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Zinc Nitride (Zn3N2) films were grown by DC sputtering of a Zn target in a N2 plasma under a

variety of different growth conditions, which resulted in the deposition of films with variable

compositions. The as deposited films exhibited a polycrystalline Zn3N2 structure, which was

converted to a ZnO-based structure after several weeks of ambient exposure. Zn3N2 films that were

N-poor exhibited electrical properties indicative of a natively doped semiconductor and reached a

minimum carrier concentration in the order of 1018cm�3 at compositions, which approached the stoi-

chiometric ratio of Zn3N2. A maximum carrier mobility of 33 cm2 V�1 s�1 was obtained in N-rich

films due to an improved microstructure. The Zn3N2 films had an optical band gap of 1.31–1.48 eV

and a refractive index of 2.3–2.7. Despite a wide range of Zn3N2 samples examined, little variation of

its optical properties was observed, which suggests that they are closely related to the band structure

of this material. In contrast to the as grown films, the oxidized film had a band gap of 3.44 eV and the

refractive index was 1.6–1.8, similar to ZnO and Zn(OH)2. VC 2016 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4968545]

I. INTRODUCTION

Zinc Nitride (Zn3N2) is a semiconductor of the II–V

semiconductor group, which has recently gained attention

for its potential applications in a number of large industrial

markets including solar cells, thin film transistors, and other

optoelectronic devices.1–5 The potential of Zn3N2 for these

applications stems primarily from the electrical properties of

polycrystalline Zn3N2 films, which commonly exhibit a high

charge carrier mobility.6–11 In addition, the narrow band gap

of 1.2–1.4 eV and high absorption coefficient that are often

associated with Zn3N2 make it a potential candidate for the

fabrication of thin films solar cells.12 Furthermore, the rela-

tive abundance of Zn and N as well as low-cost fabrication

techniques such as magnetron sputtering also makes Zn3N2 a

good candidate for the fabrication of low-cost devices.

Despite this potential, Zn3N2 is not as well researched as

III–V semiconductors such as AlN, GaN, and InN and there

are conflicting reports in the literature on the basic properties

of the semiconductor.

In the recent published literature, Zn3N2 is most often syn-

thesized in the form of powder or films by nitridation of Zn

powder13–16 and DC/RF sputtering.6,7,17–22 However, a variety

of synthesis methods and techniques have been reported

including a chemical reaction of diethyl zinc with ammonia,23

electrolysis,24 atomic layer deposition,25 pulsed laser abla-

tion,26,27 chemical vapor deposition,28–30 and molecular beam

epitaxy.11,31 Due to the large lattice constant of its crystal

structure, suitable substrates for the epitaxial growth of Zn3N2

have not been established. As a result, Zn3N2 films grown on

different glass, sapphire, quartz, and silicon substrates com-

monly exhibit a polycrystalline structure. However, Oshima

and Fujita have reported the growth of (111)-oriented Zn3N2

on a-plane sapphire by molecular beam epitaxy and suggested

that a-plane sapphire is a suitable substrate for heteroepitaxial

growth of high-quality Zn3N2.
31

In terms of electrical properties, Zn3N2 films are usually

n-type and exhibit charge carrier concentrations in the

order of 1018–1021 cm�3. The high carrier concentration and

n-type conductivity have been associated with N vacancies

and other native defects in the lattice, which introduce free

carriers.32 Due to the high carrier concentration levels,

Zn3N2 films have been reported to behave as degenerate

semiconductors.33 Despite that, a carrier mobility in the

order of 102 cm2 V�1 s�1 is commonly reported for Zn3N2

films, which is high when compared with other polycrystal-

line semiconductors. This suggests that optimization in mate-

rial quality may lead to further improvement of its electrical

properties.

One of the key properties of any semiconductor is its

optical band gap, and in the case of Zinc Nitride, this

remains a subject of debate in the literature. Synthesized

Zn3N2 with band gap energies in the range of 0.9–3.2 eV

has been reported1,6,33 and there is a similar spread in the

reported values of the refractive index of Zn3N2 materials,

with values of 1.7–1.9 when it is reported as a wide band

gap semiconductor27,34 and 2.2–2.8 when reported as a nar-

row band gap semiconductor.18,35 These large discrepancies

have caused confusion with regard to potential applications

for this material. While the differences between different
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reports are usually attributed to the different fabrication

methods and material quality in each study, two opposing

arguments have been made to explain these observations.

On one hand, it has been suggested that the narrow

observed band gap is related to N interstitial defects, which

lower the optical band gap of Zn3N2 by introducing half-

filled states in the electronic structure.33 On the other hand,

observations of a wide band gap are sometimes attributed

to the formation of an oxide phase or the unintentional

incorporation of oxygen into the lattice,10 which is believed

to lead to an overestimation of the optical band gap of the

pure Zn3N2 phase.

An important aspect of Zn3N2 that may be the source of

the variable properties reported in the literature is its poor

ambient stability as a result of its reactions with O2 and H2O

in air.24 The reactions are not self-limiting and can lead to

complete conversion of Zn3N2 after prolonged exposure,36

which makes the ambient stability a factor that has to be

accounted for when considering potential applications.

However, N�u~nez et al. have reported that an intentionally

grown 20 nm thick ZnO capping layer can successfully pre-

vent this oxidation process and opens an avenue for optimiz-

ing the material for applications.

In the present work, Zn3N2 films were prepared by DC

magnetron sputtering in a range of different N2 environments

and substrate temperatures with the intention of achieving a

wide range of different materials. The composition, crystal

structure, and the optical and electrical properties of the films

were characterized. In addition, the crystal structure and

optical properties of a fully oxidized sample were also inves-

tigated. Emphasis was placed on interpreting the differences

between the samples grown at different conditions, as well

as the differences between the as grown and oxidized mate-

rial, in order to further our understanding of the fundamental

properties of Zn3N2.

II. EXPERIMENTAL

A. Film growth

The Zn3N2 thin films in this study were grown on boro-

silicate glass slides by reactive sputtering of a Zn target in

the N2 plasma in a Denton Vacuum Explorer sputterer. A

constant flow of only N2 gas was used to achieve plasma in

the chamber, which also acted as the source of active N spe-

cies for the reaction with sputtered Zn atoms. The sputtering

process was conducted with a DC power source with the cur-

rent set to 200 mA for the duration of the sputtering process.

Prior to deposition, the Zn target was sputtered in the Ar

plasma for 15 min with the shutter closed in order to remove

any surface contaminants from the target. The base pressure

in the chamber was 6� 10�7 Torr and the operating pressure

was in the order of 10�3 Torr. Films were grown at room

temperature at N2 flow rates of 15, 30, and 45 SCCM. At the

highest N2 flow rate, films were also grown at substrate tem-

peratures of 50, 100, and 150 �C. The sputtering process

resulted in the deposition of opaque dark films, which

became fully transparent after several weeks of exposure to

ambient air.

B. Characterization

A combination of physical, optical, and electrical char-

acterization techniques was applied to all films. Scanning

Electron Microscopy (SEM) images of the surface morphol-

ogy of the films were recorded on a Raith Field Emission

Scanning Electron Microscope (FESEM) with an accelerat-

ing voltage of 10 kV. The thickness of each sample was eval-

uated by cross-sectional SEM images, which were recorded

with an accelerating voltage of 2 kV. The film composition

was evaluated by the quantification of Energy Dispersive

X-ray Spectroscopy (EDS) measurements acquired with a

Bruker Quantax EDS system installed on the Raith FESEM.

The quantification of the EDS spectra was carried out using

a standardless P/B-ZAF analysis technique provided by the

Bruker ESPRIT software. Grazing incidence X-ray diffrac-

tion (GI-XRD) was conducted on a Bruker D8 DISCOVER

diffractometer and the measured 2h range of 30�–80� was

scanned at a rate of 0.05�/s. The electrical properties of the

films were evaluated by Hall Effect measurements acquired

on an Ecopia HMS-5000 Hall effect system.

For optical characterization, transmittance and reflec-

tance measurements in the spectral range of 300–1700 nm

were recorded on a J.A. Woollam RC2 ellipsometer. The

optical transmittance and reflectance measurements were

used to calculate the absorption coefficient of each film with

the following equation:37

a ¼ 1

d
ln

1� Rð Þ2

T
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rð Þ4

T2
þ 4R

s

2
; (1)

where a, d, R, and T are the absorption coefficient, thickness,

reflectance, and transmittance of the film, respectively. We

also calculated the spectrally dependent refractive indices of

each film from the constructive and destructive interference

points in the reflectance spectrum, using the following

equation:

2nd cos b ¼ m� 1

2

� �
kr; (2)

where n and d are the refractive index and thickness of the

film, respectively, b is the angle of the beam inside the film

calculated by Snell’s law, m is the order of the reflection,

and kr is the wavelength of the maximum reflection. The

order of the measured reflections was determined by growing

films thin enough to observe the first order reflection.

Due to the tendency of Zn3N2 to oxidize at ambient envi-

ronments, all characterization was done immediately after

deposition and with minimal exposure to ambient air. The sta-

bility of the samples was monitored by repeating optical meas-

urements. Cross-sectional SEM also showed that all aged

samples exhibited an expansion of 50%–60% in thickness.

The sample grown at room temperature and a N2 flow rate of

45 SCCM was chosen as a representative oxidized sample.

Alongside other results, Section III discusses XRD and optical

measurements of this sample after 54 days of exposure to air,

which were enough to allow its complete conversion to a
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transparent medium. Throughout the manuscript, the as-grown

sample is labelled as ZnN-3, while its aged counterpart is

labelled as ZnN-3A. A detailed description of the samples

examined in this study is given in Table I.

III. RESULTS AND DISCUSSION

A. Morphological, compositional, and structural
characterization

The morphology and microstructure of the grown films

were initially investigated by SEM. The images in Fig. 1

show the surface of samples ZnN-1–ZnN-6 at 160 000�
magnification. Sample ZnN-1 consisted of randomly ori-

ented flakes, but a clear grain structure emerged in samples

ZnN-2–ZnN-6 as the N2 flow rate increased. The grains were

approximately rhombic in shape with lateral dimensions of

around 100 nm. As the substrate temperature increased in

samples ZnN-5 and ZnN-6, the grain boundaries started to

coalesce and became less apparent. The surface of sample

ZnN-6 in particular, appeared to be very smooth and more

uniform than that of the other samples.

In order to relate the composition of the films to their

structure and their electrical and optical properties, we used

a quantitative EDS analysis. The following characteristic

X-rays were identified in all samples: C: Ka at 0.277 keV, N:

Ka at 0.392 keV, O: Ka at 0.525 keV, and several Zn: L lines

(Ll, Le, La, and Lb) in the region of 0.882–1.108 eV.38,39

The compositional data obtained from analysis of the EDS

spectra are listed in Table II. We note that a varying amount

of carbon and oxygen (3–6 at. % and 5–13 at. %, respec-

tively) was detected in all samples. However, decreasing the

penetration depth of the electron beam resulted in an

increase of their concentration, which suggests that a signifi-

cant portion of the carbon and oxygen can be attributed to

the surface contamination and oxidation of the samples,

respectively. Therefore, for the purpose of this paper, the cal-

culated Zn:N atomic ratio was considered indicative of the

composition in the bulk of the films.

The Zn:N atomic ratio for samples grown at different

conditions is shown in Fig. 2. It can be noted in Fig. 2(a) that

the film composition approached stoichiometry at higher N2

flow rates. Specifically, as the N2 flow rate increased the

average Zn:N ratio decreased from 1.92 to 1.55. At higher

substrate temperatures, the average Zn:N ratio decreased fur-

ther to 1.52, 1.41, and 1.27, as shown in Fig. 2(b). The

improvement of the stoichiometry at higher N2 flows is

TABLE I. Growth conditions and thickness of the Zn3N2 samples examined

in this study.

Nominal

name

N2 gas

flow

(SCCM)

Substrate

temperature ( �C)

Growth

duration

(min)

Thickness

(nm)

ZnN-1 15 20 15 461

ZnN-2 30 20 27 481

ZnN-3 45 20 60 735

ZnN-4 45 50 70 886

ZnN-5 45 100 70 853

ZnN-6 45 150 70 365

ZnN-3A 45 20 60 1132

FIG. 1. SEM images of samples: (a) ZnN-1, (b) ZnN-2, (c) ZnN-3, (d) ZnN-4, (e) ZnN-5, and (f) ZnN-6 at 160 000� magnification.

TABLE II. Compositional data for different Zn3N2 samples as estimated by

the quantitative analysis of the EDS spectra.

Sample C (at. %) N (at. %) O (at. %) Zn (at. %) Zn:N

ZnN-1 5.04 28.83 10.83 55.31 1.92

ZnN-2 5.97 30.38 12.20 51.45 1.69

ZnN-3 4.22 33.97 9.17 52.64 1.55

ZnN-4 6.17 32.84 11.20 49.79 1.52

ZnN-5 3.50 38.04 5.09 53.38 1.40

ZnN-6 3.70 37.73 11.20 48.05 1.27
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explained by the increase in pressure, which made reaction

between Zn atoms and N ions more likely. At higher sub-

strate temperatures, the decrease of Zn content can be

explained by a thermally activated reemission of excess Zn

particles during growth.

The experimental errors between multiple measurements

made at different positions on each �1 cm2 sample were

insignificant and are not displayed. The error bars displayed

in Fig. 2 represent the systematic errors estimated by the anal-

ysis software, which are based on internal standards and

depend on the elements that are measured. While these errors

are significant, resulting in approximately 16% relative error

in the calculated Zn:N ratio, they are typical of standardless

EDS analysis.40 However, there is enough supporting

evidence from analysis of XRD, Hall effect, and optical meas-

urements, discussed in the following paragraphs, as well as

Secs. III B and III C, to suggest that the observed trend is real.

Having confirmed the presence of Zn and N in the

grown samples with EDS analysis, further structural infor-

mation was obtained by XRD measurements. The XRD pat-

terns of the samples grown at different conditions are shown

in Fig. 3. Several diffraction peaks of the cubic anti-bixbyite

Zn3N2 crystal structure15,23,41 were identified in samples

ZnN-1–ZnN-6. The relatively broad and weak features

observed in samples ZnN-1, ZnN-2, and ZnN-6 suggest a

defective polycrystalline structure. In sample ZnN-1 specifi-

cally, there is an overlap between some of the peaks of the

Zn3N2 and Zn crystal structures, making interpretation of

this diffraction pattern more difficult. These are marked by

the asterisks in Fig. 3 and correspond to the (100), (101),

(102), and ð2�10Þ diffraction peaks of the Zn crystal structure,

which are expected to be at 39.09, 43.33, 54.46, and 70.82�,
respectively.42 The disappearance of some of these features

in the XRD pattern of ZnN-2 suggests that they are related to

a Zn phase, which is evident only in the sample grown at the

most N-poor conditions. In contrast, the narrower features

observed in samples ZnN-3, ZnN-4, and ZnN-5 show that

there was an improvement in the crystal structure of the films

grown at the highest N2 flow of 45 SCCM and substrate tem-

peratures of 20–100 �C. Furthermore, the (400) peak became

the dominant feature of the diffraction patterns of the sam-

ples grown under these conditions, which shows that the

films tend to crystallize with a (100) orientation, as has been

reported previously.17 Based on the positions of the (400)

and (440) diffraction peaks, the lattice constant of the Zn3N2

crystal structure was calculated at 9.76 Å, which is in good

agreement with previous reports.15,41,43 Finally, the XRD

pattern of the sample ZnN-3A revealed that the Zn3N2 films

were converted to a polycrystalline ZnO-based phase after

prolonged exposure to ambient air.44 The large full-width

half-maximum of these diffraction peaks shows that there is

a large number of structural defects in the oxidized material.

However, the difference between the diffraction patterns of

this sample and the as deposited samples is clear evidence

that they are distinctly different materials.

The results of the XRD measurements seem to be in

agreement with the morphological and compositional analy-

sis made by SEM/EDS. As seen in Fig. 1, a more defined

grain structure was formed in the better crystallized ZnN-3,

ZnN-4, and ZnN-5 samples. Furthermore, the same samples

that exhibited a more oriented crystal structure were closest

to the stoichiometric ratio of Zn3N2. In contrast, the samples

ZnN-1, ZnN-2, and ZnN-6, which deviated to very N-poor

FIG. 2. Zn:N atomic ratio of grown samples as a function of (a) N2 flow and

(b) substrate temperature. The dashed line marks the stoichiometric Zn:N

ratio of Zn3N2. Inset: The EDS spectrum of ZnN-3.

FIG. 3. XRD patterns of Zn3N2 samples grown at different conditions.

Rectangles and triangles indicate diffraction peaks attributed to crystal

planes of the Zn3N2 and ZnO crystal structures, respectively. The asterisks

in the XRD pattern of ZnN-1 indicate some features that are potentially

caused by a Zn crystal phase.
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and N-rich stoichiometries, exhibited broader diffraction

peaks, indicative of a large number of defects in their crystal

structure. Despite the relative errors associated with stan-

dardless EDS analysis, these results suggest that the compo-

sition of the grown films varied significantly with the growth

conditions and we were able to obtain substantially N-poor

and N-rich films with the range of growth parameters avail-

able to us.

B. Electrical properties

The dependence of the electrical properties of Zn3N2

films on the growth conditions was also investigated by Hall

Effect measurements. The resistivity, carrier concentration,

and carrier mobility derived from the van der Pauw Hall

effect measurements are shown as a function of growth con-

ditions in Fig. 4. The results are listed in detail in Table III.

The resistivity and carrier mobility of the films grown at 45

SCCM N2 increased significantly, while the carrier concen-

tration decreased, as shown in Figs. 4(a) and 4(b). As a func-

tion of substrate temperature, shown in Figs. 4(c) and 4(d),

the resistivity and carrier mobility of the films consistently

decreased and increased, respectively, while the carrier

concentration overall increased after reaching a minimum

for the sample grown at 50 �C.

A plot of the carrier concentration against the average

Zn:N atomic ratio, shown in Fig. 5(a), shows that the carrier

concentration reached a minimum in the samples which

were closest to the stoichiometric ratio of Zn3N2. This sug-

gests that there was a reduction in the number of native

defects, which generate charge carriers. N vacancies are con-

sidered to cause n-type conductivity in N-poor conditions,

while it has been suggested that Zn vacancies and N intersti-

tials will result in p-type conductivity in N-rich conditions.32

Therefore, we suggest that the reason for the decrease in car-

rier concentration in our N-poor films is a decrease in the

number of N vacancies, which are less likely to form in

increasingly N-rich conditions. Furthermore, the subsequent

FIG. 4. Resistivity q (circles), charge carrier concentration ne (triangles),

and mobility lH of grown Zn3N2 samples as a function of (a) and (b) N2

flow and (c) and (d) substrate temperature.

TABLE III. Resistivity (q), carrier concentration (ne), and carrier mobility

(lH) of different Zn3N2 samples.

Sample Conductivity type P (X cm) ne (cm�3) lH (cm2 V�1 s�1)

ZnN-1 n-type 1.13� 10�2 2.32� 1020 2.39

ZnN-2 n-type 1.10� 10�2 2.48� 1020 2.30

ZnN-3 n-type 2.18� 10�1 5.32� 1018 5.38

ZnN-4 n-type 1.47� 10�1 2.70� 1018 17.80

ZnN-5 n-type 8.28� 10�3 2.78� 1019 27.43

ZnN-6 n-type 5.91� 10�3 3.23� 1019 33.18

FIG. 5. (a) Carrier concentration (ne) as a function of the composition of the

Zn3N2 films. (b) Resistivity (q) and charge carrier mobility (lH) as a func-

tion of carrier concentration Zn3N2 samples grown at different conditions.

The dashed lines are used as a guide to the eye.
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increase in the carrier concentration of our N-rich films may

be related to increased Zn vacancies and N interstitials,

which are more likely to form under these conditions. P-type

conductivity was not observed in these samples; however,

this may be due to the unintentional oxygen doping in the

films, as well as a minimum number of N vacancies formed

due to the polycrystalline structure of the films, which con-

tribute to the observed n-type character.

To further investigate the differences in the electrical

properties of these samples, the resistivity and carrier mobil-

ity of different samples were plotted as a function of the car-

rier concentration in Fig. 5(b). Two different profiles were

observed in the carrier concentration dependence of resistiv-

ity and carrier mobility. In the N-poor samples, the resistivity

and carrier mobility followed a profile indicative of a

natively doped semiconductor, by which they exhibited

higher resistivity and carrier mobility at lower carrier con-

centrations. However, a different profile was observed in the

N-rich samples. Specifically, the resistivity was lower and

the carrier mobility was higher than in N-poor samples with

similar carrier concentrations. This can be explained by the

reduced grain boundaries observed in the grain structure of

the films grown at these conditions (Figs. 1(e) and 1(f)),

which should reduce grain boundary scattering and improve

the carrier mobility. As the maximum mobility of �33 cm2

V�1 s�1 was achieved in N-rich films with a relatively high

charge carrier concentration, further optimization of the

growth conditions and film composition could result in even

higher charge carrier mobility, as reported in other studies.

C. Optical properties

With a good understanding of the morphology, composi-

tion, and crystallinity of the samples, we next investigated

their related optical properties. The optical transmittance and

reflectance spectra of different Zn3N2 samples as well as a

fully oxidized sample are shown in Fig. 6. Sample ZnN-1

was highly absorbing across the measured spectrum whereas

samples grown at higher N2 flow rates were more transparent

in the infrared region, revealing an absorption edge around

1000 nm. The significant amount of excess Zn in samples

ZnN-1 and ZnN-2 combined with their poor morphology,

evidenced by SEM/EDS, is believed to be the cause of their

poor transparency throughout the measured spectrum. The

observation of interference fringes in samples ZnN-3–ZnN-6

shows that there was an improvement in the microstructure

and thickness uniformity of the films, which reduced the

impact of optical scattering, and is therefore in good agree-

ment with the results from SEM. The transmittance spectrum

of the oxidized ZnN-3A sample shows that the absorption

edge shifted to the UV region around 400 nm. The inset

image of Fig. 6 shows the drastic difference in appearance of

the as grown and oxidized material as it became transparent

in the visible spectrum.

In order to investigate the optical band gap of these

films, their absorption coefficient was calculated from these

optical measurements. The absorption coefficient calculated

for ZnN-3 is shown in Fig. 7. The high absorption coefficient

(a> 104 cm�1) obtained in region A shortly after the onset of

absorption suggests that the dominant transition type is

direct, as has been suggested in previous studies.6,10,11,45 In

order to estimate the optical band gap, the expression

(a/hv)1/r was plotted against the photon energy, hv. The opti-

cal band gap was then estimated at the intersection of

the extrapolated linear region with the energy axis of the

diagram. This methodology is based on a property of the

absorption coefficient, which is derived from the Cody

expression for the imaginary part of the dielectric function46

and is commonly expressed in the following form:

a

hv
/ hv� Egð Þr; (3)

where Eg is the optical band gap and r is a constant that

describes the type of the dominant transition. Using the value

of r¼ 1=2 for a direct band gap, it was found that the plots

FIG. 6. Optical transmittance and reflectance spectra of samples grown at

different N2 flow rates and substrate temperatures. The inset shows photo-

graphs of samples ZnN-3 and ZnN-3A.

FIG. 7. Absorption coefficient calculated for the sample ZnN-3. Inset:

Comparison of the Cody (left) and Tauc (right) expressions for the estima-

tion of the optical band gap of ZnN-3.
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based on the Cody expression had a more distinct linear

region and were easier to interpret than those based on the

Tauc expression, (ahv)1/r, which is more commonly used.

This is caused by the increasingly high absorption, which is

evident in these samples for energies higher than the band

gap and is shown in region B of Fig. 7. The Cody expression

is known to describe semiconductors with high absorption

above the band gap more accurately,47 which explains why it

is better suited in this case. As a result, we suggest that the

use of the Tauc expression could lead to an overestimation

of the optical band gap of these samples. This is demon-

strated in the inset of Fig. 7, which shows a comparison of

the plots obtained by using the two different expressions for

sample ZnN-3. Because a reasonable linear fit (R2> 0.99)

could be obtained in a region extended above the band gap,

the estimated band gap ranges from 1.4 to 2.2 eV.

An estimate of the optical band gaps and refractive indices

of all samples is shown in Figs. 8(a) and 8(b), respectively. The

as grown Zn3N2 samples ZnN-3, ZnN-4, ZnN-5, and ZnN-6

have an optical band gap of 1.35, 1.31, 1.32, and 1.48 eV,

respectively, and their refractive index is in the range of

2.3–2.7. In the wide range of Zn3N2 films examined here, from

N-poor to N-rich, no significant variation of their band gap or

refractive index was observed. If the observed optical band gap

was caused by N interstitial defects, as has been previously

suggested, we would expect a significant blue-shift for the films

grown under N-poor conditions, where the formation energy of

N interstitials is larger than other defects.32 Due to the consis-

tency of the optical properties amongst different samples, we

suggest that the optical band gap observed in this material is

not defect induced but is instead an intrinsic property of its

electronic structure. These optical properties make Zn3N2 a

candidate for the fabrication of thin film solar cells, which have

requirements of high absorption coefficient and a narrow band

gap to optimize absorption in the visible spectrum.12

A blue shift in the optical band gap, called the Burstein-

Moss shift, is often expected in semiconductors with very high

carrier concentrations. This has been reported in previous stud-

ies6,11,33 for Zn3N2 films with carrier concentrations in the order

of 1019–1020cm�3. However, the optical band gap of our sam-

ples shows no significant dependence on the carrier concentra-

tion. We speculate that some of our samples are in the range of

carrier concentrations where the Burstein-Moss effect is

becoming apparent. For instance, the blue shift observed in the

optical band gap of ZnN-6 could be due to the Burstein-Moss

effect; however, there is not enough data to constitute a trend.

In contrast to the as grown Zn3N2 samples, the optical

band gap of the oxidized ZnN-3A sample was estimated at

3.44 eV and its refractive index was in the range of 1.6–1.8.

This significant blue-shift of the band gap in ZnN-3A is fur-

ther clear evidence that it is a different material and matches

the conclusion from XRD. The refractive index of the oxi-

dized ZnN-3A sample is closer to the refractive index of

Zn(OH)2 minerals,48 which is approximately 1.63, than to

pure ZnO, which has a refractive index of 1.9–2.1 in this

spectral region.49 This suggests that the oxidized material

does not consist of a pure ZnO phase but is possibly a mixed

ZnO/Zn(OH)2 phase. The formation of Zn(OH)2 has been

previously reported for Zn3N2 films grown with a different

technique and is the result of a reaction of Zn3N2 with

water.24 Despite the fact that the XRD pattern of ZnN-3A

did not show a Zn(OH)2 phase, the broad ZnO peaks that

were observed suggest a large number of structural defects

and possibly deviation from stoichiometry.

A comparison of the optical properties obtained here

with those reported in previous publications for Zn3N2 is

made in Table IV. Our results are similar to the results

FIG. 8. (a) Absorption plots used to estimate the optical band gap of samples

ZnN-3, ZnN-4, ZnN-5, ZnN-6, and ZnN-3A. (b) The refractive index of as

deposited and oxidized Zn3N2 films as estimated from optical interference

fringes in the reflectance spectra.

TABLE IV. Refractive index and optical band gap of Zn3N2 films reported

here and in previous studies.

Material

Refractive

index

Optical band

gap (eV) Reference

Zn3N2 2.3–2.7 1.31–1.48 This study

Zn3N2 2.0–2.8 <1.50 N�u~nez et al.18

Zn3N2 2.6–2.8 1.26 Jiang et al.35

ZnO/Zn(OH)2 1.6–1.8 3.44 This study

Zn3N2 1.8–1.9 3.20–3.50 Simi et al.27

Zn3N2 1.7–2.4 3.20 Ayouchi et al.34

205102-7 Trapalis et al. J. Appl. Phys. 120, 205102 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  143.167.30.107 On: Thu, 08 Dec 2016

13:27:41



of N�u~nez et al. and Jiang et al.18,35 However, the properties

reported by Ayouchi et al. and Simi et al.27,34 are more

similar to the optical properties of our oxidized ZnN-3A

sample. The similarity between the optical properties of

ZnO/Zn(OH)2 and the properties reported for Zn3N2 in

these publications seems to support the argument that the

wider band gap reported in the literature is the result of

unintentional oxidation rather than a difference in material

quality.

IV. CONCLUSION

Zn3N2 thin films were deposited on borosilicate glass

slides by DC magnetron sputtering of a Zn target in the N2

plasma. A variety of different growth conditions were

employed by varying the N2 flow in the chamber as well as

the substrate temperature during growth, which resulted in

the growth of Zn3N2 films with different microstructures and

degrees of crystallinity as well as a wide range of composi-

tions. XRD measurements of an oxidized sample revealed

that the as grown Zn3N2 films were converted to a polycrys-

talline ZnO-based structure after prolonged ambient expo-

sure. Hall Effect measurements showed that the properties of

the N-poor Zn3N2 samples were indicative of a natively

doped semiconductor. As the N-poor films became more

stoichiometric, the carrier concentration reached a minimum

in the order of 1018 cm�3, followed by an increase in resistiv-

ity and mobility. N-rich films reached a maximum carrier

mobility of 33 cm2 V�1 s�1 despite a higher carrier concen-

tration. This is believed to be due to an improvement in the

microstructure of the films grown at these conditions. These

results show that precise control of the composition of the

Zn3N2 films grown by reactive sputtering is very important

for the optimization of their electrical properties and the sub-

sequent development of applications.

Optical measurements showed that the films formed an

absorption edge in the wavelength region of 1000 nm as the

film composition approached the stoichiometry of Zn3N2.

The optical band gap and refractive index of these samples

were estimated in the range of 1.31–1.48 eV and 2.3–2.7,

respectively, while the optical band gap and refractive index

of the oxidized sample were 3.44 eV and 1.6–1.8, respec-

tively. The Zn3N2 films had a high absorption coefficient

indicative of a direct band gap semiconductor as well as high

absorption for energies higher than the band gap, which we

suggest could lead to an overestimation of the optical band

gap. Neither the refractive index nor the optical band gap of

the Zn3N2 films varied significantly despite the wide range

of samples examined. This suggests that the observed optical

band gap is an intrinsic property of this material and is not

defect induced, which makes Zn3N2 a candidate for applica-

tions in thin film solar cells.
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