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Summary 

1. Fragmentation of tropical forests is a major driver of the global extinction crisis. A 

key question is understanding how fragmentation impacts phylogenetic diversity, 

which summarises the total evolutionary history shared across species within a 

community. Conserving phylogenetic diversity decreases the potential of losing 

unique ecological and phenotypic traits, and plays important roles in maintaining 

ecosystem function and stability.  

2. Our study was conducted in landscapes within the highly fragmented Brazilian 

Atlantic forest. We sampled living trees with DBH ≥4.8 cm in 0.1 ha plots within 

28 fragment interiors and twelve fragment edges to evaluate the impacts of 

landscape configuration, composition and patch size, as well as edge effects, on 

phylogenetic diversity indices (PD, a measure of phylogenetic richness; MPD, 

phylogenetic distance between individuals in a community in deep evolutionary 

time; and MNTD, phylogenetic distance between each individual and its nearest 

phylogenetic neighbour).  

3. We found that PD and MPD were correlated with species richness, while MNTD 

was not. Best models suggest that MPD was positively related to edge density 

and negatively related to the number of forest patches, but that there was no 

effect of landscape configuration and composition metrics on PD or MNTD, or on 

standardized values of phylogenetic structure (sesPD, sesMPD, sesMNTD), 

which control for species richness. Considering all selected models for 

phylogenetic diversity and structure, edge density and number of forest patches 

were most frequently selected.  

4. With increasing patch size, we found lower PD in interiors but no change at 

edges, and lower sesMNTD regardless of habitat type. Additionally, PD and 

sesMNTD were higher in interiors than at edges.  

5. Synthesis. Changes in MPD and sesMNTD suggest that extirpation of species at 

edges or in highly fragmented landscapes increases the dominance of species 

within a subset of clades (phylogenetic clustering), likely those adapted to 

disturbance. Smaller patch sizes are phylogenetically diverse and overdispersed, 

probably due to an invasion of edge-adapted species. Conservation must 
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enhance patch area and connectivity via forest restoration; pivotally, even small 

forest patches are important reservoirs of phylogenetic diversity in the highly 

threatened Brazilian Atlantic forest.  

 

Key-words: Habitat fragmentation, habitat loss, landscape structure, phylogenetic 

structure, edge effect, Brazilian Atlantic Forest 

 

Tweetable Abstract:  Tree evolutionary history is best saved in unfragmented 

landscapes in the threatened Brazilian Atlantic forest 

 

Introduction 

Human modification of tropical landscapes is one of the greatest threats to global 

biodiversity (Lewis, Edwards & Galbraith 2015).  Over 150 Mha of tropical forest was 

converted to farmland between 1980 and 2012 (Gibbs et al. 2010; Hansen et al. 2013), 

driving a dramatic loss of species in cleared areas (Gibson et al. 2011). What remains is 

a landscape dominated by fragmentation processes, with 25% of remaining rainforest in 

the Amazon and Congo Basins and 91% in the Brazilian Atlantic forest within 1 km of an 

edge (Haddad et al. 2015). Remaining tropical forests are thus increasingly isolated, 

persist in increasingly smaller and more irregular patches, and have greater edge 

effects (Fahrig 2003; Laurance et al. 2006; Arroyo-Rodríguez et al. 2013). 

 

Fragmentation drives both shifts in forest structure and biodiversity. There is an 

increase in the abundance of trees with low wood density (Laurance et al. 2006) that 

drive a decay in functional diversity in just three decades since isolation (Benchimol & 

Peres 2015), while edge effects that penetrate into the forest, from wind to woody vines, 

increase tree mortality (Laurance et al. 2002). Fragments thus have reduced carbon 

stocks compared to contiguous forest (Putz et al. 2014), particularly at fragment edges 

(Magnago et al. 2015a; Haddad et al. 2015).  In turn, fragmentation drives the loss of 

species richness and changes in species composition when compared to contiguous 
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habitat (Laurance et al. 2006, 2007; Arroyo-Rodríguez et al. 2013; Magnago et al. 

2014), in smaller versus larger fragments (Laurance et al. 2011), at edges versus 

interiors (Magnago et al. 2014), and in more isolated patches (Fahrig 2003; Magnago et 

al. 2015b). These changes are typified by the replacement of rare interior forest species 

with edge-tolerant generalist species (Arroyo-Rodríguez et al. 2013; Carrara et al. 2015) 

and exotic species (Turner 1996).  

 

While much of the knowledge of the effects of fragmentation on biodiversity is 

based on species richness, abundance, and composition, it is also important to 

understand the impacts of fragmentation on phylogenetic diversity—the total 

evolutionary history shared across all species within a community (Arroyo-Rodríguez et 

al. 2012; Cisneros, Fagan & Willig 2015a; Frishkoff et al. 2014). Incorporating measures 

of evolutionary distinctiveness into conservation planning can help us to preserve as 

much of the tree of life as possible (Mace, Gittleman & Purvis 2003; Redding & Mooers 

2006), while conserving phylogenetic diversity decreases the chance of losing unique 

phenotypic and ecological traits (Jetz et al. 2014), and provides benefits for ecosystem 

function and stability (Dinnage et al. 2012; Cadotte 2013). 

 

Reviewing the literature, we identified only six studies on trees and one study on 

bats that used phylogenetic metrics to evaluate the effects of forest fragmentation 

(Table S1), and we discovered that there is no consensus in the range of fragmentation 

metrics and phylogenetic diversity indices used. Of these studies, two showed that 

forest fragments have lower phylogenetic diversity than contiguous landscapes (Santos 

et al. 2014; Munguía-Rosas et al. 2014).  Four investigated the effect of fragment area 

and/or amount of forest cover on phylogenetic diversity and phylogenetic structure with 

conflicting findings:  With declining fragment size or percentage forest, bats in 

Caribbean lowlands, Costa Rica, lost phylogenetic diversity (Cisneros, Fagan & Willig 

2015a), trees in the Brazilian Atlantic both lost (Andrade et al. 2015) and retained 

(Santos et al. 2010) phylogenetic diversity, and trees in Los Tuxtlas, Mexico, retained 

phylogenetic diversity (Arroyo-Rodríguez et al.  2012). Finally, two studies investigated 

the impact of edges on tree phylogenetic diversity, one revealing reductions at fragment 
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edges (Santos et al. 2010), the other no difference between edge and interior (Benitez-

Malvido et al. 2014). 

 

Beyond the impacts of fragment area and edge effects, the degree of isolation 

from other fragments and fragment shape are also likely to determine impacts on 

phylogenetic diversity. This is because the retention of species in fragments can be 

influenced by the level of isolation (Boscolo & Metzger 2011; Magnago et al. 2015b) and 

the shape of fragments (Hill & Curran 2003). However, we identified just one study that 

investigated the impacts of isolation and fragment shape (Cisneros, Fagan & Willig 

2015a).  Cisneros, Fagan & Willig (2015a) found that the phylogenetic diversity of bats 

increased as proximity between forest patches and shape irregularity of patches 

decreased. Thus a key question still remains, which is how the phylogenetic diversity of 

communities is affected by fragment isolation and shape. 

 

Here we focus on trees species of the imperiled Brazilian Atlantic Forest. Trees 

are the best-known group for understanding fragmentation effects on phylogenetic 

diversity (Table S1) and they are also important for habitat structure (Boscolo & Metzger 

2011; Magnago et al. 2014), carbon storage (Nascimento & Laurance 2004; Laurance 

et al. 2006; Magnago et al. 2015b), and represent a significant part of the species 

diversity in the tropics (Banks-Leite et al. 2014). Previous studies allow us to create two 

hypotheses about expected changes in the phylogenetic diversity of tree communities 

that are under the effects of fragmentation, including high irregularity of shape, isolation 

and edge effects:  

 

(i) Considering previous studies that support the hypothesis of low phylogenetic 

conservatism in functional traits vulnerable to fragmentation processes (Santos et 

al. 2010; Arroyo-Rodríguez et al. 2012), we hypothesized that in recently 

fragmented landscapes, such as those used in this study (i.e., <100 years), 

metrics of landscape configuration, composition and habitat loss (i.e., fragment 

size) would have driven species losses randomly or uniformly throughout the 

phylogenetic tree rather than losses of entire lineages of trees, and;   
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(ii) Given the severe effects of abiotic filters commonly cited for edge habitat 

(Laurance et al. 2002; Magnago et al. 2015a), which commonly lead to tree 

species loss and altered species composition (Laurance et al. 2002; 2006), we 

hypothesized that a significant proportion of lineages of tree species may also be 

lost in fragment edge relative to interior habitat.  

 

Materials and methods 

Study sites  

Our 220 km long study area was based in Espírito Santo (19°3'48.02" S and 

39°58'58.52" W) northwards to southern Bahia (17°43'29.30" S and 39°44'26.60" W), 

east Brazil (Fig. 1 and see Table S2 for details). Remaining forests in the region are 

highly fragmented, situated in a landscape matrix of cattle pastures, and plantations of 

Eucalyptus spp., sugar cane, coffee, and papaya (Rolim et al. 2005). These forest areas 

are included in the Atlantic Forest domain (IBGE 1987; also termed Tableland forest, 

Rizzini 1979), typified by large flat areas rising slowly from 20 to 200 m a.s.l., and 

according to the Brazilian vegetation classification are Lowland Rain Forest (IBGE 

1987). The prevailing climate is wet tropical (Köppen climate classification), with low 

rainfall from April to September followed by high precipitation from October to March, 

and with minimal variation in climate across sampling sites: precipitation ranges from 

1,228 mm yr-1 in Espírito Santo (Peixoto & Gentry 1990) to ~1,403 mm yr-1 in Bahia 

(Gouvêa 1969), with similar average temperatures in the dry season (Espírito Santo 

~15.6°C; Bahia ~14°C) and the wet season (Espírito Santo ~27.4°C; Bahia ~23°C).  

 

Historically, the studied landscape remained well preserved until the 1950’s. 

Thereafter, Espírito Santo and Bahia experienced rampant clearcut logging and 

charcoal production, followed by agriculture (Garay & Rizzini 2004). The main 

deforestation period in our study area was thus between 1950s and early 1970s 

(Simonelli 2007), with conversion of forests primarily to sugar cane and cattle pastures. 

Because our fragments were 40 to 60 years old when sampled, extinction debts of 

some long-lived tree species are likely still to be paid. However, trees species 
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composition in the interior of smaller fragment alters rapidly (most within the first 10 

years since isolation) to reflect a more disturbed community (Laurance et al. 2002; 

Laurance et al. 2006), indicating that our time since isolation is sufficient to detect many 

important impacts of fragmentation. 

 

Data collection  

Fieldwork was conducted between January 2008 and July 2014 in 27 forest fragments 

that ranged in area from 13 to 23,480 ha (see Table S2).  Within each fragment, we 

sampled one randomly placed transect except for the second largest fragment of 17,716 

ha in which we sampled two transects separated by 4 km, positioned ≥200 m from the 

forest edge (28 transects in total; see Fig. 1 and Table S2). Additionally, within 11 of 

these fragments again spanning 13 to 23,480 ha, we sampled one transect again, two 

transects separated by 4 km were sampled in the 17,716 ha fragment, each positioned 

~5 m from the forest edge and each running perpendicular to the paired interior plot 

sampled within the same fragment (see Magnago et al. 2014 and Table S2). We thus 

have a dataset of 28 interior transects and 12 edge transects (i.e., paired with 12 of the 

28 interior transects). Each transect consisted of ten 10 × 10 m plots (0.1 ha in total) 

spaced at 20 m intervals. Thus our sample comprises 280 plots (2.8 ha) in fragment 

interiors and 120 plots (1.2 ha) in fragment edges. We only sampled primary forests, 

with no evidence of recent logging, although we cannot rule out the occurrence of 

limited logging several decades ago. 

 

Within each plot, we sampled all individuals living and rooted within our plots with 

diameter at breast height (DBH; 1.30 meters above ground height) ≥4.8 cm. Individuals 

that were not identified at the site were collected and classified into morphospecies, 

subsequently identified by morphological comparison in the Herbarium of Vale (CVRD) 

or botanical experts for their families. The botanical material collected in reproductive 

stage was deposited in the Herbarium of the Federal University of Viçosa, Minas Gerais 

(VIC) and CVRD.  
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Data analysis 

Landscape metrics 

Our landscape design followed the “patch-landscape” approach of McGarigal & 

Cushman (2002). In this design, all response variables (phylogenetic metrics) were 

measured for each transect within each forest patch, while the landscape configuration 

and composition metrics (explanatory variables; see below) were measured in a circular 

buffer of 2 km around each transect. This buffer size is large enough to include the wide 

variation of the explanatory variables (see Table S3), as well as being at a scale that 

comprises structural variation of trees (Rocha-Santos et al. 2016), variation in alpha- 

and beta-diversity of generalist and specialist bird species (Carrara et al. 2015), and 

variation in diversity, abundance and uniformity of bats (Arroyo-Rodríguez et al. 2016). 

 

In each buffer, we measured three metrics of landscape configuration, which 

describe geometric arrangement, isolation and position of fragment or matrix elements 

and which exhibit a wide variation in our landscapes (see Table S3): (1) landscape 

shape index – measures the degree of shape complexity of all fragments belonging to 

the same class (forest) across a landscape. For a given landscape, a low number 

means that fragments within a landscape are on average more regularly shaped and 

thus have less edge effects; (2) mean forest nearest neighbour – gives the average 

value of the forest nearest neighbour metric when considering all forest fragments within 

each buffer; and (3) edge density – measures the length (m) of all forest edges divided 

by the total area (ha) of the landscape (thus measured in m/ha). For a given landscape, 

a low number indicates lower edge effects within the landscape.  

 

Additionally we measured two metrics of landscape composition, which describe 

the quality or quantity of fragment or matrix elements that compose the landscape and 

which exhibit a wide variation in our landscapes (see Table S3): (4) forest cover – 

measures the percentage of the landscape covered by forest, with a high number 

reflecting largest remaining forest cover; and (5) number of forest patches – measures 
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the number of fragments within each landscape, thus indicating the degree of forest 

fragmentation. 

 

We identified the configuration and composition metrics of landscapes using the 

vegetation map of the Brazilian Atlantic forest (reference year 2005; www.sosma.org.br 

and www.inpe.br), developed by SOS Mata Atlântica/INPE (2015). This dataset depicts 

the spatial distribution of the main forest formations within this biome (see also 

Supplementary Methods, Text S1), and has been used to describe landscape structure 

via forest loss and fragmentation (Ribeiro et al. 2009) and to generate estimates of 

carbon loss due to habitat fragmentation (Pütz et al. 2014). However, omission and 

commission errors were detected after comparison with available very-high optical 

spatial resolution satellite data from 2012 (World Imagery 2015). These errors were 

then manually corrected to obtain the most accurate spatial delineation of the forest 

fragments within each circular buffer of 2 km. After correction, within each buffer we 

divided our landscape into forest (i.e. only Tableland forest) and non-forest (i.e. all other 

types of non-natural areas [matrix]). All forest fragments and non-forest matrix areas 

were then converted to raster format using the same spatial resolution (30 meters) used 

to generate the vegetation map of this biome with ArcGis (v 10.1).  

 

Posteriorly, we used the files generated in ArcGis to calculate configuration and 

composition metrics in FRAGSTATS (v 4.2; McGarigal & Ane 2012) using 2 km of 

source radius and the eight-cell neighbourhood rule. Among the wide range of metrics 

for landscape study offered in FRAGSTATS, many are comparative and difficult to use 

for biological interpretation (McGarigal & Ane 2012). In this sense, our selected metrics 

of fragmentation, habitat loss and edge are more directly related to our hypotheses and 

to the literature on landscape ecology (see Boscolo & Metzger 2011; Carrara et al. 

2015; Cisneros, Fagan & Willig 2015a; Cisneros, Fagan & Willig 2015b; Rocha-Santos 

et al. 2016).  
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Phylogeny construction 

 For the preparation of our phylogenetic tree, we constructed a list of all our 

family/genus/species according to APG III (2009). In the program Phylocom version 4.2 

(Webb et al. 2008), we then used the PHYLOMATIC function to return the phylogenetic 

hypothesis for the relationship between our 72 families, 273 genera and 604 species 

sampled in 6,802 tree individuals, using the new modified megatree 

R20120829mod.new for vascular plants from Gastauer & Meira-Neto (in press). In our 

phylogenetic hypothesis, more than two species per family or more than two genera of 

an unresolved family in R20120829mod.new were inserted as polytomies. Finally, to 

estimate the lengths of branches in millions of years for our ultrametric phylogenetic 

tree, we used the file "ages_exp", (Gastauer & Meira-Neto, in press) and the BLADJ 

algorithm in Phylocom program version 4.2 (Webb et al. 2008, see Fig. S1). 

 

Phylogenetic diversity metrics 

From our phylogenetic hypothesis, we calculated metrics that evaluate the 

evolutionary history present in our landscapes (Faith 1992; Webb et al. 2000; Webb et 

al. 2002): (i) phylogenetic diversity (PD); (ii) mean pairwise distance (MPD); (iii) mean 

nearest taxon distance (MNTD); (iv) standardized phylogenetic diversity (sesPD); (v) 

standardized mean pairwise distance (sesMPD); and (vi) standardized mean nearest 

taxon distance (sesMNTD). The standardized metrics are equivalent to PD, MPD and 

MNTD, but are standardized for species richness (Swenson 2014; Coronado et al. 

2015; see also Supplementary Methods, Text S2). PD is calculated based on the 

presence and absence of species, and measures the sum of evolutionary history in a 

community; MPD is weighted by abundance and measures the average phylogenetic 

distance between all combinations of pairs of individuals (including conspecifics); and 

MNTD is weighted by abundance and measures average phylogenetic distance 

between an individual and the most closely related non-conspecific individual. Using 

Pearson correlations, we checked if all of our phylogenetic metrics are free from 

significant effects of species richness. 
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For the standardized effect size (ses) calculations, our tree was compared with 

10,000 null model randomizations using the algorithm "phylogeny pool". Posteriorly, we 

extracted the centile of each observed community PD, MPD and MNTD value from the 

null distribution as a probabilistic indicator of deviance from a null expectation (Frishkoff 

et al. 2015; Edwards et al. 2015). The applied null model randomizes the identity of 

species occurring in each sample, but maintains constant species richness and 

abundance within each transect. This approach assumes, therefore, that all species are 

equally likely to occur in any fragment the landscape (Arroyo-Rodríguez et al. 2012). 

We calculated these six metrics using “picante” package (Kembel et al. 2010) in R, 

version 3.2.1 (R Development Core Team. 2015).  

 

Statistical analyses 

We analysed the effects of landscape configuration and composition on each 

phylogenetic metric using Generalized Linear Models (GLM), with Gaussian error and 

an identity link (normality was tested and confirmed by the Shapiro Wilk test), as 

implemented in the ‘glm’ function from stats package. Thus our GLM related each 

metric of phylogenetic diversity (PD, MPD and MNTD) and phylogenetic structure 

(sesPD, sesMPD and sesMNTD), as response variables, with all metrics of landscape 

configuration and composition (Cisneros, Fagan & Willig 2015a; Cisneros, Fagan & 

Willig 2015b), as explanatory (predictor) variables.  However, multicollinearity between 

predictor variables was confirmed by Spearman correlation analysis (see table S4), and 

any pair of explanatory variables that have a high correlation (r ≥ 0,6) were included in 

separate models and subjected to selection of the best model (Magrach, Santamaría & 

Larrinaga 2012).  The Akaike Information Criterion of Second Order (AICc indicated for 

small sample sizes), with ∆AICc≤2, was used to select our best models (Burnham et al. 

2011), although we also consider all selected models.  

Additionally, we investigated the impacts of fragment area and edge effects on 

metrics of phylogenetic diversity, phylogenetic structure and species richness. We 

considered two predictor variables: (i) fragment size in log scale and (ii) habitat type 

with two levels (edge and interior). We also consider the possible interactions between 

these two predictor variables (see Magnago et al. 2014 for details). These analyzes 
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were conducted using Generalized Linear Mixed Model (GLMM), with site as a random 

variable (Bolker et al. 2009). The GLMM was built using the function “lmer” in the 

package lme4, with Gaussian error and an identity link. After creating each model, we 

applied the "dredge" function in the package MuMIn and our best model was considered 

the one with value of ∆AICc=0. All statistical analyses were performed in R, version 

3.2.1 (R Development Core Team. 2015). Data can be found in Matos et al. (2016).  

 

Results 

We recorded 6,802 Individuals of 604 tree species, spanning 273 genera and 72 

families according to the classification of the Angiosperm Phylogeny Group's III (2009) 

across our 28 interior transects and twelve edge transects. Average and standard 

deviation of species richness for interior transects was 75.10±12.6 (range: 52 to 94 

species) and 80.75±11.42 (range: 62 to 101 species) for edge transects. 

 

Species richness and phylogenetic metrics 

We found that PD (Pearson: r = 0.95, P = 0.0001) and MPD (Pearson: r = 0.48, P 

= 0.001) were strongly correlated with species richness, whereas MNTD was not 

correlated with species richness (Pearson: r = -0.27, P = 0.091). After the calculation of 

standardized effect sizes, we found no significant correlation between species richness 

and sesPD (Pearson: r = -0.006, P = 0.970), sesMPD (Pearson: r = -0.05, P = 0.732), 

and sesMNTD (Pearson: r = 0.11, P = 0.501). Thus the standardized values reduced to 

a minimum the effects of species richness. 

 

Impacts of landscape configuration and composition on phylogenetic diversity 

Phylogenetic diversity 

Our best models (∆AICc=0) indicated that the configuration and composition of 

landscapes did not change PD or MNTD (the average number of years between each 

species of its closest relative in a community) (Table 1). However, according to our best 

model (∆AICc=0; Table 1), the average number of years of evolutionary history that 

separates species in a community (MPD) was best explained by edge density and the 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

number of forest patches in the landscape. We found that increasing edge density led to 

a positive increase in MPD (GLM: t = 2.305, P = 0.029, Fig. 2a), while increasing 

number of forest patches decreased MPD (GLM: t = -0.9352, P = 0.040, Fig. 2b).  

 

Considering the four models (∆AICc<2) for PD, edge density and forest cover 

were present in two models (Table 1). For MPD, two models were selected with values 

∆AICc<2, and edge density and number of forest patches were present in the same 

model (Table 1). For MNTD, there were two models with values ∆AICc<2, and edge 

density was in one model (Table 1). Finally, considering all 40 selected models, edge 

density and number of forest patches (both seventeen times) were the most frequently 

selected variables, followed by mean forest nearest neighbor (thirteen times), forest 

cover (twelve times) and landscape shape index (five times) (Table S5). 

 

Phylogenetic structure 

For phylogenetic structure (sesPD, sesMPD and sesMNTD), our best models 

(∆AICc=0) were null models (Table 1). Considering the two models with values ∆AICc<2 

selected for sesPD, mean forest nearest neighbor was present in one model (Table 1). 

For sesMPD, five models were selected with values ∆AICc<2 (Table 1), with edge 

density (three times) the most frequently selected variable, followed by number of forest 

patches (two times), landscape shape index and forest cover (both one time). For 

sesMNTD, we had two models with values ∆AICc<2, with edge density occurred in one 

model (Table 1). Finally, considering all 41 selected models, edge density and number 

of forest patches (both eighteen times) were the most frequently selected variables, with 

mean forest nearest neighbor (fourteen times), forest cover (eleven times) and 

landscape shape index (five times) (Table S6). 

 

Impacts of fragment size and edge-effects on phylogenetic diversity 

Phylogenetic diversity 

Considering our best model (∆AICc=0, Table 2), phylogenetic diversity (PD) was 

significantly affected by the interaction between fragment size and fragment interior 

versus edge (GLMM: t = -3.470, P = 0.004, Fig. 3a): with increasing fragment size, we 
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found a significant reduction of PD in interiors (F = 6.685, P < 0.027, Fig. 3a), but no 

significant change of PD at edges (F = 2.530, P = 0.142, Fig. 3a). PD was significantly 

greater in fragment interiors than fragment edges (GLMM: t = 3.773, P = 0.002, Fig. 3b). 

Our best model (∆AICc=0) of the effect of forest patch size and habitat on MPD was the 

null model (Table 2). For MNTD, our best model (∆AICc=0) was composed of forest 

patch size and edge-interior habitats. However, there was only marginal evidence that 

forest patch size (GLMM: t = -1.941, P = 0.064) or edge-interior habitat (GLMM: t = 

1.944, P = 0.063) altered MNTD.  

 

Considering the three models with values ∆AICc<2 selected for PD, edge-interior 

habitat was present in two models and forest patch size in one (Table 2). Two models 

were selected for MPD with values ∆AICc<2, with habitat type present in one model 

(Table 2). For MNTD, we found four models with values ∆AICc<2, with forest patch size 

and type of habitat present in two models (Table 2). Lastly, considering all thirteen 

selected models for the three responses variables of phylogenetic diversity (Table S7), 

forest patch size (seven times) was the most frequently selected variable, with habitat 

(six times) also frequently selected. 

 

Phylogenetic structure 

We found no significant interaction effects between fragment size and interior 

versus edge location for any of the phylogenetic diversity metrics standardized for 

species richness (Table 2). According to our best model (∆AICc=0), sesMNTD was 

affected by fragment size and edge-interior: increasing forest patch size led to a 

significant reduction of sesMNTD (GLMM: t = -2.903, P = 0.007, Fig. 3c), while 

sesMNTD was significantly greater in fragment interiors than edges (GLMM: t = 3.154, 

P = 0.004, Fig. 3d). Our best model (∆AICc=0) indicated that forest patch size and 

edge-interior habitat do not significantly alter sesPD (Table 2). For sesMPD, our best 

model (∆AICc=0, Table 2) included habitat type, but this was marginally non-significant 

(GLMM: t = 1.905, P = 0.081). In terms models selected with value ∆AICc<2 (Table 2), 

the only model selected for sesPD was the null model (Table 2), two models were 

selected for sesMPD and habitat type occurred in one model (Table 2), and for 
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sesMNTD, a single model contained forest patch size and edge-interior habitat (Table 

2). Lastly, considering all twelve selected models (Table S8), habitat type (seven times) 

was the most frequently selected variable, followed by forest patch size (five times). 

 

Discussion 

Forest fragmentation is a major driver of the global extinction crisis (Haddad et al. 

2015; Lewis, Edwards & Galbraith 2015). A key question is how the degree of isolation 

and shape of landscapes impacts phylogenetic diversity. Saving phylogenetic diversity 

prevents the loss of evolutionarily unique species (Purvis et al. 2000; Vamosi & Wilson 

2008), conserves as much of the tree of life as possible (Mace, Gittleman & Purvis 2003; 

Redding & Mooers 2006) and underpins the retention of key ecosystem services and 

functions (Cadotte, Cardinale & Oakley 2008; Cadotte 2013). Here, we found that with 

increasing edge density, there was an increase in the average phylogenetic distance 

between all combinations of pairs of individuals (MPD), whereas with increased 

numbers of forest patches in the landscape (i.e., more landscape fragmentation), MPD 

was reduced. However, we did not find impacts of landscape configuration (i.e., shape, 

isolation and edge density) and composition (i.e., forest cover and number of forest 

patches) characteristics on standardized values for species richness (sesPD, sesMPD 

and sesMNTD, phylogenetic structure), suggesting that highly fragmented landscapes 

are still able to retain important phylogenetic diversity (also see Arroyo-Rodríguez et al. 

2012).  

 

Impacts of landscape configuration and composition on phylogenetic diversity 

Our results show that edge density and number of forest patches most frequently 

affect the phylogenetic diversity and structure of remaining tree assemblages, and thus 

that these metrics are most relevant in understanding the effects of deforestation and 

habitat fragmentation on phylogenetic diversity. However, best models suggest that only 

mean pairwise distance (MPD) was affected significantly and thus that edge density and 

number of forest patch effects were caused by differences in species richness 

(Coronado et al. 2015; Prescott et al. 2016). Considering the negative effects of edge 
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on species richness (Magnago et al. 2014), the increase of MPD in landscapes with 

high edge density was unexpected. One possibility is that edge density is directly 

related to the complexity in fragment shape (McGarigal, Cushman & Ene 2012; Carrara 

et al. 2015), which increases the interchange of individuals of species from less 

compact fragments (Ewers & Didham, 2006), leading to changes in species composition 

(Hill & Curran 2003). However, a study investigating the effect of shape irregularity in 

fragmented landscapes on the phylogenetic diversity of bats in Costa Rica (Cisneros, 

Fagan & Willig 2015a) demonstrated a reduction of PD with increased irregularity of 

fragments (i.e., higher edge effect), suggesting that so far there is no consensus on the 

effect of complexity in fragment shape on phylogenetic diversity. 

 

In terms of the effect of landscape composition, we found that increasing the 

number of forest patches (i.e., more fragmentation) led to a reduction of MPD. This 

reinforces evidence that increasing landscape fragmentation in tropical forests promotes 

negative effects on the phylogenetic diversity of tree species (Munguía-Rosas et al. 

2014), as well as negative effects on tree species richness via reduced fragment size 

(Laurance et al. 2011) and tree functional diversity via size and edge effects (Magnago 

et al. 2014).  

 

We found no effect of landscape metrics of configuration and composition on the 

phylogenetic diversity metrics corrected for species richness (sesPD, sesMPD and 

sesMNTD). This suggests that any loss of trees in recently fragmented tropical forest 

landscapes (i.e., <100 years) occurs randomly or uniformly across the phylogenetic 

tree, supporting our hypothesis that losses are not clustered within specific lineages 

(Santos et al. 2010; Arroyo-Rodrigues et al. 2012). However, in the Yucatan Peninsula, 

Mexico, much older fragmentation (~1,700 years) has reduced phylogenetic diversity 

(Munguía-Rosas et al. 2014), suggesting that our findings should be interpreted with 

caution when considering very long-term conservation value and further studies should 

focus on different taxonomic groups and the phylogenetic signal of functional traits 

vulnerable to fragmentation processes in trees (Cisneros, Fagan & Willig 2015a). 
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Impacts of fragment size and edge-effects on phylogenetic diversity 

PD was lower in the interior of larger fragments (Fig. 3a), a result that is driven by 

species richness (no effect on sesPD; Table 2). One explanation of high PD values 

inside small fragments is that there is a spill-over of individuals of species from the 

fragment edges (Hill & Curran 2003) and non-forest matrix (Cook et al. 2002; Cisneros, 

Fagan & Willig 2015a) into the interior of small fragments. This suggests that small 

fragments still have high phylogenetic diversity of trees and thus high conservation 

value (Arroyo-Rodríguez et al. 2009; Magnago et al. 2014). In addition, we found lower 

PD at edges than interiors (Fig. 3b; Santos et al. 2010, but see Benítez-Malvido et al. 

2014). In our fragments, edge effects change microclimatic conditions (Magnago et al. 

2015a), reduce species richness (see also Laurance et al. 2006) and alter functionality 

(Magnago et al. 2014). Thus, while reductions in species richness in part explain the 

loss of PD, changes in PD are also likely underpinned by other environmental and 

ecological factors.  

 

The lack of significant effects of fragment size or edge effects on the average 

number of years of evolutionary history separating individuals of species in a community 

(MPD) and its respective standardized value (sesMPD) suggests that the changes in 

the species composition and species richness in our fragments (see Magnago et al. 

2014) may have resulted from replacing species randomly or uniformly throughout the 

phylogenetic tree, but not altering entire clades. Also, this result supports the hypothesis 

of low phylogenetic conservatism in functional traits vulnerable to fragmentation 

processes in landscapes with a recent history of fragmentation (i.e., <100 years) (see 

also Santos et al. 2010; Arroyo-Rodríguez et al. 2012). 

 

The standardized value of phylogenetic distance between each individual and its 

nearest phylogenetic neighbour (sesMNTD), increased with decreasing fragment size, 

regardless of the habitat type (edge vs. interior). A possible explanation is that smaller 

fragments and edges have strong change in species composition and abundances (see 

Magnago et al. 2014), making the remaining species community more likely to have 
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evolved from lineages at more terminal parts of the phylogenic tree (i.e., intra-family or 

intra-genera levels).  

 

Lastly, we found less sesMNTD and thus phylogenetic clustering at edges than 

interiors (Fig. 3d). Because edge effects reduce species richness, community 

dissimilarity (Laurance et al. 2006) and important functional groups (Lopes et al. 2009; 

Magnago et al. 2014), the next individual sampled is likely a close relative of at least 

one kind of individual already sampled (Vamosi et al. 2009). However, recent work in 

the Brazilian Atlantic forest (Santos et al. 2010) and Mexican dry forest (Benítez-

Malvido et al. 2014) found no impact of edge effects on the phylogenetic structure of 

trees, suggesting that they were predominantly assembled by stochastic processes 

(Hubbell 2001). However, these results should be interpreted with caution, since other 

fragmented tropical regions showed a random pattern in the phylogenetic structure of 

trees following fragmentation and habitat loss effects (Santos et al. 2010; Arroyo-

Rodríguez et al. 2012). Thus, so far, phylogenetic changes in tree species due to 

fragmentation do not show a consistent pattern across tropical forests. 

 

Conclusions and conservation implications 

Impacts of anthropogenic-induced landscape changes are usually made 

measuring losses of the taxonomic dimension of biodiversity (i.e., species richness and 

species diversity; Fahrig 2003; Metzger 2000; Girão et al. 2007). To reach a more 

comprehensive framework for the conservation of biodiversity and resulting ecosystems 

services, it is critical to understand anthropogenic impacts at the functional and 

evolutionary levels (Santos et al. 2010; Arroyo-Rodríguez et al. 2012; Magnago et al. 

2014; Cisneros, Fagan & Willig 2015a). Our results show that changes in phylogenetic 

diversity caused by landscape configuration and composition were, at some level, 

promoted by changes in species richness, since (i) observed changes in phylogenetic 

diversity were for MPD, which was significantly correlated with species richness, and (ii) 

standardised values of sesPD, sesMPD, and sesMNTD did not respond to any of the 

landscapes configuration and composition metrics. This supports the low conservatism 
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hypothesis of functional traits vulnerable to fragmentation processes (Santos et al.  

2010; Arroyo-Rodríguez et al. 2012) and indicates that in recently fragmented 

landscapes, tree extirpation and compositional changes occurs randomly or evenly, and 

does not eliminate entire lineages (i.e., major phylogenetic clustering).  

 

From a conservation perspective there are both negatives and positives of our 

results.  On the negative side, edges retain lower MPD than interiors, while interior plots 

embedded within a highly fragmented matrix have lower MPD, indicating more 

phylogenetic clustering. This suggests that extirpation of species in edge habitats or in 

highly fragmented landscapes results in increasing dominance of species within a 

subset of clades, likely those adapted to disturbance (Magnago et al. 2014). To reverse 

such trends, it would be vital for conservation to extend forest cover via forest 

restoration to enhance patch area and connectivity in the highly threatened Brazilian 

Atlantic forest (Banks-Leite et al. 2014).  

 

On the positive side, however, we found that interiors of smaller fragments are 

phylogenetically diverse and phylogenetically overdispersed in relation to larger 

fragments, which tend to be more phylogenetically clustered. Thus high phylogenetic 

diversity values are not always linked to high integrity of fragments, although this will 

likely reflect the invasion of species from the edge or matrix habitats into small fragment 

interiors. Pivotally, therefore, even small forest patches in highly fragmented landscapes 

could be a major reservoir of phylogenetic diversity, and could represent important 

sources of seeds of evolutionarily distinct species for reforestation and restoration 

projects, as well as stepping-stones for dispersal between larger, viable patches.  
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Tables  
 
Table 1 - Results of information-theoretic-based model selection for the impacts of 

landscape configuration and composition metrics on the phylogenetic diversity and 

phylogenetic structure. We present only the models with values of ∆AICc<2. PD = 

Phylogenetic diversity (millions of years); sesPD = Standardized value of phylogenetic 

diversity (PD); MPD = Mean phylogenetic distance (millions of years); sesMPD = 

Standardized value of MPD; MNTD = Mean nearest taxon phylogenetic distance 

(millions of years); and sesMNTD = Standardized value of MNTD. AICc = Akaike 

information criterion for small samples; ǻAICc = Difference between the AICc of a given 

model and that of the best model; and AICcWt = Akaike weights (based on AIC 

corrected for small sample sizes).  

 

 

Response variable Model variables AICc ∆AICc AICcWt 

PD 

Null model 436.92 0 0.21 
Edge density+Forest cover 437.20 0.28 0.18 
Forest cover 438.19 1.26 0.11 
Edge density 438.35 1.42 0.10 

sesPD 
Null model 8.98 0 0.30 
Mean forest nearest neighbour 10.85 1.87 0.12 

MPD 
Edge density+Number of forest patches 192.71 0 0.25 
Null model 193.59 0.87 0.16 

sesMPD 

Null model 6.69 0 0.21 
Landscape shape index 7.27 0.58 0.15 
Edge density+Forest cover+Number of forest patches 7.66 0.97 0.13 
Edge density+Number of forest patches 8.19 1.50 0.10 
Edge density 8.45 1.76 0.09 

MNTD 
Null model 196.57 0 0.29 
Edge density 198.50 1.93 0.11 

sesMNTD 
Null model 11.96 0.00 0.29 
Edge density 13.73 1.77 0.12 
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Table 2 - Results of information-theoretic-based model selection for the impacts of 

fragment size and fragment location (edge vs. interior). We present only the models with 

values of ∆AICc<2. PD = Phylogenetic diversity (millions of years); sesPD = 

Standardized value of phylogenetic diversity (PD); MPD = Mean phylogenetic distance 

(millions of years); sesMPD = Standardized value of MPD; MNTD = Mean nearest taxon 

phylogenetic distance (millions of years); and sesMNTD = Standardized value of MNTD. 

AICc = Akaike information criterion for small samples; ǻAICc = Difference between the 

AICc of a given model and that of the best model; and AICcWt = Akaike weights (based 

on AIC corrected for small sample sizes). Habitats = edge vs. interior.  

 

 

Response variable Model variables AICc ∆AICc AICcWt 

PD 

Forest patch size+Habitats+Forest patch 
size:Habitats 362.90 0 0.39
Null model 363.20 0.28 0.34 

Habitats 364.90 1.94 0.15 

sesPD Null model 14.50 0 0.66 

MPD 
Null model 164.40 0 0.54 

Habitats 165.90 1.46 0.26 

sesMPD 
Habitats -5.10 0 0.43 

Null model -4.90 0.26 0.38 

MNTD 

Forest patch size+Habitats 171.10 0 0.28 

Habitats 171.40 0.27 0.25 

Forest patch size 171.50 0.28 0.25 

Null model 171.60 0.43 0.23 

sesMNTD Forest patch size+Habitats 3.70 0 0.81
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Figures (high resolution files attached separately) 

Fig. 1 - Study area and forest fragments sampled in the Brazilian Atlantic Forest. Size of 

each fragment and their coordinates can be seen in Table S2. 

 

Fig. 2 - Effect of edge density (a) and number of forest patches (b) on the average 

number of years of evolutionary history separating species in a community (mean 

phylogenetic distance-MPD), analyzed in 28 transects sampled in the Brazilian Atlantic 

forest. Values were obtained after the summation of the raw residuals with the expected 

values for variable (y), assuming average value for the variable (partial residuals plots).  

 

Fig. 3 - Relationship between fragment area and location (i.e., edge vs. interior) with 

phylogenetic diversity and structure, sampled in 24 transects of the Atlantic forest. (a) 

The effect of the interaction between fragment size and habitat type (interior: continuous 

line vs edge: dashed line) on phylogenetic diversity PD, partial residuals plots; (b) the 

effect of habitat on PD; (c) the effect of fragment size on standardized mean nearest 

taxon distance (sesMNTD), partial residuals plots; and (d) the effect of habitat type on 

standardized mean nearest taxon distance (sesMNTD). Circles (a) and (c) represent 

values obtained after summation of raw residuals with the expected values for each 

variable, assuming average values for other covariates; errors bars represent standard 

errors. 
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