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Abstract

This paper addresses an important issue of modelling nonlinear asymmetric dynamics

and unobserved individual heterogeneity in the threshold panel data framework, simultane-

ously. As a general approach, we develop the �rst-di¤erenced GMM estimator, which allows

both threshold variable and regressors to be endogenous. When the threshold variable be-

comes strictly exogenous, we propose a more e¢ cient two-step least squares estimator. We

provide asymptotic theory and develop the testing procedure for threshold e¤ects and the

threshold variable exogeneity. Monte Carlo studies provide a support for theoretical pre-

dictions. We present an empirical application investigating an asymmetric sensitivity of

investment to cash �ows.
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1 Introduction

The econometric literature on dynamic models has long been interested in the implications of

the existence of nonlinear asymmetric dynamics. Examples include Markov-Switching, Smooth

Transition and Threshold Autoregression Models. The popularity of these models lies in al-

lowing us to draw inferences about the underlying data generating process or to yield reliable

forecasts in a manner that is not possible using linear models. Until recently, however, most

econometric analysis has stopped short of studying the issues of nonlinear asymmetric mecha-

nisms explicitly within a dynamic panel data context. Hansen (1999) develops a static panel

threshold model where regression coe¢ cients can take on a small number of di¤erent values,

depending on the value of exogenous stationary variable. González et al. (2005) generalize this

approach and develop a panel smooth transition regression model which allows the coe¢ cients

to change gradually from one regime to another.1 In a broad context these models are a speci�c

example of the panel approach that allows coe¢ cients to vary randomly over time and across

cross-section units as surveyed by Hsiao (2003, Chapter 6).

These approaches are static, the validity of which has not yet been established in dynamic

panels, though increasing availability of the large panel data sets has prompted more rigorous

econometric analyses of dynamic heterogeneous panels. Surprisingly, there has been almost

no rigorous study investigating an important issue of nonlinear asymmetric mechanism in

dynamic panels, especially when time periods are short, though there is a huge literature on

GMM estimation of linear dynamic panels with heterogeneous individual e¤ects, e.g., Holtz-

Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt (1995), Arellano and Bover

(1995), Blundell and Bond (1998), Alvarez and Arellano (2003), Bun and Windmeijer (2010),

Hayakawa (2015) and Hsiao and Zhang (2015).

Another limitation is the maintained assumption of exogeneity of the regressors and/or

the threshold variable. While the endogenous transition in the Markov-Switching model has

been studied by Kim et al. (2008), much progress has not been made in the threshold re-

gression literature. The standard least squares approach, such as Hansen (2000) and Seo and

Linton (2007), requires exogeneity in all the covariates. Caner and Hansen (2004) relax this

requirement by allowing for endogenous regressors, but they assume the threshold variable to

be exogenous. See also Hansen (2011) for an extensive survey.

In the dynamic panel context, Dang et al. (2012) have proposed the generalized GMM

estimator applicable for dynamic panel threshold models, which can provide consistent esti-

1See Fok et al. (2005) for a large T treatment of smooth transition regression, thus not requiring the �xed

e¤ect or �rst di¤erence transformation to estimate the model.
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mates of heterogeneous speeds of adjustment as well as a valid testing procedure for threshold

e¤ects in short dynamic panels with unobserved individual e¤ects. Ramirez-Rondan (2013)

has extended the Hansen�s (1999) work to allow the threshold mechanism in dynamic panels,

and proposed the maximum likelihood estimation techniques, following the approach by Hsiao

et al. (2002). In order to allow endogenous regressors, Kremer et al. (2013) have considered

a hybrid dynamic version by combining the forward orthogonal deviations transformation by

Arellano and Bover (1995) and the instrumental variable estimation of the cross-section model

by Caner and Hansen (2004). However, the crucial assumption in all of these studies is that

either regressors or the transition variable or both are exogenous.2

We aim to �ll this gap by explicitly addressing an important issue as how best to model

nonlinear asymmetric dynamics and unobserved individual heterogeneity, simultaneously. To

this end we extend the approaches by Hansen (1999, 2000) and Caner and Hansen (2004) to

the dynamic panel data model with endogenous threshold variable and regressors. Speci�cally,

following the main literature on the GMM, we consider the asymptotic experiment under large

cross-section unit with a �xed time period.

We propose a general GMM approach based on the �rst-di¤erence (FD) transformation.

As we allow both threshold variable and regressors to be endogenous, the FD-GMM approach

is expected to overcome the main limitation in the existing literature, namely, the assumption

of exogeneity of regressors and/or the transition variable that may hamper the usefulness of

threshold regression models in a general context. We develop the asymptotic theory through

the diminishing threshold and the standard �xed threshold asymptotics (e.g. Hansen, 2000),

and show that the FD-GMM estimator follows a normal distribution asymptotically. More

importantly, the asymptotic normality holds true irrespective of whether the regression function

is continuous or not. Hence, the standard inference on the threshold and other parameters

based on the Wald statistic can be carried out. This is in contrast to the least squares approach

in which the discontinuity of the regression function changes the asymptotic distribution in a

dramatic way.

Next, we examine the special case where the threshold variable is strictly exogenous, and

propose a more e¢ cient two-step least squares (FD-2SLS) estimator. This generalizes Caner

and Hansen�s (2004) approach for the cross-section data to the dynamic panel data with a

�xed e¤ect. We establish that the FD-2SLS estimator satis�es the Oracle property because

the threshold and the slope estimates are asymptotically independent. Furthermore, the FD-

2SLS estimator of the threshold parameter is shown to be super-consistent. Though its infer-

2Recently, Yu and Phillips (2014) and Kourtellos et al. (2015) have also addressed an issue of endogenous

threshold variable in the single equation context.
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ence is non-standard, we show that a properly weighted LR statistic follows the same pivotal

asymptotic distribution as in Hansen (2000).

We provide testing procedures for identifying the threshold e¤ect, based on the supremum

statistics, which follow non-standard asymptotic distributions due to the loss of identi�cation

under the null of no threshold e¤ect. The critical values or the p-values of the tests can be easily

evaluated by the bootstrap. Furthermore, we develop the Hausman type testing procedure for

the validity of the null hypothesis that the threshold variable is exogenous.

Finite sample property of the FD-GMM estimator is examined through Monte Carlo stud-

ies. Speci�cally, we evaluate its bias and mean squared error, and the coverage probability of

the con�dence interval constructed by the asymptotic normal approximation. Overall results

provide support for our theoretical predictions. Given that there are many di¤erent ways to

compute the weight matrix in the �rst step, we propose an averaging of a class of the two-step

FD-GMM estimators that are obtained by randomizing the weight matrix in the �rst step.

This turns out to be successful in signi�cantly reducing the sampling errors.

Using the UK company panel data, we demonstrate the usefulness of the proposed dy-

namic threshold panel data modelling by providing an empirical application investigating an

asymmetric sensitivity of investment to cash �ows. We consider three �rm-speci�c variables

as an endogenous threshold variable that potentially a¤ects the investment dynamics. By em-

ploying a panel dataset of 560 UK �rms over the period 1973-1987, we �nd that the cash �ow

sensitivity of investment is signi�cantly stronger for cash-constrained, high-growth and high-

leveraged �rms, a consistent �nding with an original hypothesis by Farazzi et al. (1988) that

the sensitivity of investment to cash �ows is an indicator of the degree of �nancial constraints.

The plan of the paper is as follows: Section 2 describes the model. Section 3 presents the

detailed estimation steps for FD-GMM. Section 4 develops an asymptotic theory, including

consistent and e¢ cient estimation of the threshold parameter. Section 5 provides the inference

for threshold e¤ects and endogeneity of the transition variable. Finite sample performance of

the FD-GMM estimator is examined in Section 6. Empirical application is presented in Section

7. Section 8 concludes. We provide two Appendices. Appendix A presents the estimation

theory for FD-2SLS, which is shown to be more e¢ cient in the special case where the threshold

variable is exogenous. All the mathematical proofs are collected in Appendix B.

2 The Model

Consider the following dynamic panel threshold regression model:

yit =
�
1; x0it

�
�11 fqit � 
g+

�
1; x0it

�
�21 fqit > 
g+ "it; i = 1; :::; n; t = 1; :::; T; (1)
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where yit is a scalar stochastic variable of interest, xit the k1 � 1 vector of time-varying re-
gressors, that may include the lagged dependent variable, 1 f�g an indicator function, and qit
the transition variable. 
 is the threshold parameter, and �1 and �2 are the slope parameters

associated with di¤erent regimes. The error, "it consists of the error components:

"it = �i + vit; (2)

where �i is an unobserved individual �xed e¤ect and vit is a zero mean idiosyncratic random

disturbance. In particular, vit is assumed to be a martingale di¤erence sequence,

E (vitjFt�1) = 0;

where Ft is a natural �ltration at time t. It is worthwhile to mention that we do not assume xit
or qit to be measurable with respect to Ft�1, say E (vitxit) 6= 0 or E (vitqit) 6= 0, thus allowing
endogeneity in both the regressor, xit and the threshold variable, qit.

The estimation of dynamic panel data with a large number of individuals but with a �xed

number of time periods has been commonplace, e.g. Holts-Eakin et al. (1988), Arellano and

Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995), Blundell and Bond (1998)

and Alvarez and Arellano (2003). Following this tradition, we aim to extend the static panel

threshold modelling advanced by Hansen (1999), and generalize the Arellano and Bond (1991)

FD-GMM estimator to a new estimation approach applicable for dynamic panel threshold

models. Speci�cally, we consider the asymptotic experiment under large n with a �xed T ,3 in

which case the martingale di¤erence assumption is just for expositional simplicity. The sample

is generated from random sampling across i.

A leading example of interest is the self-exciting threshold autoregressive (SETAR) model

popularized by Tong (1990), in which case xit consists of the lagged yit�s and qit = yi;t�d for

any d � 1.4

It is well-established in the linear dynamic panel data literature that the �xed e¤ects

estimator of the autoregressive parameters is biased downward (e.g. Nickell, 1981). To deal

with the correlation of regressors with individual e¤ects in (1) and (2), we consider the �rst-

di¤erence transformation of (1) as follows (e.g. Arellano and Bond, 1991):5

�yit = �0�xit + �
0X 0
it1it (
) + �"it; (3)

3On the other hand, if T
N
! c as N !1, we conjecture (e.g. Alvarez and Arellano, 2003; Hsiao and Zhang,

2015) that our proposed FD-GMM estimator is asymptotically biased of order
p
c.

4We note in passing that all the results go through when qit = yit�d for any d � 1, which covers the delayed
SETAR mechanism. It is su¢ cient to check if the moment conditions hold with the particular choice of qit.

5 In (2), �"it = �vit. For convenience we use �"it instead of �vit throughout the paper. Here, we decompose

the parameters, �1 = (�11; �
0
12)

0, �2 = (�21; �
0
22)

0and � = (�1; �02)
0, conformable with (1; x0it)

0
:
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where � is the �rst di¤erence operator, �
k1�1

=
�
�12; :::; �1;k1+1

�0, �
(k1+1)�1

= �2 � �1; and

Xit
2�(1+k1)

=

0@ (1; x0it)�
1; x0i;t�1

� 1A and 1it (
)
2�1

=

 
1 fqit > 
g

�1 fqit�1 > 
g

!
:

Let � =
�
�0; �0; 


�0 and assume that � belongs to a compact set, � = � � � � Rk; with
k = 2k1 +2: Following convention, we let � =

�

; 


�
; where 
 and 
 are two percentiles of the

threshold variable. Typically, they are lower and upper tenth or �fteenth percentiles.

We allow for both ��xed threshold e¤ect�and �diminishing or small threshold e¤ect� for

statistical inference for the threshold parameter, 
 by de�ning (e.g. Hansen, 2000):

� = �n = �0n
�� for 0 � � < 1=2: (4)

The OLS estimator obtained from (3) is biased since the transformed regressors are corre-

lated with �"it. To �x this problem we need to �nd an l � 1 vector of instrument variables,�
z0it0 ; ::::; z

0
iT

�0 for 2 < t0 � T with l � k such that either

E
�
z0it0�"it0 ; :::; z

0
iT�"iT

�0
= 0; (5)

or

E (�"itjzit) = 0; for each t = t0; :::; T: (6)

Notice that zit may include lagged values of (xit; qit) and lagged dependent variables and that

the number of instruments may be di¤erent for each time t.6

3 FD-GMM Estimation

We allow for the threshold variable qit to be endogenous; E (qit�"it) 6= 0 such that qit does not
belong to the set of instrumental variables, fzitgTt=t0 . We consider the following l-dimensional
column vector of the sample moment conditions:

�gn (�) =
1

n

nX
i=1

gi (�) ;

where

gi (�)
l�1

=

0BB@
zit0

�
�yit0 � �0�xit0 � �0X 0

it0
1it0 (
)

�
...

ziT
�
�yiT � �0�xiT � �0X 0

iT1iT (
)
�
1CCA : (7)

6 In practice, the choice of instruments is important. In Section 4.1 we present the order and the rank

conditions (see Assumption 3 below) for the practitioners to check with their own choice of instruments.
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Assume that Egi (�) = 0 if and only if � = �0 and let gi = gi (�0) =
�
z0it0�"it0 ; :::; z

0
iT�"iT

�0,
and 
 = E (gig

0
i), where 
 is assumed to be positive de�nite. For a positive de�nite matrix,

Wn such that Wn
p�! 
�1, let

�Jn (�) = �gn (�)
0Wn�gn (�) : (8)

Then, the GMM estimator of � is given by

b� = argmin
�2�

�Jn (�) : (9)

Strictly speaking, b
 is given by an interval but we let b
 be the minimum of the interval.

Since the model is linear in � for each 
 2 �, and the objective function �Jn (�) is not

continuous in 
 with � =
�
�0; 


�0
; the grid search algorithm is practical: for a �xed 
, let

�g1n =
1

n

nX
i=1

g1i; and �g2n (
) =
1

n

nX
i=1

g2i (
) ;

where

g1i
l�1

=

0BB@
zit0�yit0

...

ziT�yiT

1CCA ; g2i (
)
l�(k�1)

=

0BB@
zit0

�
�xit0 ;1it0 (
)

0Xit0
�

...

ziT
�
�xiT ;1iT (
)

0XiT
�
1CCA :

Then, the GMM estimator of � and �, for a given 
, is given by�b� (
)0 ;b� (
)0�0 = ��g2n (
)0Wn �g2n (
)
��1

�g2n (
)
0Wn �g1n:

Denoting the objective function evaluated at b� (
) and b� (
) by bJn (
), we obtain the GMM
estimator of � by

b
 = argmin

2�

bJn (
) ; and
�b�0;b�0�0 = �b� (b
)0 ;b� (b
)0�0 :

The two-step optimal GMM estimator is obtained as follows:

1. Estimate the model by minimizing �Jn (�) with either Wn = Il or

Wn =

0BBBBBB@

2
n

Pn
i=1 zit0z

0
it0

�1
n

Pn
i=1 zit0z

0
it0+1

0 � � �
�1
n

Pn
i=1 zit0+1z

0
it0

2
n

Pn
i=1 zit0+1z

0
it0+1

. . . . . .

0
. . . . . . �1

n

Pn
i=1 ziT�1z

0
iT

...
. . . �1

n

Pn
i=1 ziT z

0
iT�1

2
n

Pn
i=1 ziT z

0
iT

1CCCCCCA

�1

(10)

and collect residuals, c�"it.
[6]



2. Estimate the parameter � by minimizing �Jn (�) with

Wn =

 
1

n

nX
i=1

bgibg0i � 1

n2

nX
i=1

bgi nX
i=1

bg0i
!�1

; (11)

where bgi = �c�"it0z0it0 ; :::; c�"iT z0iT�0.
Remark 1 In the linear dynamic panel data literature the number of initial conditions on

yi0 have been proposed to improve the e¢ ciency of the FD-GMM estimator, e.g. Ahn and

Schmidt (1995), Arellano and Bover (1995) and Blundell and Bond (1998).7 In this paper we

consider the dynamic panels with the length of time period not too small relative to the number

of individuals as in our empirical application of �rm�s investment decision. In this regard, we

adopt a more robust speci�cation in which the distribution of yi0 given �i is left unrestricted.

4 Asymptotic Theory

This section develops an asymptotic theory for the FD-GMM estimator. There are two frame-

works in the literature. One is the �xed threshold assumption (Chan, 1993) and the other the

diminishing threshold assumption (Hansen, 2000). We also discuss the estimation of unknown

quantities in the asymptotic distributions such as the asymptotic variances and the normalizing

factors when an estimator is not asymptotically normal.

Partition � =
�
�01; 


�0, where �1 = ��0; �0�0. As the true value of � is �n, the true values of
� and �1 are denoted by �n and �1n, respectively. De�ne

G�
l�k1

=

2664
�E

�
zit0�x

0
it0

�
...

�E (ziT�x0iT )

3775 ; G�
l�(k1+1)

(
) =

2664
�E

�
zit01it0 (
)

0Xit0
�

...

�E
�
ziT1iT (
)

0XiT
�
3775 ;

and

G

l�1
(
) =

2664
�
Et0�1

�
zit0

�
1; x0it0�1

�
j

�
pt0�1 (
)� Et0

�
zit0

�
1; x0it0

�
j

�
pt0 (
)

	
�0

...�
ET�1

�
ziT
�
1; x0iT�1

�
j

�
pT�1 (
)� ET [ziT (1; x0iT ) j
] pT (
)

	
�0

3775 ;
where Et [�j
] denotes the conditional expectation given qit = 
 and pt (�) the density of qit:

7Bun and Windmeijer (2010) show for the covariance stationary AR(1) panel model that the system GMM

estimator has a smaller bias and root mean square error than the FD-GMM when the series are persistent, but

that this bias increases with increasing �2�=�
2
v and can become substantial.
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Assumption 1 The true value of � is �xed at �0 while that of � depends on n such that

�n = �0n
�� for some 0 � � < 1=2 and �0 6= 0. �n are interior points of �: 
 is �nite and

positive de�nite.

This assumption allows for both the standard setup, �n = �0 6= 0 for all n; and the

diminishing setup, �n ! 0 as n!1. The latter has been widely used in the threshold model
(without an endogenous regressor) to obtain a tractable asymptotic distribution for the least

squares estimator of 
, see Hansen (2000). As shown below, however, the GMM estimate b

is asymptotically normal whether or not �n ! 0; implying that the inferential procedure is

the same for any 0 � � < 1=2: Therefore, we do not need to consider the diminishing setup,

though we keep it for an internal consistency of the expositions.

Assumption 2 (i) The threshold variable, qit has a continuous and bounded density, pt (�) ;
such that pt (
0) > 0 for all t = 1; :::; T ; (ii) Et

�
zit

�
x0it; x

0
i;t�1

�
j

�
is continuous at 
0, where

Et (�j
) = E (�jqit = 
) :

The smoothness assumption on the distribution of the threshold variable and conditional

moments are standard. Notice however that the distribution of GMM estimator of unknown

threshold is invariant to the continuity of the regression function at the change point because

our model does not require its discontinuity at the change point. This is a novel feature of the

GMM. As a consequence, we do not need a prior knowledge on the continuity of the model to

make inference for the threshold model.8

Assumption 3 Let G = (G� ; G� (
0) ; G
 (
0)), then G is of full column rank.

This is a standard rank condition in GMM for identi�cation. Typically, the lagged vari-

ables are employed as instruments. For instance, if the model is the SETAR, the lagged

dependent variables, yit�d�s for d > 1 are valid instruments and thus the dimension of the

moment conditions grows quickly as T increases to satisfy the required number of moments

for identi�cation.9

8The GMM criterion function can be viewed as an extreme form of smoothing in the sense of Seo

and Linton (2007). The smoothed least squares implies moment conditions that include one of the type

E
�
et (�) p

�
qt�

hn

��
= 0; where et (�) is the error for a given �, p (�) is a density function, and hn is a smoothing

parameter that goes to zero. The diminishing rate of hn determines the degree of smoothing and the convergence

rate of the threshold estimate, which is
�
nh�1n

��1=2
: The slower the rate is, the more smoothing it imples. The

GMM criterion corresponds to the case where hn is �xed, yielding the convergence rate of n�1=2.
9Our moment conditions in (7) utilize the moments related to �"it only, but not those related to the level

"it as in Blundell and Bond (1998).

[8]



Theorem 1 Under Assumptions 1-3, as n!1;0BB@
p
n

 b� � �0b� � �n
!

n1=2�� (b
 � 
0)
1CCA d�! N

�
0;
�
G0
�1G

��1�
:

Remark 2 Theorem 1 establishes that the FD-GMM always follows the normal distribution

asymptotically, irrespective of whether � = 0 or not. It can be argued that such a normality

result can be simply derived through applying the standard GMM asymptotics. However, for

our models with non-smooth criterion functions, we still need to verify certain stochastic dif-

ferentiability conditions, which is nontrivial and shown to be achieved by applying the empirical

process theory, e.g. van der Vaart and Wellner (1996). We can also allow for � = 0 unlike in

the least squares of threshold regression (e.g. Hansen, 2000). Furthermore, our result does not

require us to know a priori whether the regression function is continuous or not, the validity

of which is con�rmed by the Monte-Carlo studies below.

The asymptotic variance matrix contains �0, and the convergence rate of b
 hinges on the
unknown quantity, �. These two quantities cannot be consistently estimated in separation,

but they cancel out in the construction of t-statistic. Thus, con�dence intervals for � can be

constructed in the standard manner. Let

b
 = 1

n

nX
i=1

bgibg0i �
 
1

n

nX
i=1

bgi! 1
n

nX
i=1

bg0i
!
;

be the sample variance of bgi; where bgi = gi

�b�� ; and
bG� =

2664
� 1
n

Pn
i=1 zit0�x

0
it0

...

� 1
n

Pn
i=1 ziT�x

0
iT

3775 ; bG� =
2664
� 1
n

Pn
i=1 zit01it0 (b
)0Xit0

...

� 1
n

Pn
i=1 ziT1iT (b
)0XiT

3775 :
G
 may be estimated by the standard Nadaraya-Watson kernel estimator: for some kernel K

and bandwidth h (e.g. the Gaussian kernel and Silverman�s rule of thumb)10, let

bG
 =
26664

1
nh

Pn
i=1 zit0

h�
1; x0it0�1

�0
K
�b
�qit0�1

h

�
�
�
1; x0it0

�0
K
�b
�qit0

h

�ib�
...

1
nh

Pn
i=1 ziT

h�
1; x0iT�1

�0
K
�b
�qiT�1

h

�
� (1; x0iT )

0K
�b
�qiT

h

�ib�

37775 : (12)

10For simplicity, we apply the same bandwidth to all the terms in bG
 , which is �ne with the Silverman�s rule
of thumb under stationarity of qit. In principle, a di¤erent bandwidth can be derived for each qit.

[9]



Remark 3 As n!1, the consistency of b
 and bG follows from the standard uniform law of

large numbers (ULLN) for iid data across i; and the consistency of the Nadaraya-Watson and

the kernel density estimators. The existence of the absolute moment is su¢ cient to get ULLN.

The convergence rate for bG follows the standard nonparameteric rate for the Nadaraya-Waston
and the kernel density estimators. See Härdle and Linton (1994) for more details on the choice

of kernel and bandwidth.

Let bVs = b
�1=2 � bG�; bG�� and bV
 = b
�1=2 bG
 . Then, the asymptotic variance matrix for the
regression coe¢ cient, �1 =

�
�0; �0

�0 can be consistently estimated by �bV 0s bVs � bV 0s bV
 �bV 0
 bV
��1 bV 0
 bVs��1,
while the t-statistic for 
 = 
0 de�ned by

t =

p
n (b
 � 
0)bV 0
 bV
 � bV 0
 bVs �bV 0s bVs��1 bV 0s bV
 ; (13)

converges to the standard normal distribution. Hence, the con�dence intervals can be con-

structed in the standard manner. Alternatively, the nonparametric bootstrap can be employed

to construct the con�dence intervals, see Section 5.1 for details.

5 Testing

5.1 Testing for Linearity

The asymptotic results provide ways to make inference for unknown parameters and their

functions. However, it is well-established that the test for linearity or threshold e¤ects requires

us to develop the di¤erent asymptotic theory due to the presence of unidenti�ed parameters

under the null (e.g. Davies, 1977). Speci�cally, recall the model speci�cation (3) and consider

the null hypothesis:

H0 : � = 0; for any 
 2 �; (14)

against the alternative hypothesis

H1 : � 6= 0; for some 
 2 �:

Then, a natural test statistic for the null hypothesis, H0 is:

supW = sup

2�

Wn (
) ; (15)

where Wn (
) is the standard Wald statistic for each �xed 
, that is,

Wn (
) = nb� (
)0 b�� (
)�1 b� (
) ;
[10]



where b� (
) is the FD-GMM estimate of �, given 
, and b�� (
) is the consistent asymptotic
variance estimator for b� (
) ; given by b�� (
) = R

�bVs (
) bVs (
)��1R0, where bVs (
) is com-
puted as in Section 4 with b
 = 
 and R =

�
0(k1+1)�k1 ;Ik1+1

�
. The supremum statistic is an

application of the union-intersection principle commonly used in the literature, e.g. Hansen

(1996) and Lee et al. (2011).

We present the limiting distribution of the supW statistic below.

Theorem 2 Let G (
) = (G� ; G� (
)) and D (
) = G (
)0
�1G (
). Suppose that inf
2� det (D (
)) >

0 and Assumption 2 (i) holds. Then, under the null (14), we have:

supW
d�! sup


2�
Z 0G (
)0D (
)�1R0

h
RD (
)�1R0

i�1
RD (
)�1G (
)Z;

where Z � N
�
0;
�1

�
:

Although the limiting distribution of supW is derived as the supremum of the square of a

Gaussian process with a simpler covariance kernel, it is not straightforward to pivotalize the

statistic and tabulate the critical values. Hence, we follow Hansen (1996) and bootstrap or

simulate the asymptotic critical values or p-values as follows:

Let b� be the FD-GMM estimator and construct:

d�"it = �yit ��x0itb� � b�0X 0
it1it (b
) ;

for i = 1; :::; n; and t = t0; :::; T . Then,

1. Let i� be a random draw from f1; :::; ng, and X�
it = Xi�t, q�it = qi�t, z�it = zi�t and

�"�it = [�"i�t. Then, generate

�y�it = �x
�0
it
b� +�"�it for t = t0; :::; T:

2. Repeat step 1 n times, and collect f(�y�it; X�
it; q

�
it; z

�
it) : i = 1; :::; n; t = t0; :::; Tg.

3. Construct the supW statistic, say supW�, from the bootstrap sample using the same

estimation method for b�.
4. Repeat steps 1-3 B times, and evaluate the bootstrap p-value by the frequency of supW�

that exceeds the sample statistic, supW.

Note that when simulating the bootstrap samples, the null model is imposed in step 1.
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5.2 Testing for Exogeneity

In this section we describe how to test for the exogeneity of the threshold variable. Recently,

Kapetanios (2010) develops the exogeneity test of the regressors in threshold models, following

the general principle of the Hausman (1978) test. Similarly, we can develop the Hausman

type testing procedure for the validity of the null hypothesis that the threshold variable, qit is

exogenous. Indeed, this is a straightforward by-product obtained by combining FD-GMM and

FD-2SLS estimators and their asymptotic results.

Speci�cally, we propose the following t-statistic for the null hypothesis that the FD-GMM

estimate b
 of the unknown threshold is equal to the FD-2SLS estimate, b
FD�2SLS (see Ap-
pendix A for details of the FD-2SLS estimator):

tH =

p
n
�b
 � b
FD�2SLS�bV 0
 bV
 � bV 0
 bVs �bV 0s bVs��1 bV 0s bV
 ;

where the denominator is derived as in Section 4. Note that this t-statistic is identical to the

t-statistic in (13) except that 
0 is replaced by b
FD�2SLS : However,
b
FD�2SLS = 
0 + op

�
n�1=2

�bV 0
 bV
 � bV 0
 bVs �bV 0s bVs��1 bV 0s bV
��
due to its super-consistency. Then, it is easily seen that the asymptotic distribution of the

t-statistic is the standard normal under the null hypothesis of strict exogeneity of qit:

6 Monte Carlo Experiments

This section explores �nite sample performance of the FD-GMM estimator. The �nite sample

property of the least squares estimators and the testing for the presence of threshold e¤ect

have been examined extensively in the literature (e.g. Hansen, 2000; Caner and Hansen,

2004), albeit in the single equation regression. Up to our knowledge, however, no existing

studies have examined how the GMM estimator performs in this general context.

6.1 Bias and MSE

We consider the following two models:

yit = (0:7� 0:5yit�1) 1 fyit�1 � 0g+ (�1:8 + 0:7yit�1) 1 fyit�1 > 0g+ �1uit; (16)

yit = (0:52 + 0:6yit�1) 1 fyit�1 � 0:8g+ (1:48� 0:6yit�1) 1 fyit�1 > 0:8g+ �2uit; (17)

[12]



for t = 1; :::; 10; and i = 1; :::; n, where uit are iidN (0; 1). The �rst model from Tong (1990)

allows a jump in the regression function at the threshold point. The second is the continuous

model considered by Chan and Tsay (1998). In both models the threshold is located around

the center of the distribution of the threshold variable. In terms of the previous notations in

(3) ; the unknown true parameter values are � = �0:5 and (�1; �2) = (�2:5; 1:2)0 in the �rst
model and � = 0:6 and (�1; �2) = (0:96;�1:2)0 in the second. All the past levels of yit are used
as the instrumental variables.11

In addition we consider an averaging of a class of FD-GMM estimators, which is expected to

be particularly relevant in �nite sample. There are many di¤erent ways to compute the weight

matrix, Wn in the �rst step, though there is no way to tell which is optimal. Provided that the

�rst step estimators are consistent, all the second step estimators are asymptotically equivalent,

suggesting that the averaging does not change the �rst order asymptotic distribution.12 In this

regard, we propose to randomize the weight matrix,Wn in the �rst step as follows: We compute

Wn in (11) with bgi = ��e"it0z0it0 ; :::;�e"iT z0iT �0, where e"its are randomly generated from N (0; 1) :

In our experiments we do this 100 times and take the average of the second step estimators.

Our proposal follows the similar idea by Chamberlain and Imbens (2004) and Sun (2014),

who demonstrate that randomizing initial draws are able to improve coverage rates leading to

more accurate inference. Consistent with these expectations, the subsequent simulation results

demonstrate that the variance of the averaging estimator is greatly reduced in small samples.

We examine the bias, standard error and mean square error (MSE) of the FD-GMM es-

timator with 1,000 iterations. For n = 50, 100 and 200, we set �1 = 1 and �2 = 0:5. The

simulation results are reported in Tables 1 - 3. First, looking at the MSEs in Table 1, those of

the FD-GMM for each parameter generally decreases as the sample size rises, but some para-

meters, particularly �1 and �2, are estimated with much larger MSEs. The continuous design

yields higher MSEs for the regression coe¢ cients, because it has the smaller change than the

discontinuous design. When we compare MSEs of the FD-GMM with those of the averaging

estimator, we �nd that the averaging signi�cantly reduces MSEs. In some cases the gains are

so large that MSEs of the FD-GMM estimator are as twice as those of the averaging estimator.

As a rule of thumb, the reduction in MSEs by averaging becomes larger when the original MSEs

are relatively large, though this gain becomes smaller as the sample size increases. Turning

11We have one IV for t = 3, two IVs for t = 4, and thus a total of 36 IVs for T = 10.
12Alternatively, we may consider the continuous updating GMM estimator (CUE) proposed by Hansen et al.

(1996), which is supposed to be invariant to the initial weighting matrix. However, its evaluation goes beyond

the scope of the current paper mainly due to the computational complexity and time. Furthermore, Hasuman

et al. (2011) show that the CUE does not always perform well due to its no-moment problem that leads to wide

dispersion of the estimates.
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to biases and standard errors as reported in Tables 2 and 3, we observe that the averaging

always reduces stand errors, but it has a mixed e¤ect on biases. In particular, when the bias

of the FD-GMM is large (those of �1 and �2), then the averaging reduces it and vice versa. As

a result, the average bias of the FD-GMM is almost the same as that of the averaging whilst

the standard deviation of the former is always larger than that of the latter. This implies that

the averaging has positive MSE reduction e¤ects on the FD-GMM estimator.

Tables 1-3 about here

We have also performed the same experiment by �xing the intercepts across the regimes:

yit = 0:7� 0:5yit�11 fyit�1 � 1:5g+ 0:7yit�11 fyit�1 > 1:5g+ �1uit;

yit = 0:52 + 0:6yit�11 fyit�1 � 0:4g � 0:6yit�11 fyit�1 > 0:4g+ �2uit;

where the threshold values are reset to stay in the middle of distribution. From Tables 4 - 6, we

�nd that the averaging reduces MSEs and standard errors more substantially. Furthermore,

biases are greatly reduced by the averaging for more than 70% of the cases.

Tables 4-6 about here

6.2 Coverage Probability

This section explores the coverage probability of the con�dence intervals by inverting the t-

statistic. We focus on the �rst two data generating processes (16) and (17). Table 7 reports

empirical coverage probabilities of the 95% con�dence intervals for the FD-GMM estimator

and its averaging. In the averaging, both the estimator and the asymptotic variance estimator

are averaged. We select the bandwidth for the asymptotic variance by the Silverman�s rule of

thumb multiplied by h, and report the results for h = (0:5; 1; 1:5). Not surprisingly, as h rises,

the coverage frequency in�ates. The bandwidth with h = 0:5 yields too low coverage for the

continuous design and that with h = 1:5 yields excessive coverage especially for the threshold

parameter, 
: Thus, we follow the Silverman�s rule.

Table 7 about here

The results for h = 1 appear to be more promising than the existing studies that document

rather poor empirical coverage probabilities for 
 and �2; e.g. Hansen (2000) and Caner and

Hansen (2004). Importantly, the averaging results in much improved coverage, especially when

n is small, in which case the FD-GMM tends to exhibit very poor coverage. Thus, subsequent
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discussions are focussed on the averaging results. For 
; the coverage improves steadily to the

nominal 95% level as the sample size rises for both jump and continuous designs, from 99%

at n = 50 to 98% or 95% at n = 200. For �2; we observe somewhat lower coverages in the

continuous design, which improve as the sample size increases and look reasonable for n = 200.

Finally, the results for � and �1 are better than those for �2.13

7 Empirical Application: A dynamic threshold panel data model

of investment

An important research question in the investment literature is whether capital market im-

perfection a¤ects the �rm�s investment behavior. Farazzi et al. (1988) �nd that investment

spending by �rms with low dividend payments is strongly a¤ected by the availability of cash

�ows, rather than just by the availability of positive net present value projects.

One of the main methodological problems facing the conventional investment literature

is that the distinction between constrained and unconstrained �rms is routinely based on an

arbitrary threshold of the measure used to split the sample. Furthermore, �rms are not allowed

to change groups over time since the split-sample is �xed for the complete sample period. We

apply a threshold model of investment in dynamic panels to address this important issue. Most

popular investment model takes the form of a Tobin�s Q model in which the expectation of

future pro�tability is captured by the forward-looking stock market valuation:

Iit = �1CFit + �2Qit + "it; (18)

where Iit is investment, CFit cash �ows, Qit Tobin�s Q, and "it consists of the one-way error

components, "it = �i + vit.14 The coe¢ cient, �1 represents the cash �ow sensitivity of invest-

ment. If �rms are not �nancially constrained, external �nance can be raised to fund future

investments without the use of internal �nance. In this case, cash �ows are least relevant to

investment spending and �1 is expected to be close to zero. In contrast, if �rms were to face

certain �nancial constraints, �1 would be expected to be signi�cantly positive. Extensions of

this Tobin�s Q model involve additional �nancing variables such as leverage to control for the

e¤ect of capital structure on investment (Lang et al., 1996) as well as lagged investment to

capture the accelerator e¤ect of investment in which past investments have a positive e¤ect

13More excessive coverage probabilities for 
 are reported in Hansen (2000) and Caner and Hansen (2004),

showing more than 98% coverage even for 90% nominal level. They also reported the lower coverages for �2.
14We have also estimated the model with the two-way error components by including the time dummies. The

results, available upon request, are qualitatively similar.
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on future investments (Aivazian et al., 2005). Therefore, we consider the following augmented

dynamic investment model:

Iit = �Iit�1 + �1CFit + �2Qit + �3Lit + "it; (19)

where Lit represents leverage.

We employ the same data set as used in Hansen (1999) and González et al. (2005). This

dataset is a balanced panel of 565 US �rms over the period 1973-1987. Hence, this study

allows for comparisons with the existing literature. Following González et al. (2005), we

exclude �ve companies with extreme data, and consider a �nal sample of 560 companies with

7840 company-year observations. To avoid the use of potentially persistent series, we normalize

variables by the book value of assets. Namely, Iit is measured by investment to the book value

of assets, CF it by cash �ow to the book value of assets, Qit by the market value to the book

value of assets, and Lit by the long-term debt to the book value of assets.

We then extend (19) into the dynamic panel data framework with threshold e¤ects:

Iit = (�1Iit�1 + �11CFit + �21Qit + �31Lit) 1 fqit � 
g (20)

(�2Iit�1 + �12CFit + �22Qit + �32Lit) 1 fqit > 
g+ �i + vit;

where 1 f�g is an indicator function, qit the transition variable and 
 the threshold parame-
ter. We estimate (20) by the proposed FD-GMM, which allows for both (contemporaneous)

regressors and the transition variable to be endogenous. On the other hand, existing studies

(e.g. Hansen, 1999; González et al., 2005) employs the lagged values of CF , Q and L to avoid

the potential problem of endogenous regressors and transition variable, which is a common

practice in empirical corporate �nance, e.g. Dang et al. (2012).

Table 8 summarizes the estimation results for the dynamic threshold model of investment,

(20), with cash �ow, leverage and Tobin�s Q used as the transition variable, which are expected

to proxy the certain degree of �nancial constraints. This choice of the transition variable is

broader than Hansen (1999) who considers only leverage, and González et al. (2005) who

employ leverage and Tobin�s Q. The FD-GMM estimation results are reported respectively in

the low and the high regimes.

When cash �ow is used as the transition variable, the results for (20) show that the threshold

estimate is 0.36 such that about 80% of observations fall into the lower cash-�ow regime. The

coe¢ cient on lagged investment is signi�cantly higher for �rms with low cash �ows, suggesting

that the accelerator e¤ect of investment is stronger for cash-constrained �rms. The coe¢ cient

on Tobin�s Q reveals an expected �nding that �rms respond to growth opportunities more

quickly when they are cash-unconstrained than when they are constrained. Next, we �nd the
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more negative impacts of the leverage when �rms are cash-constrained. This is consistent with

our expectations that the leverage should have a stronger negative impact on investment for

the constrained �rms, which is in line with the overinvestment hypothesis about the role of

leverage as a disciplining device that prevents �rms from over-investing in negative net present

value projects (e.g. Jensen, 1986). Finally and importantly, the sensitivity of investment to

cash �ow is signi�cantly higher for cash-constrained �rms than for cash-rich �rms. Firms

with limited cash resources are likely to face some forms of �nancial constraints (Kaplan and

Zingales, 1997). Hence, this �nding supports evidence for the role of �nancial constraints in

the investment-cash �ow sensitivity.

When the leverage is used as the transition variable, the threshold parameter is estimated

at 0.10, lower than the mean leverage (0.24), with more than 73% of observations falling into

the high-leverage regime. We �nd that past investment has a much higher positive impact on

current investment for highly-levered �rms, suggesting that �rms with high leverage attempt

to respond to growth options quickly, hence a higher accelerator e¤ect. The e¤ect of Tobin�s

Q on investment is higher for lowly-levered �rms, which provides a support for the argument

that by lowering the risky "debt overhang" to control underinvestment incentives ex ante, �rms

are able to take more growth opportunities and make more investments ex post, though these

impacts are rather small. We also �nd the more negative impacts of the leverage when �rms are

highly levered. The coe¢ cient on cash �ow is signi�cantly higher for �rms in the high-leverage

regime, a �nding consistent with the prediction that cash �ow should be more relevant and

have a stronger e¤ect on the level of investment for �nancially constrained �rms.15

When using Tobin�s Q as the transition variable, the threshold is estimated at 0.56 with

59% of observations falling into the higher growth regime. We �nd that past investment has

a slightly stronger positive e¤ect on current investment for �rms with low Tobin�s Q, but the

di¤erential impacts are statistically insigni�cant. The coe¢ cient on Tobin�s Q in the low regime

is signi�cantly higher, indicating that �rms with low growth options respond more strongly to

changes in their investment opportunities. Surprisingly, we �nd a negative relationship between

leverage and investment only in the lower growth regime. The sensitivity of investment to cash

�ow is also relatively higher for high-growth �rms than low-growth �rms. This, therefore,

supports the hypothesis that cash �ow should be more relevant for �rms with potentially high

�nancial constraints.16

15Notice, however, that the non-dynamic threshold model of investment developed by Hansen (1999) fails to

�nd conclusive evidence in favor of this prediction.
16When comparing our results with those reported in González et al. (2005), who apply the static panel

smooth transition regression model, we �nd that their results are qualitatively similar to ours regarding the

impacts on investment of both Tobin�s Q and leverage. However, they document an opposite evidence that the
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In order to check the validity of the �nal speci�cations employed above, we also report the

test results for the null of no threshold e¤ects and the validity of the overidentifying moment

conditions in Table 8. First, we �nd that the bootstrap p-values of the supW test are all close to

zero, providing strong evidence in favour of threshold e¤ects. Next, the J-test results indicate

that the null of valid instruments is not rejected for the cases with the leverage and the Tobin�s

Q used as the transition variable, though it is rejected at the 1% signi�cance level for the case

with the cash �ow used as the transition variable. Given that the number of instruments rises

quadratically with T , this evidence is relatively satisfactory.17

Table 8 about here

In sum, when examining a dynamic threshold panel data estimation of Tobin�s Q model

of investment by using the Tobin�s Q, leverage and cash �ow as a possible transition vari-

able, we �nd that the results on the relationships between investment and past investment,

as well as cash �ow, Tobin�s Q and leverage are generally consistent with theoretical predic-

tions. More importantly, the cash �ow sensitivity of investment is signi�cantly stronger for

cash-constrained, high-growth and high-leveraged �rms, a consistent �nding with an original

hypothesis by Farazzi et al. (1988) that the sensitivity of investment to cash �ows is an indica-

tor of the degree of �nancial constraints facing the �rms. Methodologically, our results clearly

demonstrate the usefulness of the proposed dynamic panel data estimation with threshold ef-

fects despite the fact that the transition variables used in the current study may have caveats

since these variables are imperfect measures of �nancial constraints.18

8 Conclusion

The investigation of nonlinear asymmetric dynamic modelling has recently assumed a promi-

nent role. Increasing availability of the large and complex panel data sets has also prompted

more rigorous econometric analyses of dynamic heterogeneous panels, especially when the time

coe¢ cient on the (lagged) cash �ow is positive but considerably smaller for the higher regime.
17To avoid the potential issue related to weak instrument or over�tting, we set the maximum lag order of y

and x to be used as instruments to 4 (e.g. Roodman, 2009).
18Kaplan and Zingales (1997) �nd that the relationship between cash �ows and investment is not monotonic

with �nancial constraints. Consequently, a large body of the literature seeks to address the question of what

measures can be used to classify �rms as ��nancially constrained�and �unconstrained�. Several criteria have been

suggested, including size, age, leverage, �nancial slack, dividend payout and bond rating (e.g. Hovikimian and

Titman, 2006). An alternative approach would be to use indices computed to control for �nancial constraints,

e.g. Whited and Wu (2006).
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period is short. In this paper we have explicitly addressed this challenging issue by developing

the dynamic threshold panel data model, which allows both regressors and threshold e¤ect to

be endogenous. We have proposed the FD-GMM estimation on the basis of FD transforma-

tion for removing unobserved individual e¤ects, and derived its asymptotic properties through

employing the diminishing threshold e¤ect asymptotics and the empirical process theory. In

the special case where the threshold variable is strictly exogenous, we have also proposed more

e¢ cient FD-2SLS estimation.

We note several avenues for further researches. First, it is uncertain if the FD-GMM is

most e¢ cient in the presence of an endogenous threshold variable, especially with respect

to alternative initial conditions and potentially many weak instruments. Simultaneously, an

extension to the large n; large T case would make an interesting future research topic. Next,

given that estimation can be signi�cantly a¤ected by the presence of cross-sectionally correlated

errors (e.g., Pesaran, 2006; Bai, 2009), it would be desirable to explicitly control for the

cross-section dependence in the dynamic threshold panels. Furthermore, researches to develop

similar estimation algorithms for models with multivariate covariates, with multiple threshold

variables and regimes, and with alternative nonlinear mechanisms will be under way.
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A Appendix: the FD-2SLS Estimator

This Appendix considers the special case where the threshold variable, qit in (3) ; are exogenous

and the conditional moment restriction (6) holds. That is, zit includes qit and qi;t�1. In this

case, the threshold estimate, b
 can achieve the e¢ cient rate of convergence, as obtained in
the classical regression model (e.g. Hansen, 2000), and the slope estimate, b� can achieve the
semi-parametric e¢ ciency bound (Chamberlain, 1987) under conditional homoskedasticity as

if the true threshold value, 
0; is known. This strong result can be obtained since the two sets

of estimators are shown to be asymptotically independent.

A.1 Estimation

We consider two cases for the reduced form regression �the regression of endogenous regressors

on the instrumental variables. The �rst type is a general non-linear regression where unknown

parameters can be estimated by the standard
p
n rate, and the second type is the threshold

regression with a common threshold.

The second case was also considered by Caner and Hansen (2004), albeit in the cross-

sectional regression. Their approach consists of three steps; the �rst two steps yield an es-

timate of the threshold value and the third step performs the standard GMM for the linear

regression within each subsample divided by the estimated threshold. However, this split-

sample GMM approach does not work with the panel data with a time varying threshold

variable, qit, because it generates multiple regimes with cross-regime restrictions. Importantly,

we demonstrate below that the �rst step estimation error a¤ects the asymptotic distribution

of the threshold estimate in the second step. In this context, we will develop new consistent

estimation algorithm for the threshold estimate.

A.1.1 Nonlinear Regression in Reduced Form

We consider general non-linear regressions for the reduced form and provide the asymptotic

variance formula that corrects the estimation error stemming from the reduced form regression.

This is practically relevant since the linear projection in the reduced form invalidates the

consistency of b� when the structural form is the threshold regression, e.g. Yu (2013).

Under the conditional moment condition in (6) and the exogeneity of q, the �rst-di¤erenced

model in (3) implies the following regression of �yit on zit:

E (�yitjzit) = �0E (�xitjzit) + �0E
�
X 0
itjzit

�
1it (
) : (21)
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Assume for each t that the reduced form regressions are given by

E

 
1; x0it
1; x0it�1

jzit

!
=

 
1; F 01t (zit; b1t)

1; F 02t (zit; b2t)

!
= Ft (zit; bt)

2�(1+k1)
; (22)

where bt = (b01t; b
0
2t)

0 is an unknown parameter vector and Ft is a known function. Also let

Ht (zit; bt) = E (�xitjzit) = F1t (zit; bt)� F2t (zit; bt) :

A few remarks are in order; (i) since all the elements of xit or xit�1 are not endogenous, some

elements of Ft would be fully known; (ii) we need to run two regressions for xit; E (xitjzit) and
E (xitjzit+1), as the instruments zit are di¤erent for each t. This is due to the FD transformation
and the fact that zit varies over time; and (iii) it is not su¢ cient to consider the regression

E (�xitjzit) only, due to the last term in the structural form (21).

The representation in (21) and (22) motivates the following two-step estimation procedure:

1. For each t, estimate the reduced form, (22) by the least squares, and obtain the parameter

estimates, bbt; t = t0; :::; T; and the �tted values, bFit = Ft

�
zit;bbt� and bHit = Ht

�
zit;bbt�.

2. Estimate � by

min
�2�

bMn (�) =
1

n

nX
i=1

TX
t=t0

eit

�
�;bbt�2 ; (23)

where

eit (�; bt) = �yit � �0Ht (zit; bt)� �0Ft (zit; bt)0 1it (
) :

This step can be done by the grid search as the model is linear in � and � for a �xed 
.

Thus, b� (
) and b� (
) can be obtained from the pooled OLS of �yit on bHit and bF 0it1it (
),
which are constructed in step 1. Finally, b
 is de�ned as the minimum of the minimizers

of the pro�led sum of squared errors, bMn (
) :

This produces a rate-optimal estimator for 
, implying that � and � can be estimated as

if 
0 were known. In the special case with T = t0, we end up estimating a linear regression

model with a conditional moment restriction. This two-step estimation yields the optimal

estimate for � and � if the model is conditionally homoskedastistic, i.e., E
�
�"2itjzit

�
= �2, see

Chamberlain (1987). While it requires to estimate the conditional heteroskedasticity to fully

exploit the implications of the conditional moment restriction, (6), in practice, it is reasonable

to employ the two-step estimator and robustify the standard errors for heteroskedasticity. We

will provide a heteroskedasticity-robust standard errors for b� and b�. Note that these standard
errors are also corrected for the estimation error stemming from the �rst step estimation of b:
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A.1.2 Threshold Regression in Reduced Form

Consider the following (reduced) threshold regression:

xit = �1tzit1 fqit � 
g+ �2tzit1 fqit > 
g+ �it;

E (�itjzit) = 0; (24)

where zit =
�
1; x0it�1

�0, and �1t and �2t are unknown parameters. This results in the following
structural threshold regression:

�yit = �01tzit1 fqit � 
g+ �02tzit1 fqit > 
g � �03tzit1 fqit�1 � 
g � �04tzit1 fqit�1 > 
g+ eit;
(25)

E (eitjzit) = 0;

where �01t =
�
0; �0�1t

�
, �02t =

�
�1; �

0
22�2t

�
, �03tzit = �0xit�1, �04tzit = ��1 + �022xit�1 and

eit = �"it + �0it (� + 1 fqit > 
g �2).19 Since the estimates of � and 
 are asymptotically

independent of each other, we do not need to impose any restrictions on � to estimate 
.

Thus, we estimate the model as follows:

1. Estimate 
 by the pooled least square of (25), which can be done by the grid search,20

and denote the estimate by e
:
2. For each t, �x 
 at e
 and estimate �jt, j = 1; 2; in (24) by OLS.
3. Estimate � and � in (21) by OLS with 
 and the reduced form parameters �xed at the

estimates obtained from the preceding steps. Denote these estimates by e� and e�.
Remark 4 Our approach is crucially di¤erent from that of Caner and Hansen (2004), who

estimate the threshold parameter separately in the reduced and the structural form. Such an

approach introduces dependency between separate threshold estimates, which violates the valid-

ity of their asymptotic results.21 Intuitively, the estimation error in the �rst step will a¤ect

the second step estimation of 
 since the true threshold is restricted to be the same in both re-

duced and structural forms. On the other hand, our FD-2SLS estimator is designed to remove

asymptotic correlation between the threshold estimator and the �rst step estimator.
19See footnote 5 for the de�nition of parameters.
20That is, �x 
 and obtain eeit (
) and e�jt (
), j = 1; :::; 4 by the OLS for each t. Then, e
 is the minimizer of

the pro�led sum of squared errors,
P

i;t ee2it (
) and e�jt = e�jt (e
) ; j = 1; :::; 4:
21Lemma 1 in Caner and Hansen (2004) requires more restrictions. Speci�cally, their (A.7) is true only when

the threshold estimate is n-consistent, which cannot be obtained under the maintained diminishing threshold

parameter setup. Accordingly, the high-level assumption (17) in their Assumption 2 is no longer satis�ed.
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Remark 5 We consider the common threshold case mainly because we highlight an important

misspeci�cation issue in Caner and Hansen (2004) that the �rst estimation of the threshold

a¤ect the second step estimation, which was not recognized properly in the literature. But, it

would be more general to allow di¤erent thresholds in the structural and reduced-form equations.

In principle, we may consider the multiple scenarios: the structural regression follows the

threshold regression and the reduced form regression is symmetric and both structural and

reduced regressions follow the threshold regression with the same threshold parameter and with

di¤erent threshold parameters. Such an extension will be able to develop the framework of

multiple thresholds with multiple threshold variables. Recently, in the single regression context,

Chen et al. (2012) develops a threshold autoregressive model which contains two threshold

variables. However, due to the more complicated speci�cation issues associated with dynamic

heterogeneous panel structure, we leave this important issue for future studies, see also Chong

and Yan (2015) for the number of related technical issues.

A.2 Asymptotic Distribution

This section presents the asymptotic theory for the FD-2SLS only under the diminishing thresh-

old framework (Hansen, 2000). It is worthwhile to note that the transformed model, (3) consists

of 4 regimes, which are generated by two threshold variables, qit and qit�1, while the thresh-

old parameter is restricted to be the same. This change in the model characteristic from the

original 2-regime threshold model complicates the estimation and statistical inference.

Since some elements of xit may belong to zit; in which case the reduced form is identity, and

some elements of E (xitjzit) may be identical to E (xitjzit+1) for some t, we collect all distinct
reduced form regression functions, Ft, t = t0; :::; T; that are not identities, and denote it as

F (zi; b) ; where zi and b are the collections of all distinct elements of zit and bt, t = t0; :::; T .

We denote the collection of the corresponding elements of xit�s by xi, and write the reduced
form as the multivariate cross section regression as follows:

xi = F (zi; b) + �i with E (�ijzi) = 0: (26)

Let bb denote the least squares estimate, and de�ne Fi (b) = F (zi; b), Fi = F (zi; b0) andbFi = F
�
zi;bb�, where b0 indicates the true value of b.

A.2.1 Nonlinear Regression in Reduced Form

We �rst consider the case in which the reduced form is the regular nonlinear regression and

the reduced form parameter estimate, bb is asymptotically normal.
[23]



Assumption 4 The estimator bb is consistent. F is twice continuously di¤erentiable in b in a

neighborhood of b0 almost surely and its �rst derivative matrix at b0, a kb � 2k1 (T � t0 + 1)
matrix-valued function, is denoted as Fi = F (zi). E jFij4 and E j�ij4 are �nite, where jAj
denotes the Euclidean norm if A is a vector and the vector-induced norm if A is a matrix.

Assumption 4 (which excludes the threshold regression) implies that

p
n
�bb� b0� = �EFiF0i��1 1p

n

nX
i=1

Fi�i + op (1) ;

where �i is given in (26) : Here we illustrate how the estimation error in the �rst step a¤ects the

asymptotic distribution of the estimator of �, � and 
 in the second step. Recall the functions

introduced in Section A.1.1 and let

�it (
; bt)
(2k1+1)�1

=

"
Hit (bt)

Fit (bt)
0 1it (
)

#
for each t; �i (
; b)

(2k1+1)�(T�t0+1)
= (�it0 (
; bt0) ; :::;�iT (
; bT )) .

(27)

Let ei be the vector stacking
�
�"it + �

0
0 (�xit � E (�xitjzit))

	T
t=t0

: Then, de�ne

M1 (
)
(2k1+1)�(2k1+1)

= E
�
�i (
) �i (
)

0� ; and V1 (
)
(2k1+1)�(2k1+1)

= A (
) 
 (
; 
)A (
)0 ;

where


 (
1; 
2)
((2k1+1)+kb)�((2k1+1)+kb)

= E

" 
�i (
1) ei;

Fi�i

!�
e0i�

0
i (
2) ; �

0
iF0i
�#
;

A (
)
(2k1+1)�((2k1+1)+kb)

=

 
I(2k1+1); �E

"
@

@b0

TX
t=t0

�
H 0
it�0

�
�it (
)

# �
EFiF0i

��1!
:

For the asymptotic distribution of b
; we introduce:
M2 (
) =

TX
t=t0

h
Et

h��
1; F 01;it

�
�0
�2 j
i pt (
) + Et�1 h��1; F 02;it� �0�2 j
i pt�1 (
)i ;

V2 (
) =
TX
t=t0

�
Et

h�
eit
�
1; F 01;it

�
�0
�2 j
i pt (
) + Et�1 h�eit �1; F 02;it� �0�2 j
i pt�1 (
)�

+ 2
T�1X
t=t0

Et
�
eiteit+1

�
1; F 01;it

�
�0
�
1; F 02;it+1

�
�0j


�
pt (
) :

As before, we write Vj = Vj (
0) and Mj =Mj (
0) for j = 1; 2.

We further assume:
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Assumption 5 The true value of � is �xed at �0 while that of � depends on n such that

�n = �0n
�� for some 0 < � < 1=2 and �0 6= 0.

This small � assumption is to get a tractable asymptotic distribution. If � = 0, the

asymptotic distribution for b
 is di¤erent from the one obtained here, though the convergence

rate result in the proof of Theorem 3 remains valid even if � = 0: On the other hand, if � � 1=2;
the change is too small to identify the unknown threshold, 
0:

Assumption 6 (i) The threshold variable, qit has a continuous and bounded density, pt, such

that pt (
0) > 0 for all t = 1; :::; T ; (ii) Et (witj
) is continuous at 
0 for all t, and non-zero
for some t, where wit is either

�
eit

�
1; F 01;it

�
�0 + eit+1

�
1; F 02;it+1

�
�0

�2
,
��
1; F 01;it

�
�0

�2
, or��

1; F 02;it

�
�0

�2
; (iii) E vec (�i (
; b)) vec (�i (
; b))

0 is continuously di¤erentiable in b for all 


in a neighborhood of 
0.

Assumption 7 For some � > 0 and � > 0, E
�
supt�T;jb�b0j<� jeitFt (zit; bt)j

2+�
�
<1. For all

� > 0; E
�
supt�T;jb�b0j<� jeit (Ft (zit; bt)� Ft (zit))j

2+�
�
= O

�
�2+�

�
.

Assumption 8 The minimum eigenvalue of the matrix, E�it (
) �0it (
) is bounded below by

a positive value for all 
 2 � and t = 1; :::; T .

The asymptotic con�dence intervals can be constructed by inverting a test statistic. In par-

ticular, Hansen (2000) advocates the LR inversion for the construction of con�dence intervals

for the threshold value, 
0, for which we de�ne the LR statistic as

LRn (
) = n
bMn (
)� bMn (b
)bMn (b
) :

We present the main asymptotic results for the 2SLS estimator and the LR statistic below.

Theorem 3 Let Assumptions 4-8 hold. Then,

p
n

 b� � �0b� � �n
!

d�! N
�
0;M�1

1 V1M
�1
1

�
; (28)

and

n1�2�
M2
2

V2
(b
 � 
0) d�! argmin

r2R

�
jrj
2
�W (r)

�
; (29)

where W (r) denotes the standard two-sided Brownian motion independent of the normal vari-

ate in (28). Furthermore, for �2e = E
�
e2it
�
,

M2�
2
e

V2
LR (
0)

d�! inf
r2R

(jrj � 2W (r)) :
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Theorem 3 yields the asymptotic independence between b
 and the other estimates. The
�rst estimation error does not a¤ect the asymptotic distribution of b
, though it a¤ects the
asymptotic variance of b� and b� through V1. However, estimation of the asymptotic variances
of b� and b� is standard, i.e. the same as in the linear regression due to the aforementioned
asymptotic independence.

Recall that W (r) =W1 (�r) 1 fr � 0g+W2 (r) 1 fr � 0g, where W1 and W2 are two inde-

pendent Wiener processes. The asymptotic distribution for b
 in (29) is symmetric around zero
with distribution function

1 +
p
x=2� exp (�x=8) + (3=2) exp (x) �

�
�3
p
x=2
�
� ((x+ 5) =2)�

�p
x=2
�
for x � 0;

where � is the standard normal distribution function, see Bhattacharya and Brockwell (1976).

The unknown normalizing factor, n2�V �12 M2
2 can be consistently estimated by bV �12

cM2
2 ; where

cM2 =

TX
t=t0

1

nh

nX
i=1

���
1; bF 01;it�b��2K �qit � b
h

�
+
��
1; bF 02;it�b��2K �qit�1 � b
h

��
;

bV2 = TX
t=t0

1

nh

nX
i=1

��beit �1; bF 01;it�b��2K �qit � b
h

�
+
�beit �1; bF 02;it�b��2K �qit�1 � b
h

��

+ 2
T�1X
t=t0

1

nh

nX
i=1

beitbeit+1 �1; bF 01;it�b� �1; bF 02;it+1�b�K �qit � b
h

�
:

The normalization factor, V �12 M2�
2
e for the LR statistic can be estimated by bV �12

cM2b�2e; whereb�2e = (n (T � t0 + 1))�1
Pn
i=1

PT
t=t0

be2it. Notice that it becomes 1 under the conditional ho-
moskedasticity and the martingale di¤erence sequence assumption for eit. Hansen (2000)

provides the asymptotic distribution function of the LRn statistic, which is
�
1� e�x=2

�2
.

A.2.2 Threshold Regression in Reduced Form

Now, consider the case where the reduced form is the threshold regression, (24), which can

be estimated via the three-step procedure described in Section A.1.2. It turns out that the

asymptotic distributions of b� can be presented by a slight modi�cation of Theorem 3. Thus,

we state its asymptotic distribution as Corollary. Interestingly, the way how the covariance

kernels are characterized in this case is illuminating. If we estimated the common threshold

separately by the two-step approach as in Theorem 3, then the estimation error in the �rst

step would a¤ect the asymptotic distribution of the threshold estimate in the second step.

Corollary 4 Let �j =
�
�0jt0 ; :::; �

0
jT

�0
; j = 1; :::; 4, and assume that �1 � �2 = n���1 for

some non-zero vector �1. Let Assumptions, 5, 6 and 8 hold with F1;it = �1tzit1 fqit � 
g +
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�2tzit1 fqit > 
g, F2;it = xit�1;E jzitj4 < 1 and Ee4it < 1. Then, the asymptotic distribution
of b� estimated from (24) is the same as in Theorem 3.

Notice that it would be desirable to relax certain conditions in Corollary 4 such as the

common threshold across the reduced form and the structural form (see also Remark 5) or the

same � to control the magnitude of the threshold e¤ect.

A.3 Testing for Linearity

We present the asymptotic distribution of the supW statistic de�ned in (15), which tests the

validity of the null hypothesis of no threshold e¤ect (see (14)). If � were estimated by the FD-

2SLS, as is well-known in the literature, the limit is the supremum of the square of a Gaussian

process with unknown covariance kernel, yielding non-pivotal asymptotic distribution.

Theorem 5 Suppose that Assumptions, 6(i) ; 7, 8, and 4 hold. Then, under the null (14) ;

supW
d�! sup


2�
B (
)0M1 (
)

�1R0
h
RM1 (
)

�1 V1 (
)M1 (
)
�1R0

i�1
RM1 (
)

�1B (
) ;

where B (
) is a mean-zero Gaussian process with the covariance kernel, A (
1) 
 (
1; 
2)A (
2)
0.

The p-values can be simulated following the same bootstrap steps as in Section 5.1. When

the reduced form is a threshold regression, our test can be performed more e¢ ciently based on

the model, (25). In this case both reduced form and structural equations are linear under the

null:

H00 : �1t � �2t = �3t � �4t = 0; for all 
 2 � and t = t0; :::; T: (30)

As discussed earlier, the model, (25) can be estimated by the pooled OLS for each 
, and

therefore, the construction of supW statistic is standard (e.g. Hansen, 1996).

A.4 Additional Simulation on E¢ ciency Comparison

To make an e¢ ciency comparison of b
 estimated by FD-GMM and FD-2SLS, we have con-

ducted an additional simulation. Too this end we modify the DGP in (16) as (DGP 1):

yit = (0:7� 0:5yit�1) 1 fqit � 0g+ (�1:8 + 0:7yit�1) 1 fqit > 0g+ �1uit;

where the transition variable, qit is now randomly drawn from Uniform[-1,1], and independent

of all uit, t = 1; 2; :::; T . We also consider its restricted version with the common intercept

(DGP 2):

yit = 0:7� 0:5yit�11 fqit � 0g+ 0:7yit�11 fqit > 0g+ �1uit:
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The FD-2SLS estimator is estimated by the 3-step procedure described in Section A.1.2, em-

ploying the following 4-regime threshold regression model:

�yit = �01zit1 fqit � 
g+ �02zit1 fqit > 
g � �03zit1 fqit�1 � 
g � �04zit1 fqit�1 > 
g+�uit;

where zit = (1; yit�2).

We examine bias and (logged) root mean square error (RMSE) of both estimators with

1,000 iterations. For n = (50; 100; 200) and T = 10, we set �1 = 1. The simulation results

reported in Table 9 demonstrates that the FD-2SLS displays clear dominance over the FD-

GMM in terms of both magnitude and speed of decrease in RMSE as the sample size increases.

This provides support for our theoretical prediction that the threshold estimate, b
, obtained
by the FD-2SLS is super-consistent, as compared to the less e¢ cient FD-GMM estimator.

Table 9 about here.

B Appendix: Proof of Theorems

B.1 GMM

Let

�i =

0BB@
�xit0z

0
it0

...

�xiT z
0
iT

1CCA and �i (
) =

0BB@
X 0
it0
1it0 (
) z

0
it0

...

X 0
iT1iT (
) z

0
iT

1CCA :

Then, we can rewrite the moment indicator gi (�) given in (7) as

gi (�) = gi � �0i (� � �0)� � 0i (� � �n)� (�i (
)� �i)
0 �; (31)

where �i = �i (
0) following the convention in this paper. Also recall that gi = gi (�n) =�
z0it0�"it0 ; :::; z

0
iT�"iT

�0 and Egi = 0:
Proof of Theorem 1. We begin with the consistency of the estimator. First, we show that

Egi (�n) = 0 if and only if � = �n: Suppose that � = �0 and � = �n but 
 6= 
0: Then,

E (gi (�)) = �0n

�
E
�
1it (
)

0Xitz
0
it

�0 � E �1it (
0)0Xitz0it�0�0
t=t0;:::;T

6= 0

due to the rank condition in Assumption 3. Similarly, if either � 6= �0 or � 6= �n; but 
 = 
0;

E (gi (�)) =
�
�E

�
�xitz

0
it

�0
(� � �0) ;�E

�
1it (
0)

0Xitz
0
it

�0
(� � �n)

�
t=t0;:::;T

6= 0:

If � 6= �0 and 
 6= 
0; the rank condition is su¢ cient since
�
(� � �0)0 ; (� � �n)0 ; �0

�
6= 0:
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Next, given the linearity in the slope parameters for a �xed 
; we can write b� (
)� �0b� (
)� �n
!
=
�
An (
)

0WnAn (
)
��1

An (
)
0Wn

 
�gn +

1

n

nX
i=1

(�i � �i (
)) �n

!
; (32)

where An (
) = 1
n

Pn
i=1

�
�0i; �i (
)

0� and �gn (�) = 1
n

Pn
i=1 gi (�). As convention, �gn = �gn (�n) :

Since Wn
p�! 
�1 and An (
)

p�! A (
) = E
�
�0i; �i (
)

0� uniformly, which follows from the

standard uniform law of large numbers (ULLN),

n�

 b� (
)� �0b� (
)� �n
!

p�!
�
A (
)0
�1A (
)

��1 �
A (
)0
�1 (E�i � E�i (
)) �0

�
;

as �gn = Op
�
n�1=2

�
due to the CLT: Since �gn (�) is continuous in � and � for any given 
; the

continuous mapping theorem and standard algebra yield that

n��gn

�b� (
) ;b� (
) ; 
� p�!
�
I +A (
)

�
A (
)0
�1A (
)

��1
A (
)0
�1

�
(E�i � E�i (
)) �0:

The term in the �rst brackets in the right hand side is positive de�nite and E�i (
) = E�i if

and only if 
 = 
0: Therefore, p limn!1 n2� �Jn

�b� (
) ;b� (
) ; 
� is continuous and uniquely
minimized at 
 = 
0 and the convergence is uniform, which implies the consistency of 
:

Convergence rate and asymptotic normality: Recall the de�nition of �Jn (�) in (8)

and let Jn (�) = E (gi (�))
0WnE (gi (�)) : Also recall Assumption 3 and the de�nition of G in it

and note that G0
�1G is nonsingular and �nite and that

G
l�k

= (G�; G�; G
) =

�
�E�0i;�E� 0i;�

@

@

E�i (
0)

0 �n

�
:

And let Dn = 2��1n G0Wn�gn; where �n is a 2k1 + 2 dimensional diagonal matrix whose �rst

2k1 + 1 diagonals are ones and the other element is n�. We �rst claim that for any hn ! 0

sup
j���nj�hn

p
nRn (�)

1 +
p
n j� � �nj

= op (1) ; (33)

where

Rn (�) = �Jn (�)� �Jn (�n)� Jn (�)�D0
n (� � �n) :

Note that �nDn = Op
�
n�1=2

�
from CLT and Jn (�) = 2 (� � �n)0 ��1n G0WnG�

�1
n (� � �n) +

o
�
j� � �nj2

�
: Then, using ��1n

�b� � �n� instead of b�� �0, the same line of argument as in the
proof of Theorem 7.1 in Newey and McFadden (1994) yields that ��1n

�b� � �n� = Op
�
n�1=2

�
:

Let e� � �n = (G0WnG)
�1G0Wn�gn; then it follows that e� � �n � ��1n

�b� � �n� = op
�
n�1=2

�
:

Therefore, we obtain the limit distribution as that of
p
n
�e� � �n�, that is,N �0; �G0
�1G��1� :
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Proof of (33) De�ne a centered empirical process

"n (�) =
p
n (�gn (�)� Egi (�)� �gn)

and decompose Rn to obtain a bound (see the proof of Theorem 7.2 of Newey and McFadden

for details) such that
p
nRn (�)

1 +
p
n j� � �nj

�
5X
j=1

rjn (�) ;

where

r1n (�) =
�
2 + j� � �nj =

p
n
� ��"n (�)0Wn"n (�)

�� = �1 +pn j� � �nj�
r2n (�) =

����Egi (�)�G��1n (� � �n)
�0
Wn

p
n�gn

��� = �j� � �nj �1 +pn j� � �nj��
r3n (�) =

��pn (Egi (�) + �gn)0Wn"n (�)
�� = �1 +pn j� � �nj�

r4n (�) =
��Egi (�)0Wn"n (�)

�� �= j� � �nj
r5n (�) =

p
n
��Egi (�)0 (Wn �W ) Egi (�)

�� = �j� � �nj �1 +pn j� � �nj�� :
Let hn ! 0 be any arbitrary sequence. First, note that supj���nj�hn j"n (�)j = op (1) if the

empirical process
p
n (�gn (�)� Egi (�)) is stochastically equicontinuous. However, gi (�) is a

sum of four terms and the �rst is free of � and the next two are linear in � and �, leaving only

the last term to check for the stochastic equicontinuity. Since � is bounded and each element

in �i (
) is of the type, �it1 fqit > 
g ; we need to show that the empirical process indexed

by the type is stochastically equicontinuous. However, the indicator functions of half intervals

constitute a Vapnik-Chervonenkis (VC) class and Theorem 2.14.1 of van der Vaart and Wellner

(1996) yields the desired result by choosing an envelope function, j�itj 1 fjqit � 
0j � hng :
Next, note that

sup
j���nj�hn

p
nEgi (�) =

�
1 +

p
n j� � �nj

�
� sup
j���nj�hn

jEgi (�)j = j� � �nj = O (1) ;

due to the di¤erentiability of Egi (�). For the same reason, supj���nj�hn
��Egi (�)�G��1n (� � �n)

�� = j� � �nj =
o (1) : Therefore, these and the Cauchy-Schwarz inequality yield that supj���nj�hn jrjn (�)j =
op (1) for all j.

B.2 2SLS

In this section, many variables and processes are indexed by two di¤erent types of parameters,

the reduced form parameter b and the structural form parameter �, for instance, eit (�; b),

Hit (�; b), Mn (�; b), Mn (�; b), and so on. As in previous sections, we make the following
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notational convention, where we write for instance eit = eit (�0; b0), eit (�) = eit (�; b0), andbeit (�) = eit

�
�;bb� and the same for the other terms.

Now, we turn to the proof of main theorem.

Proof of Theorem 3. We follows the standard three-step approach of establishing consis-

tency, convergence rate, and asymptotic distribution in sequel.

Consistency We show that b� = �n + op (1) : Recall that

eit (�) = eit � (� � �0)0Hit � (� � �n)0
�
F 0it1it

�
� [1it (
)� 1it]0 Fit�; (34)

and let

Mn (�) =

TX
t=t0

E
�
e2it (�)

�
:

Then, it is su¢ cient to show (i) sup�2�
��� bMn (�)�Mn (�)

��� p�! 0 and (ii) Mn (�) is continuous

and has a unique minimum at �n. For (ii), note that Mn (�) is continuous everywhere, twice

di¤erentiable everywhere but 
 = 
0, and the second derivative with respect to � and � is

positive de�nite uniformly in 
 by Assumption 8. Furthermore, direct calculation reveals that

@Mn (�) =@
 is positive if 
 > 
0 and negative if 
 < 
0 in a neighborhood of �n: Since the

conditional mean is the minimizer of the mean squared errors, �n becomes the unique minimizer

of Mn (�) in the compact set, �. For (i), note that

sup
�2�

��� bMn (�)�Mn (�)
��� � sup

�2�

��� bMn (�)�Mn (�)
���+ sup

�2�
jMn (�)�Mn (�)j

p�! 0

Convergence of the �rst term following the inequality is delegated to the proof on conver-

gence rate below, while the convergence of the second is a standard ULLN, e.g. Newey and

McFadden�s (1994, Lemma 2.4). Thus, the consistency proof is complete.

Convergence rate We verify the conditions of Theorem 3.4.1 in van der Vaart and

Wellner (1996) with the distance function de�ned by

dn (�; �n) = j� � �0j+ j� � �nj+ j
 � 
0j1=(2�4�) :

In particular, in terms of maximization, we need to show that (using their notation), for

�n < � < �

sup
�=2<dn(�;�n)��

fMn (�)� fMn (�n) � ��2; (35)

and

E sup
�=2<dn(�;�n)��

p
n
h� eMn � fMn

�
(�)�

� eMn � fMn

�
(�n)

i
� C�n (�)
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for functions �n such that � ! �n (�) =�
� is decreasing on (�n; �) :Then, for rn � C��1n and

r2n�n
�
r�1n
�
�
p
n; and for any b� such that

eMn

�b�� � eMn (�n) +Op
�
r�2n
�
;

d
�b�; �n� = Op

�
r�1n
�
: For our case, we set rn =

p
n, �n = n�1=2, and �n (�) = �. Because

any estimator b� satisfying eMn

�b�� � eMn (�n) + Op
�
r�2n
�
has the convergence rate of r�1n and

rn =
p
n; the maximizer of bMn (�) such that

��� eMn (�)� bMn (�)
��� = Op

�
n�1

�
has the same

convergence rate of r�1n in terms of the distance dn:

De�ne

rit (�; b) := eit (�; b)� eit (�)

= (Hit (b)�Hit)0 �0 � 10it (Fit (b)� Fit) �n
� (Hit (b)�Hit)0 (� � �0)� 10it (Fit (b)� Fit) (� � �n)

� (1it (
)� 1it)0 (Fit (b)� Fit) �;

then,

bMn (�)�Mn (�) =
1

n

nX
i=1

TX
t=t0

�
r2it

�
�;bb�+ 2eit (�) rit ��;bb�� :

However, the �rst term 1
n

Pn
i=1

PT
t=t0

r2it

�
�;bb� = Op

�
n�1

�
uniformly in � in a neighborhood of

�0 by applying the ULLN, the
p
n-consistency of bb and the di¤erentiability of F in Assumption

4. For the second term, note that, proceeding similarly by expansion of F and H and applying

the CLT and ULLN, 1n
Pn
i=1

PT
t=t0

eitrit

�
�;bb� = Op

�
n�1

�
uniformly in � in a neighborhood

of �0; where eit is the �rst term in the expansion of eit (�) in (34) : Then,bMn (�) =Mn (�)� Rn
�
�;bb�+Op �n�1� ; (36)

where Rn (�; b) = 2
n

Pn
i=1

PT
t=t0

rit (�; b)
�
(� � �0)0Hit + (� � �n)0 (F 0it1it) + [1it (
)� 1it]

0 Fit�
�
:

Since bb is square root n consistent, we may consider the process over the expanded pa-
rameter space  2 �n � Bn; where �n = f� : dn (�; �n) � �g for some � > n�1=2 and Bn =

fb : jb� b0j � K=
p
ng for some K < 1: Note that  n =

�
�0n; b

0
0

�0 should correspond to �n in
van der Vaart and Wellner�s Theorem 3.4.1. Accordingly, from (36) we de�ne

eMn ( ) = �Mn (�) + Rn (�; b) ; (37)

for which we multiplied �1 to make it a maximization problem. Then, it is su¢ cient to verify
the above conditions of Theorem 3.4.1 for eMn ( ). Accordingly, letfMn ( ) = E eMn ( ) :
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and check the �rst condition (35). Note that fMn ( n) = �Mn (�n) ; and

fMn ( ) = �Mn (�) + 2E

TX
t=t0

rit (�; b)
�
(� � �0)0Hit + (� � �n)0

�
F 0it1it

�
+ [1it (
)� 1it]0 Fit�

�
;

whose last term is O
�
n�1=2

�
due to Assumption 4 and the fact that jb� b0j � K=

p
n: Thus, it

is enough to consider Mn (�) : However, as shown in the consistency proof, Mn (�) is quadratic

around �n in terms of the distance dn and it satis�es the condition (35) :

The maximal inequality for the empirical process
p
n
�� eMn � fMn

�
( )�

� eMn � fMn

�
( n)

�
is the second condition to check. Consider Mn (�) ; the �rst term of eM in (37) : Then, we need

to check the maximal inequality for the centered empirical process:

1p
n

nX
i=1

TX
t=t0

�
e2it (�)� e2it � Ee2it (�) + Ee2it

�
:

The function e2it (�) � e2it is the sum of linear and quadratic functions of � and � multiplied

by [1it (
)� 1it] : This is a VC class of functions. In this case, a maximal inequality bound is
given by the L2 norm of an envelope. We choose the following envelope:

2 jeitj jFitj �+ jFitj2 �2 + 2 jeitj j1it (
)� 1itj jFitj (j�nj+ �) + j1it (
)� 1itj jFitj2 (j�nj+ �)2 ;

for some C <1: The �rst two terms are clearly O (�) in L2 norm. As the last two terms can
be treated in a similar way, we only need to show that

E1=2
n
jeitj2 jFitj2

�
1
�
jqit � 
0j � �2�4�

�
+ 1

�
jqit�1 � 
0j � �2�4�

��o
(j�nj+ �) = O (�) :

But, the standard algebra using the change-of-variables yields that

E1=2 jeitj2 jFitj2 1
�
jqit � 
0j � �2�4�

�
j�nj = O

�
�1�2� j�0jn��

�
= O (�) ;

where the last equality follows since � > n�1=2:

Turning to Rn (�; b) ; we note that Rn (�n; b0) = 0 and apply the Taylor series expansion to
rit (�; b) with respect to b: Then, as bb is apn-consistent estimator, the ULLN is su¢ cient to

satisfy the maximal inequality in (35) :

The last condition to be checked is:

eMn

�b�;bb� � eMn (�n; b0) +Op
�
n�1

�
:
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But, for
���bb� b0��� � K=

p
n; we have

eMn

�b�;bb� =Mn

�b�;bb�+Op �n�1�
�Mn

�
�n;bb�+Op �n�1�

= eMn

�
�n;bb�+Op �n�1�

= eMn (�n; b0) +Op
�
n�1

�
;

where we have shown the �rst and third equality in (36) ; the second inequality by construction,

and the last equality follows because Mn (�; b) does not depend on b for � = �n: Thus,

p
ndn (�; �0) =

p
n
�
j�1 � �10j+ j
 � 
0j1=(2�4�)

�
= Op (1) :

Asymptotic distribution: Let h be a k-dimensional vector and rn be the k-dimensional

vector whose �rst k� 1 elements are
p
n and the last element is n1�2�: Accordingly, partition

h = (h0c; h
)
0 : We derive the weak convergence of the centered and rescaled criterion function

n
� bMn

�
�n + h:=rn;bb��Mn

�
�n;bb�� (38)

on fh : jhj � Kg for an arbitrary K < 1; where := is the elementwise division. Then, the
argmax continuous mapping theorem (e.g. van der Vaart and Wellner, 1996) will yield the

desired result.

Let ei = (eit0 ; :::; eiT )
0 ; hn = h:=rn; and �2i

�
h
n

2��1; b
�
denote the bottom k1 + 1 rows of

�i (
; b) evaluated at 
 = 
0 + h
n
2��1, and de�ne

mni (h; b) =
p
n [ei (�n + hn; b)� ei (b)]

= �i (b)
0 hc �

p
n
�
�2i
�
h
n

2��1; b
�
� �2i (b)

�0 �
�n + h�=

p
n
�
:

Writing bei = ei

�bb�, bmni (h) = mni

�
h;bb�, and ei = ei (b0) as before, we have:

n
�
Mn

�
�n + hn;bb��Mn

�
�n;bb�� = 1

n

nX
i=1

jbmni (h)j2 �
2p
n

nX
i=1

be0i bmni (h) : (39)

Consider the last term in (39). By Assumption 4 and (26) ; we apply the mean value theorem

to get an expansion:

1p
n

nX
i=1

bmni (h)
0 bei = 1p

n

nX
i=1

bmni (h)
0�"i

+
1

n

nX
i=1

bmni (h)
0
@�i

�eb�0 �10
@b0

 
E (FiF0i)

�1
p
n

nX
i=1

Fi�i + op (1)

!
: (40)
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Next, expand its �rst term in (40):

1p
n

nX
i=1

bmni (h)
0�"i

=
1p
n

nX
i=1

�
h0c�i

�bb�� n 1
2
�� (�0 + o (1))

0
�
�2i

�
h
n

2��1;bb�� �2i �bb����"i
=

1p
n

nX
i=1

h0c�i�"i �
1p
n

nX
i=1

n
1
2
���00

�
�2i
�
h
n

2��1�� �2i��"i + op (1) ; (41)

where the last equality is due to the asymptotic normality of bb. The CLT applies for the �rst
term in (41) : For the weak convergence of the second term, we need to consider a sequence of

classes of functions:

Gn =
n
gn (h
) = n

1
2
���00

�
�2i
�
h
n

2��1�� �2i��"i : jh
 j < K
o
;

with a sequence of envelope functions,

Gn = n
1
2
�� j�0j j�"ij jF (zi)j j1i (
)� 1i (
0)j ;

and apply Theorem 2.11.22 of van der Vaart and Wellner (1996). Recall that �2i
�
h
n

2��1� is
the collection of F 0it1it

�
h
n

2��1� over all t: As the indicator functions (and those multiplied by a
random variable) constitute a VC class of functions, they satisfy the uniform entropy condition

of Theorem 2.11.22. Since �2i (
) has continuous �rst and second moments, it remains to verify

the conditions on the envelope Gn: It is clear that EG2n = O (1) and the Lindeberg condition

is satis�ed since

E
�
G2n1

�
jGnj > �

p
n
��

� E2n1�2� j�0j2
TX

t=t0�1
1
�
jqit � 
0j � h
n

�1+2��
�
�
j�"ij2 jF (zi)j2

�
1

�
j�"ij jF (zi)j >

�n�

2 (T + 1) j�0j

�
� O

�
n���

�
= o (1) :

due to Assumption 7. We will specify the covariance kernel below after noting that the second

term in (40) expands by the standard Taylor series expansion to yield

2p
n

nX
i=1

be0i bmni (h)

=
�
I � Eemni (h) [IT 
 (�
 �0)]0 F0iE

�
FiF0i

��1� 2p
n

nX
i=1

" emni (h)
0�"i

Fi�i

#
+ op (1) ;
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where emni (h) = h0c�i � n
1
2
���00

�
�2i
�
h
n

2��1�� �2i�. Turning back to the covariance kernel
of the empirical process indexed by Gn above and the covariance between the process indexed
by hc and the process indexed by h
 ;we note that the latter vanishes due to the di¤erence

in the convergence rates. For this, it is enough to observe that each element in the matrix

E
�
�2i
�
h
n

2��1�� �2i� is bounded by, up to a constant,
E1
�
jqit � 
0j � h
n

2��1	 = Z 1 fjqj � 1g p
�
h
n

2��1q + 
0
�
h
n

2��1dq = O
�
n2��1

�
;

due to Assumption 2, where the change-of-variable is applied for the �rst equality. By the

same reasoning,

Eemni (h)
@�i

�eb�0 �10
@b0

= h0cE�i
@�0i�10
@b0

+ o (1) ;

and the limit of 1n
Pn
i=1 jbmni (h)j2 is the sum of a quadratic function of hc and a function of

h
 without any interaction term. This implies the asymptotic independence between
�b�0;b�0�

and b
: For the former, note that gn (h
) gn ��h
� = 0 unless h
 and �h
 have the same sign. For
h
 > �h
 � 0;

n�1+2�E
�
gn (h
) gn

�
�h


��
= �00

TX
r;t=t0

E

�
�"it�"irF

0
it

�
1it
�

0 + h
n

2��1�� 1it� h1ir �
0 + �h
n2��1�� 1iri0 Fir� �0:
(42)

The evaluation of the expectation can be done in the same way as above. Thus, those expec-

tations involving the products of indicators of qit and qit0 with t 6= t0 will vanish. After some

algebra, we can show that the limit of (42) is �00V2 (
0) �0
�
h
 � �h


�
; and more generally

�00V2 (
0) �0

���h
 � �h
��� 1nsgn (h
) = sgn��h
�o ;
where V2 (
) is given in Section 4. This functional form of the covariance kernel implies that

the limit Gauss process is a two-sided Brownian motion originating from zero.

Now, applying a standard ULLN to 1
n

Pn
i=1

PT
t=t0

mit (h; b)
2, and using the consistency ofbb and the same line of arguments as above, we may conclude that

1

n

nX
i=1

jbmni (h)j2
p�! h0cE�i�

0
ihc +M2 (
0) jh
 j :

Given the structure of the weak limit of (38), the minimizer bhc is normally distributed
and the argmin bh
 is that of a two-sided Brownian motion added by a linear trend. The
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representation in main body of the theorem follows from Hansen (2000), in which it is shown

for a two-sided standard Brownian motion W and for any positive constants c1 and c2 that

argmin

2R

[c1 j
j � 2
p
c2W (
)] =

c2
c21
argmin

2R

�
j
j
2
�W (
)

�
:

Furthermore, the same line of proof as in Theorem 2 of Hansen (2000) applies to the convergence

of LRn (
0) given the results obtained above about b�1 and b
: This completes the proof.
Proof of Corollary 4. The consistency proof is almost identical to Theorem 3, and

thus omitted. For the convergence rate of the estimator, recall that we need to verify two

conditions, one is the condition on the limit criterion function and the other is the condition

on the maximal inequality of the empirical process part. The latter is identical to that in

Theorem 3 since the sum of two VC classes of functions is VC. For the former note that the

current case has another component in the regression function than in Theorem 3, which is

1 fqit�1 > 
g. This generates a kink in the limit criterion function at 
0 as 1 fqit > 
g does.
Therefore, the limit criterion function has the same feature as the one in Theorem 3. Thus,

we get the same rate of convergence as in Theorem 3.

Finally, turning to the asymptotic distribution, we note that the argument for the stochastic

equicontinuity of the rescaled criterion function is the same as in Theorem 3. To get the

covariance kernel of the limit Gaussian process note that, as discussed in (42), the covariances

between two terms involving two indicators of qit and qit0 with t 6= t0 vanish, yielding the

covariance kernel as desired. Details are omitted to avoid repetition.

B.3 Testing

Proof of Theorem 2. Applying the standard ULLN and the continuous mapping theorem

to (32), we have:

Wn (
))

24 Z 0
�1=2G (
)0
�
G (
)0
�1G (
)

��1
R0
h
R
�
G (
)0
�1G (
)

��1
R0
i�1

� R
�
G (
)0
�1G (
)

��1
G (
) 
�1=2Z;

35
where G (
) = (G� ; G� (
)) and Z is the standard normal variate of dimension l; which is the

number of moment conditions.

Proof of Theorem 5. As the model is linear for each 
; the marginal convergence of
p
nb� (
)

is standard and the asymptotic distribution is given as in Theorem 3. The �nite dimensional

convergence for any �nite collection of 
 values is then also standard. Therefore, it remains to
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show the stochastic equicontinuity of the process. Recall the expression from (23) that b� (
)b� (
)
!
=

 
1

n

nX
i=1

TX
t=t0

Xit
�bbt; 
�Xit �bbt; 
�0!�1 1

n

nX
i=1

TX
t=t0

Xit
�bbt; 
��yit! ;

where Xit (bt; 
) =
�
Ht (zit; bt)

0 �
�
Ft (zit; bt)

0 1it (
)
�0�0

: The uniform convergence of the �rst

sum can be derived as in the proof of Theorem 3 using the ULLN and the consistency of bb
in Assumption 4. Thus, the stochastic equicontinuity of

p
n

��b� (
)� � (
)�0 ;b� (
)0� implies
that of

p
nb� (
). Since the functions Ht and Ft are twice continuously di¤erentiable in bt;it

ends up with verifying the stochastic equicontinuity of the empirical process of the types of

functions f (zit) 1 fqit > 
g ; where f is some known transformation of zit: However, this is a
VC class of function, which implies the stochasting equicontinuity of the empiricl process of

this class of functions, see e.g. van der Vaart and Wellner�s (1996) Section 2.6.
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Table 1: MSE of FD-GMM estimators

FD-GMM Averaging

DGP n 
 � �1 �2 
 � �1 �2

Jump 50 0.063 0.077 0.179 0.498 0.115 0.096 0.185 0.566

100 0.089 0.075 0.207 0.600 0.087 0.066 0.172 0.517

200 0.066 0.068 0.174 0.536 0.067 0.056 0.144 0.474

Cont. 50 0.077 0.320 0.588 0.863 0.009 0.112 0.292 0.273

100 0.079 0.383 0.677 1.002 0.041 0.203 0.439 0.591

200 0.083 0.383 0.662 0.963 0.060 0.289 0.542 0.743

Table 2: Bias of FD-GMM estimators

FD-GMM Averaging

DGP n 
 � �1 �2 
 � �1 �2

Jump 50 �0:041 0:005 �0:044 0:100 �0:269 0:199 �0:151 �0:390
100 �0:047 0:007 �0:044 0:095 �0:106 0:073 �0:070 �0:093
200 �0:029 �0:011 �0:018 0:098 �0:060 0:016 �0:034 0:033

Cont. 50 0.057 0.180 -0.288 0.184 0.055 0.105 -0.198 0.163

100 0.064 0.145 -0.271 0.199 0.057 0.099 -0.231 0.210

200 0.074 0.190 -0.298 0.162 0.067 0.158 -0.270 0.170

Table 3: Standard Error of FD-GMM estimators

FD-GMM Averaging

DGP n 
 � �1 �2 
 � �1 �2

Jump 50 0.247 0.277 0.421 0.699 0.207 0.238 0.402 0.644

100 0.294 0.273 0.452 0.769 0.275 0.246 0.409 0.713

200 0.255 0.261 0.417 0.726 0.252 0.236 0.377 0.688

Cont. 50 0.272 0.537 0.711 0.911 0.080 0.317 0.503 0.497

100 0.274 0.601 0.777 0.981 0.194 0.440 0.621 0.739

200 0.279 0.589 0.757 0.968 0.236 0.514 0.685 0.845
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Table 4: MSE of FD-GMM estimators (restricted)

FD-GMM Averaging

DGP n 
 � � 
 � �

Jump 50 0.105 0.102 0.124 0.050 0.095 0.132

100 0.106 0.116 0.142 0.075 0.097 0.122

200 0.095 0.080 0.102 0.076 0.070 0.088

Cont. 50 0.033 0.075 0.155 0.019 0.067 0.143

100 0.039 0.094 0.192 0.030 0.085 0.177

200 0.039 0.082 0.170 0.034 0.080 0.168

Table 5: Bias of FD-GMM estimators (restricted)

FD-GMM Averaging

DGP n 
 � � 
 � �

Jump 50 0.009 0.051 -0.008 -0.029 -0.082 0.143

100 0.012 0.064 -0.047 0.021 0.031 -0.010

200 0.028 0.052 -0.047 0.025 0.041 -0.035

Cont. 50 0.013 -0.049 0.103 0.092 -0.008 0.038

100 0.021 -0.081 0.144 0.052 -0.053 0.098

200 0.014 -0.064 0.116 0.028 -0.051 0.094

Table 6: Standard Error of FD-GMM estimators (restricted)

FD-GMM Averaging

DGP n 
 � � 
 � �

Jump 50 0.324 0.315 0.352 0.222 0.297 0.335

100 0.325 0.334 0.374 0.273 0.310 0.350

200 0.307 0.278 0.316 0.275 0.261 0.295

Cont. 50 0.182 0.270 0.380 0.102 0.259 0.376

100 0.196 0.295 0.414 0.164 0.286 0.409

200 0.197 0.279 0.396 0.183 0.278 0.399
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Table 7: Coverage Frequency of FD-GMM estimators

FD-GMM Averaging

DGP h n 
 � �1 �2 
 � �1 �2

Jump 1/2 50 0.876 0.731 0.736 0.647 0.878 0.641 0.753 0.705

100 0.931 0.895 0.897 0.847 0.942 0.884 0.907 0.871

200 0.937 0.917 0.950 0.897 0.939 0.930 0.956 0.914

1 50 0.960 0.857 0.886 0.716 0.995 0.821 0.894 0.778

100 0.978 0.962 0.971 0.899 0.991 0.946 0.973 0.928

200 0.979 0.963 0.967 0.933 0.983 0.969 0.979 0.947

3/2 50 0.986 0.882 0.928 0.814 1.000 0.805 0.910 0.867

100 0.995 0.968 0.977 0.936 0.998 0.969 0.980 0.954

200 1.000 0.971 0.982 0.971 1.000 0.973 0.985 0.974

Cont. 1/2 50 0.427 0.473 0.621 0.518 0.904 0.700 0.744 0.694

100 0.525 0.716 0.804 0.698 0.772 0.819 0.857 0.798

200 0.585 0.796 0.894 0.798 0.691 0.847 0.926 0.839

1 50 0.811 0.592 0.745 0.624 0.990 0.780 0.871 0.799

100 0.898 0.795 0.916 0.806 0.980 0.881 0.947 0.876

200 0.900 0.862 0.947 0.868 0.947 0.905 0.965 0.894

3/2 50 0.965 0.680 0.810 0.669 0.999 0.847 0.904 0.865

100 0.997 0.892 0.944 0.843 1.000 0.937 0.970 0.916

200 1.000 0.917 0.969 0.889 1.000 0.941 0.980 0.914

Note: These are empirical coverage frequencies of 95% nominal con�dence in-

tervals. The bandwidth for the asymptotic variance estimation in equation (12) is

selected by h times Silverman�s rule of thumb.
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Table 8: A dynamic threshold panel data model of investment

xit n qit Cash Flow -Leverage Tobin Q

Lower Regime (�1)

I�1 0:580
(0:132)

0:590
(0:123)

0:382
(0:226)

CF 0:245
(0:121)

0:600
(0:118)

�0:044
(0:209)

Q �0:017
(0:016)

�0:013
(0:014)

0:368
(0:173)

L �0:128
(0:049)

�0:029
(0:087)

�0:386
(0:184)

Upper Regime (�2)

I�1 �0:215
(0:480)

0:253
(0:158)

0:365
(0:142)

CF 0:012
(0:128)

�0:043
(0:146)

0:217
(0:084)

Q 0:028
(0:021)

0:021
(0:014)

�0:031
(0:010)

L 0:825
(0:195)

2:968
(0:725)

0:194
(0:095)

Di¤erence (�)

I�1 �0:796
(0:561)

�0:336
(0:439)

�0:016
(0:325)

CF �0:233
(0:154)

�0:643
(0:203)

0:261
(0:264)

Q 0:045
(0:035)

0:034
(0:024)

�0:401
(0:175)

L 0:953
(0:207)

2:998
(0:745)

0:581
(0:147)

Threshold 0:358
(0:039)

0:100
(0:033)

0:561
(0:244)

Upper Regime (%) 19:4 73:6 58:9

Linearity (p-value) 0:0 0:0 0:0

J-test
(p-value)

60:1
(0:004)

33:3
(0:185)

45:4
(0:091)

No. of IVs 36 36 43
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Table 9: E¢ ciency Comparison of FD-GMM and FD-2SLS Estimators

FD-GMM FD-2SLS

n bias ln (RMSE) bias ln (RMSE)

DGP 1 50 -0.002 -2.6 0.002 -4.7

100 0.003 -2.6 0.001 -4.9

200 0.002 -2.7 0.0 -5.0

DGP 2 50 0.007 -1.7 0.009 -3.2

100 -0.001 -1.8 0.003 -4.0

200 -0.006 -1.9 0.002 -4.6
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