 1.30E-02 0.34 (0.17-0.68) 1.96E-03 

1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) Phospholipid  0.60 (0.42-0.87) 7.16E-03 0.45 (0.27-0.76) 2.76E-03 

1-stearoyl-2-docosapentaenoyl-GPC (18:0/22:5n3)* Phospholipid  0.58 (0.41-0.82) 2.11E-03 0.50 (0.30-0.83) 8.18E-03 

1-palmitoyl-2-dihomo-linolenoyl-GPC (16:0/20:3n3 or 6)* Phospholipid  0.58 (0.38-0.88) 9.67E-03 0.54 (0.35-0.84) 6.47E-03 

1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPC (P-18:0/22:6)* Plasmalogen 0.56 (0.37-0.85) 6.20E-03 0.57 (0.33-0.98) 4.06E-02 

1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPE (P-18:0/22:6)* Plasmalogen 0.55 (0.37-0.82) 3.45E-03 0.49 (0.27-0.91) 2.31E-02 

1-(1-enyl-palmitoyl)-2-docosahexaenoyl-GPC (P-16:0/22:6)* Plasmalogen 0.54 (0.37-0.79) 1.31E-03 0.53 (0.32-0.87) 1.30E-02 

1-(1-enyl-palmitoyl)-2-docosahexaenoyl-GPE (P-16:0/22:6)* Plasmalogen 0.49 (0.34-0.71) 1.63E-04 0.47 (0.26-0.82) 8.30E-03 

sphingomyelin (d18:2/14:0, d18:1/14:1)* Sphingolipid  0.73 (0.53-1.00) 4.83E-02 0.48 (0.30-0.77) 2.36E-03 

sphingomyelin (d18:1/20:0, d16:1/22:0)* Sphingolipid  0.60 (0.41-0.87) 6.60E-03 0.57 (0.35-0.93) 2.32E-02 

sphingomyelin (d18:1/22:1, d18:2/22:0, d16:1/24:1)* Sphingolipid  0.59 (0.42-0.83) 2.51E-03 0.53 (0.33-0.85) 7.63E-03 

behenoyl sphingomyelin (d18:1/22:0)* Sphingolipid  0.42 (0.27-0.64) 5.94E-05 0.47 (0.27-0.82) 7.42E-03 

 

Table S2. Survival analysis in PAH. 62 metabolites significantly different between PAH survivors and non-survivors in discovery and validation1 cohorts 

(p<0.05) are shown. Hazard ratio and significance (Sig) is shown from Cox regression analysis. Hazard ratios shown are for 1 standard deviation change in 

each metabolite for ease of comparison. Metabolites which are also independent of established prognostic markers in the discovery cohort are also shown. 

*probable metabolite identity, but unconfirmed (see methods). GPC, glycerophosphocholine; GPE, glycerophosphoethanolamine. 
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Pathway Result Metabolite 

HC v 

PAH 

Prog- 

nosis 

Fatty Acid 

Metabolism(Acyl 

Carnitine) 

4.5E-05 3-hydroxybutyrylcarnitine (1) 6E-05 0.3499 

 
pimeloylcarnitine/3-
methyladipoylcarnitine NA 0.0006 

 suberoylcarnitine 0.0071 0.0044 

 3-hydroxybutyrylcarnitine (2) 0.0047 0.0046 

 palmitoleoylcarnitine* 0.0085 0.3042 

 adipoylcarnitine 0.0464 0.0106 

 acetylcarnitine 0.0118 0.141 

 myristoleoylcarnitine* 0.0165 0.6142 

 oleoylcarnitine 0.0176 0.0598 

 myristoylcarnitine 0.0412 0.2631 

 palmitoylcarnitine 0.0604 0.1959 

 linoleoylcarnitine* NA 0.0615 

 hexanoylcarnitine NA 0.5981 

 stearoylcarnitine NA 0.6611 

 octanoylcarnitine NA 0.8074 

 laurylcarnitine NA 0.8641 

 decanoylcarnitine NA 0.912 

 cis-4-decenoyl carnitine NA 0.9541 

Polyamine Metabolism 0.01079 N-acetylputrescine 0.5825 2E-05 

 4-acetamidobutanoate 0.8618 3E-05 

 acisoga 0.0002 0.0003 

 5-methylthioadenosine (MTA) NA 0.0433 

Alanine and Aspartate 

Metabolism 
0.02412 N-acetylaspartate (NAA) 0.0002 0.2634 

 asparagine 0.0009 0.9422 

 N-acetylalanine 0.9901 0.009 

 alanine NA 0.6529 

 aspartate NA 0.9677 

Purine Metabolism, 
(Hypo)Xanthine/Inosine 

containing 

0.04317 xanthine 2E-07 0.438 

 urate NA 0.0004 

 N1-methylinosine 0.0008 0.0144 

 AICA ribonucleotide NA 0.0066 

 allantoin NA 0.0934 

 hypoxanthine NA 0.6652 

Purine Metabolism, 
Adenine containing 

0.04317 N6-carbamoylthreonyladenosine 0.1735 7E-05 

 N6-succinyladenosine 0.1452 0.0005 

 N1-methyladenosine 0.8632 0.0006 

 adenine NA 0.4835 

 adenosine NA 0.5677 

 

adenosine 5'-monophosphate 

(AMP) NA 0.5988 
Pyrimidine Metabolism, 

Uracil containing 
0.04317 pseudouridine 0.1506 6E-05 

 N-acetyl-beta-alanine NA 0.0002 

 3-ureidopropionate 0.0175 0.0024 

 uridine NA 0.2684 

 5-methyluridine (ribothymidine) NA 0.5196 

 beta-alanine NA 0.8665 

    

    

    

Table S3. Pathway enrichment analysis results. Pathways analysed and enrichment p-values are 

given, as well as metabolites within each pathway and significance values from tests used to select 

metabolites considered to be disease-associated. HC v PAH, significance of PAH on metabolite levels 

after controlling for potential confounders by linear regression; Prognosis, weakest significance of 

metabolite association with survival by Cox analysis in discovery or validation cohorts. *probable 

metabolite identity, but unconfirmed (see methods).  
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Metabolite Area Sig. 95% CI 

3-hydroxy-3-methylglutarate 0.75 2.05E-04 0.63 - 0.86 

3-hydroxybutyrylcarnitine (2) 0.67 1.10E-02 0.54 - 0.79 

4-acetamidobutanoate 0.67 8.40E-03 0.56 - 0.79 

5,6-dihydrothymine 0.67 1.04E-02 0.55 - 0.79 

acetylcarnitine 0.65 2.80E-02 0.52 - 0.77 

C-glycosyltryptophan 0.66 1.82E-02 0.53 - 0.78 

fumarate 0.67 1.01E-02 0.55 - 0.79 

hexadecanedioate 0.65 2.32E-02 0.52 - 0.78 

malate 0.69 3.32E-03 0.58 - 0.81 

N1-methyladenosine 0.69 3.62E-03 0.57 - 0.81 

N2,N2-dimethylguanosine 0.69 4.70E-03 0.57 - 0.80 

N-acetylalanine 0.67 1.01E-02 0.55 - 0.79 

N-acetylmethionine 0.76 6.94E-05 0.66 - 0.87 

N-acetylputrescine 0.69 4.07E-03 0.57 - 0.81 

N-acetyltaurine 0.68 6.40E-03 0.56 - 0.80 

N-formylmethionine 0.67 8.63E-03 0.56 - 0.79 

X - 11564 0.65 2.16E-02 0.53 - 0.77 

X - 12127 0.65 2.43E-02 0.53 - 0.77 

X - 12472 0.65 2.32E-02 0.53 - 0.77 

X - 12688 0.68 5.26E-03 0.57 - 0.80 

X - 12739 0.68 7.75E-03 0.56 - 0.79 

X - 13737 0.66 1.45E-02 0.54 - 0.78 

X - 15503 0.68 5.89E-03 0.56 - 0.80 

X - 21796 0.70 3.03E-03 0.59 - 0.80 

X - 24020 0.67 1.15E-02 0.55 - 0.78 

X - 24527 0.67 8.63E-03 0.55 - 0.79 

X - 24766 0.67 1.07E-02 0.55 - 0.78 
 

Table S4. ROC analysis of serial metabolite measurements. Area under the curve values for the 

association between metabolite level changes (i.e. sample 1 subtracted from sample 2) and survival 

during follow-up are shown for significantly associated metabolites. *probable metabolite identity, 

but unconfirmed (see methods). 
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 Controls PAH (19-70) PAH (>70) 

 n=30 n=69 n=8 

Female:Male ratio 2.0 2.3 3.0 

Age 48.5 +/- 13.1 48.3 +/- 14.1 75.6 +/- 8.1 

Angiogenin conc., ng/ml 360 +/- 110.3 479.7 +/- 176.6 554.9 +/- 234.2 

N2,N2-dimethylguanosine -0.1 +/- 1 1.6 +/- 1.2 2.7 +/- 1.4 

 

Table S5. Demographics and circulating factor levels in subjects used for angiogenin study. 

Mean +/- standard deviation is shown for continuous variables.  

 

 

 

 

 

Fig. S1. Metabolite levels in BMRP2 mutation carriers. (A) Average metabolite levels in PAH 

BMPR2 mutation carriers, non-carriers and control subjects for 20 metabolites found to significantly 

distinguish PAH and both healthy and disease controls, independent of potential confounders. (B) 

Correlation of average metabolite levels in BMPR2 mutation carriers and non-carriers relative to 

controls for 53 metabolites that distinguish PAH from healthy controls, independent of potential 

A B
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confounders.  Values plotted are z-scores calculated based on mean and standard deviation of all 

healthy volunteers in study - negative values indicate metabolites at lower levels in patients versus 

healthy controls and positive values indicate higher levels of metabolites in patients. *probable 

metabolite identity, but unconfirmed (see methods). 

 

 

Fig. S2– Survival analysis of PAH patients. (A) Receiver operating characteristic (ROC) curve for 

N2,N2-dimethylguanosine in the discovery cohort at 3 years of follow-up. The optimal cut-off for 

high/low risk levels of N2,N2-dimethylguanosine was derived from this for B&C. Kaplan Meier 

survival estimates in PAH patients in the discovery (B) and first validation (C) cohorts.  

 

N at risk

<1.83 SD 123 120 108 79 25

>1.83 SD 63 58 46 31 15

N at risk

<1.83 SD 79 73 57 36 24

>1.83 SD 65 56 39 21 13

A B

C
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Fig. S3. Dehydroisoandrosterone-sulphate (DHEA-S). Plasma DHEA-S levels in the discovery 

cohort are shown for healthy controls (HC) and PAH (19-70) with (A) separation by gender and (B) 

against age.  
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