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1. Introduction

Engineering provides some hard challenges for classical analysis. In signal processing 
and, in particular, control theory, one often needs to construct analytic matrix-valued 
functions on the unit disc D or right half-plane subject to finitely many interpolation 
conditions and to some subtle boundedness requirements. The resulting problems are 
close in spirit to the classical Nevanlinna–Pick problem, but established operator- or 
function-theoretic methods which succeed so elegantly for the classical problem do not 
seem to help for even minor variants. For example, this is so for the spectral Nevanlinna–
Pick problem [13,21], which is to construct an analytic square-matrix-valued function 
F in D that satisfies a finite collection of interpolation conditions and the boundedness 
condition

sup
λ∈D

r(F (λ)) ≤ 1 for all λ ∈ D.

This problem is a special case of the μ-synthesis problem of H∞ control, which is recog-
nised as a hard and important problem in the theory of robust control [18,19]. Even the 
special case of the spectral Nevanlinna–Pick problem for 2 ×2 matrices awaits a definitive 
analytic theory.

A major difficulty in μ-synthesis problems is to describe the analytic maps from D
to a suitable domain X ⊂ C

n or its closure X . In the classical theory X is a matrix 
ball, and the realisation formula presents the general analytic map from D to X in terms 
of a contractive operator on Hilbert space; this formula provides a powerful approach 
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to a variety of interpolation problems. In the μ variants X can be unbounded, noncon-
vex, inhomogeneous and non-smooth, properties which present difficulties both for an 
operator-theoretic approach and for standard methods in several complex variables.

In this paper we exhibit, for certain naturally arising domains X , a rich structure 
of interconnections between four naturally arising objects of analysis in the context of 
2 × 2 analytic matrix functions on D. This rich structure combines with the classical 
realisation formula and Hilbert space models in the sense of Agler to give an effective 
method of constructing functions in the space Hol(D, X ) of analytic maps from D to X , 
and thereby of obtaining solvability criteria for two cases of the μ-synthesis problem.

The rich structure is summarised in the following diagram, which we call the rich 
saltire1 for the domain X .

S2×2

Left SX
SE

Upper E
R1

Upper W

Right S
SWX

Hol (D,X )

Left NX

Lower EX

S2
Lower WX

Right N

(1.1)

The objects are defined as follows:
S2×2 is the 2 × 2 matricial Schur class of the disc, that is, the set of analytic 2 × 2

matrix functions F on D such that ‖F (λ)‖ ≤ 1 for all λ ∈ D;
S2 is the Schur class of the bidisc D2, that is, Hol(D2, D), and
R1 is the set of pairs (N, M) of analytic kernels on D2 such that the kernel defined 

by

(z, λ, w, μ) �→ 1 − (1 − wz)N(z, λ, w, μ) − (1 − μλ)M(z, λ, w, μ),

for all z, λ, w, μ ∈ D, is positive semidefinite on D2 and is of rank 1.
The arrows in diagram (1.1) denote mappings and correspondences that will be de-

scribed in Sections 4 to 7.
In this paper we consider the rich saltire for two domains X : the symmetrised bidisc 

and the tetrablock, defined below. Whereas S2×2 and S2 are classical objects that have 
been much studied, Hol (D, X ) and R have been introduced and studied within the last 
two decades in connection with special cases of the robust stabilisation problem. The 
maps in the upper northeast triangle of the rich saltire for a domain X do not depend 
on X .

1 A heraldic term meaning an ordinary formed by a bend and a bend sinister crossing like a St. Andrew’s 
cross (Concise Oxford Dictionary).
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The closed symmetrised bidisc is defined to be the set

Γ = {(z + w, zw) : |z| ≤ 1, |w| ≤ 1}.

The tetrablock is the domain

E = {x ∈ C
3 : 1 − x1z − x2w + x3zw �= 0 whenever |z| ≤ 1, |w| ≤ 1}.

The closure of E is denoted by Ē .
The symmetrised bidisc arises naturally in the study of the spectral Nevanlinna–Pick 

problem for 2 × 2 matrix functions. In a similar way, the tetrablock arises from another 
special case of the μ-synthesis problem for 2 × 2 matrix functions [21]. Define

Diag def=
{[

z 0
0 w

]
: z, w ∈ C

}
and, for a 2 × 2-matrix A,

μDiag(A) = (inf{‖X‖ : X ∈ Diag, 1 −AX is singular})−1
.

The μDiag-synthesis problem: given points λ1, . . . , λn ∈ D and target matrices 
W1, . . . , Wn ∈ C

2×2 one seeks an analytic 2 × 2-matrix-valued function F such that

F (λj) = Wj for j = 1, . . . , n, and

μDiag(F (λ)) < 1, for all λ ∈ D.

This problem is equivalent to the interpolation problem for Hol(D, E) studied in this 
paper; see [1, Theorem 9.2]. Here Hol(D, E) is the space of analytic maps from the unit 
disc D to E .

In the case of the symmetrised bidisc a number of components of the rich saltire for 
Γ were presented by Agler and two of the present authors in [10]. Aspects of the rich 
saltire for Γ were used in [10, Theorem 1.1] to prove a solvability criterion for the 2 × 2
spectral Nevanlinna–Pick interpolation problem. In this paper we give the final picture 
of the rich saltire for the symmetrised bidisc.

In the case of the tetrablock, with the aid of the rich saltire we obtain a solvability 
criterion for the μDiag-synthesis problem. A strategy to obtain the solvability criterion 
is as follows. Reduce the problem to an interpolation problem in the set of analytic 
functions from the disc to the tetrablock, induce a duality between the set Hol(D, E) and 
S2, then use Hilbert space models for S2 to obtain necessary and sufficient conditions 
for solvability.

The main result of this paper is the existence of the rich saltire, and the principal 
application thereof is the equivalence of (1) and (3) in the following assertion.
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Theorem 1.1. Let λ1, . . . , λn be distinct points in D, let W1, . . . , Wn be 2 × 2 com-
plex matrices such that (Wj)11(Wj)22 �= detWj for each j, and let (x1j , x2j , x3j) =
((Wj)11, (Wj)22, detWj) for each j. The following three conditions are equivalent.

(1) There exists an analytic 2 × 2 matrix function F in D such that

F (λj) = Wj for j = 1, . . . , n, (1.2)

and

μDiag(F (λ)) ≤ 1 for all λ ∈ D. (1.3)

(2) There exists a rational function x : D → E such that

x(λj) = (x1j , x2j , x3j) for j = 1, . . . , n. (1.4)

(3) For some distinct points z1, z2, z3 in D, there exist positive 3n-square matrices N =
[Nil,jk]n,3i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]n,3i,j=1,l,k=1 such that

[
1 − zlx3i − x1i

x2izl − 1
zkx3j − x1j

x2jzk − 1

]
≥ [(1 − zlzk)Nil,jk] +

[
(1 − λiλj)Mil,jk

]
. (1.5)

This result is a part of Theorem 8.1, which we establish in Section 8, and [1, The-
orem 9.2] (Theorem 3.1). The necessary and sufficient condition for the existence of a 
solution of the μDiag-synthesis problem for 2 ×2 matrix functions with n > 2 interpolation 
points is given in terms of the existence of positive 3n-square matrices N, M satisfying a 
certain linear matrix inequality in the data, but with the constraint that N have rank 1. 
This kind of optimisation problem can be addressed with the aid of numerical algorithms 
(for example, [16]), though we observe that, on account of the rank constraint, it is not 
a convex problem.

The paper is organised as follows. Sections 2 and 3 describe the basic properties of 
the symmetrised bidisc Γ and the tetrablock E respectively. They also present known 
results on the reduction of a 2 × 2 spectral Nevanlinna–Pick problem to an interpolation 
problem in the space Hol(D, Γ) of analytic functions from D to Γ, and on the reduction of 
a μDiag-synthesis problem to an interpolation problem in the space Hol(D, E) of analytic 
functions from D to E . In Section 4 we construct maps between the sets S2×2 and S2 using 
the linear fractional transformation FF (λ)(z), λ, z ∈ D, for F ∈ S2×2. Relations between 
S2×2 and the set of analytic kernels on D2 are given in Section 5. Section 6 presents 
the rich saltire (6.1) for the symmetrised bidisc. The rich saltire for the tetrablock (7.1)
is described in Section 7. Here we present a duality between the space Hol(D, E) and 
a subset of the Schur class S2 of the bidisc. In Section 8 we use Hilbert space models 
for functions in S2 to obtain necessary and sufficient conditions for solvability of the 
interpolation problem in the space Hol(D, E).
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The closed unit disc in C will be denoted by Δ and the unit circle by T. The complex 
conjugate transpose of a matrix A will be written A∗. The symbol I will denote an 
identity operator or an identity matrix, according to context. The C∗-algebra of 2 × 2
complex matrices will be denoted by M2(C).

2. The symmetrised bidisc G

The open and closed symmetrised bidiscs are the subsets

G = {(z + w, zw) : |z| < 1, |w| < 1} (2.1)

and

Γ = {(z + w, zw) : |z| ≤ 1, |w| ≤ 1} (2.2)

of C2. The sets G and Γ are relevant to the 2 × 2 spectral Nevanlinna–Pick problem 
because, for a 2 × 2 matrix A, if r(·) denotes the spectral radius of a matrix,

r(A) < 1 ⇔ (tr A,detA) ∈ G

and

r(A) ≤ 1 ⇔ (tr A,detA) ∈ Γ. (2.3)

Accordingly, if F is an analytic 2 ×2 matrix function on D satisfying r(F (λ)) ≤ 1 for all 
λ ∈ D then the function (tr F, detF ) belongs to the space Hol(D, Γ) of analytic functions 
from D to Γ. A converse statement also holds: every ϕ ∈ Hol(D, Γ) lifts to an analytic 
2 × 2 matrix function F on D such that (tr F, detF ) = ϕ and consequently r(F (λ)) ≤ 1
for all λ ∈ D [5, Theorem 1.1]. The 2 ×2 spectral Nevanlinna–Pick problem can therefore 
be reduced to an interpolation problem in Hol(D, Γ). There is a slight complication in 
the case that any of the target matrices are scalar multiples of the identity matrix; for 
simplicity we shall exclude this case in the present paper.

The relation (2.3) scales in an obvious way: for ρ > 0,

r(A) ≤ ρ ⇔ (tr A,detA) ∈ ρ · Γ

where

ρ · (s, p) def= (ρs, ρ2p) and ρ · Γ def= {ρ · (s, p) : (s, p) ∈ Γ}.

The following result is [10, Proposition 3.1]; it is a refinement of [5, Theorem 1.1].

Theorem 2.1. Let λ1, . . . , λn be distinct points in D and let W1, . . . , Wn be 2 × 2 ma-
trices, none of them a scalar multiple of the identity. The following two statements are 
equivalent.
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(1) There exists a rational 2 × 2 matrix function F , analytic in D, such that

F (λj) = Wj for j = 1, . . . , n

and

sup
λ∈D

r(F (λ)) < 1; (2.4)

(2) there exists a rational function h ∈ Hol(D, G) such that

h(λj) = (tr Wj , detWj) for j = 1, . . . , n, (2.5)

and h(D) is relatively compact in G.

Certain rational functions play a central role in the analysis of Γ.

Definition 2.2. The function Φ is defined for (z, s, p) ∈ C
3 such that zs �= 2 by

Φ(z, s, p) = 2zp− s

2 − zs
= −1

2s +
(p− 1

4s
2)z

1 − 1
2sz

. (2.6)

In particular, Φ is defined and analytic on D × Γ (since |s| ≤ 2 when (s, p) ∈ Γ), 
Φ extends analytically to (Δ × Γ) \ {(z, 2z̄, ̄z2) : z ∈ T}. See [4] for an account of how 
Φ arises from operator-theoretic considerations. The 1-parameter family Φ(ω, ·), ω ∈ T, 
comprises the set of magic functions of the domain G. The notion of magic functions of 
a domain is explained in [7], but for this paper all we shall need is the fact that

Φ(D× Γ) ⊂ Δ

and a converse statement: if w ∈ C
2 and |Φ(z, w)| ≤ 1 for all z ∈ D then w ∈ Γ; see for 

example [6, Theorem 2.1] (the result is also contained in [3, Theorem 2.2] in a different 
notation).

A Γ-inner function is the analogue for Hol(D, Γ) of inner functions in the Schur class. 
A good understanding of rational Γ-inner functions is likely to play a part in any future 
solution of the finite interpolation problem for Hol(D, Γ), since such a problem has a 
solution if and only if it has a rational Γ-inner solution (for example, [17, Theorem 4.2]
or [10, Theorem 8.1]).

Definition 2.3. A Γ-inner function is an analytic function h : D → Γ such that, for almost 
all λ ∈ T (with respect to Lebesgue measure), the radial limit

lim
r→1−

h(rλ) exists and belongs to bΓ, (2.7)

where bΓ denotes the distinguished boundary of Γ.
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By Fatou’s Theorem, the radial limit (2.7) exists for almost all λ ∈ T with respect to 
Lebesgue measure. The distinguished boundary bΓ of G (or Γ) is the Šilov boundary of 
the algebra of continuous functions on Γ that are analytic in G. It is the symmetrisation 
of the 2-torus:

bΓ = {(z + w, zw) : |z| = |w| = 1}.

The royal variety R = {(2z, z2) : |z| < 1} plays an important role in the theory of 
Γ-inner functions.

3. The tetrablock E

The open and closed tetrablock are the subsets

E := {(x1, x2, x3) ∈ C
3 : 1 − x1z − x2w + x3zw �= 0 for all z, w ∈ D} (3.1)

and

E := {(x1, x2, x3) ∈ C
3 : 1 − x1z − x2w + x3zw �= 0 for all z, w ∈ D} (3.2)

of C3.
The tetrablock was introduced in [1] and is related to the μDiag-synthesis problem. 

The following theorem was proved in [1, Theorem 9.2].

Theorem 3.1. Let λ1, . . . , λn be distinct points in D and let Wj =
[
wj

11 wj
12

wj
21 wj

22

]
, j =

1, . . . , n, be 2 × 2 matrices such that wj
11w

j
22 �= detWj and μDiag(Wj) < 1, j = 1, . . . , n. 

The following conditions are equivalent.

(1) There exists an analytic 2 × 2 matrix function F on D, such that

F (λj) = Wj for j = 1, . . . , n

and

sup
λ∈D

μDiag(F (λ)) < 1; (3.3)

(2) there exists an analytic function ϕ ∈ Hol(D, E) such that

ϕ(λj) = (wj
11, w

j
22, detWj) for j = 1, . . . , n. (3.4)

The following functions play a central role in the analysis of the tetrablock [1].
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Definition 3.2. The functions Ψ, Υ : C4 → C are defined for (z, x1, x2, x3) ∈ C
4 such that 

x2z �= 1 and x1z �= 1 respectively by

Ψ(z, x1, x2, x3) = x3z − x1

x2z − 1 and Υ(z, x1, x2, x3) = x3z − x2

x1z − 1 .

In particular Ψ and Υ are defined and analytic everywhere except when x2z = 1 and 
x1z = 1 respectively. Note that, for x ∈ C

3 such that x1x2 = x3, the functions Ψ(·, x)
and Υ(·, x) are constant and equal to x1 and x2 respectively. In this paper we will 
use the function Ψ to define certain maps in the rich saltire of the tetrablock. By [1, 
Theorem 2.4], we have the following statement.

Proposition 3.3. Let x = (x1, x2, x3) ∈ C
3. The following are equivalent.

(1) x ∈ E;
(2) |Υ(z, x)| ≤ 1 for all z ∈ D and if x1x2 = x3 then, in addition, |x1| ≤ 1;
(3) |Ψ(z, x)| ≤ 1 for all z ∈ D and if x1x2 = x3 then, in addition, |x2| ≤ 1;
(4) |x2 − x1x3| + |x1x2 − x3| ≤ 1 − |x1|2 and if x1x2 = x3 then in addition |x2| ≤ 1;
(5) |x1 − x2x3| + |x1x2 − x3| ≤ 1 − |x2|2 and if x1x2 = x3 then in addition |x1| ≤ 1;
(6) |x1|2 + |x2|2 − |x3|2 + 2|x1x2 − x3| ≤ 1 and |x3| ≤ 1;
(7) there is a 2 × 2 matrix A = [aij ]2i,j=1 such that ‖A‖ ≤ 1 and x = (a11, a22, detA);
(8) there is a symmetric 2 × 2 matrix A = [aij ]2i,j=1 such that ‖A‖ ≤ 1 and x =

(a11, a22, detA).

By [1, Theorem 2.9], E is polynomially convex, and so the distinguished boundary 
bE of E exists and is the S̆ilov boundary of the algebra A(E) of continuous functions 
on E that are analytic on E . We have the following alternative descriptions of bE [1, 
Theorem 7.1].

Theorem 3.4. Let x = (x1, x2, x3) ∈ C
3. The following are equivalent.

(i) x ∈ bE;
(ii) x ∈ E and |x3| = 1;
(iii) x1 = x2x3, |x3| = 1 and |x2| ≤ 1;
(iv) either x1x2 �= x3 and Ψ(·, x) is an automorphism of D or x1x2 = x3 and |x1| =

|x2| = |x3| = 1;
(v) x is a peak point of E;
(vi) there is a 2 × 2 unitary matrix U = [uij ]21 such that x = (u11, u22, detU);
(vii) there is a symmetric 2 ×2 unitary matrix U = [uij ]21 such that x = (u11, u22, detU).

By [1, Corollary 7.2], bE is homeomorphic to D× T. By a peak point of E we mean a 
point p for which there is a function f ∈ A(E) such that f(p) = 1 and |f(x)| < 1 for all 
x ∈ E \ {p}.
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Definition 3.5. An E-inner function is an analytic function ϕ : D → E such that the 
radial limit

lim
r→1−

ϕ(rλ) exists and belongs to bE (3.5)

for almost all λ ∈ T.

By Fatou’s Theorem, the radial limit (3.5) exists for almost all λ ∈ T with respect to 
Lebesgue measure. Note that, for an E-inner function ϕ = (ϕ1, ϕ2, ϕ3) : D → E , ϕ3 is an 
inner function on D in the classical sense.

A finite interpolation problem for Hol(D, E) has a solution if and only if it has a 
rational Γ-inner solution – see Theorem 8.1.

4. A realisation formula

In this section we construct maps between the sets S2×2 and S2. For Hilbert spaces 
H, G, U and V , an operator P such that

P =
[
P11 P12
P21 P22

]
: H ⊕ U → G⊕ V

and an operator X : V → U for which I − P22X is invertible, we denote by FP (X) the 
linear fractional transformation

FP (X) := P11 + P12X(I − P22X)−1P21

FP (X) is an operator from H to G.
The following standard identity [8] is a matter of verification.

Proposition 4.1. Let H, G, U and V be Hilbert spaces. Let

P = [Pij ]21 and Q = [Qij ]21

be operators from H ⊕ U to G ⊕ V . Let X and Y be operators from V to U for which 
I − P22X and I −Q22Y are invertible. Then

I −FQ(Y )∗FP (X) = Q∗
21(I − Y ∗Q∗

22)−1(I − Y ∗X)(I − P22X)−1P21

+
[
I Q∗

21(I − Y ∗Q∗
22)−1Y ∗ ]

(I −Q∗P )
[

I
X(I − P22X)−1P21

]
.

Proposition 4.2. Let H, G, U and V be Hilbert spaces. Let P =
[
P11 P12
P21 P22

]
be an operator 

from H⊕U to G ⊕V and let X : V → U be an operator for which I−P22X is invertible. 
Then if ‖X‖ ≤ 1 and ‖P‖ ≤ 1 we have ‖FP (X)‖ ≤ 1.
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Proof. By Proposition 4.1,

I −FP (X)∗FP (X) = P ∗
21(I −X∗P ∗

22)−1(I −X∗X)(I − P22X)−1P21

+
[
I P ∗

21(I −X∗P ∗
22)−1X∗ ]

(I − P ∗P )
[

I
X(I − P22X)−1P21

]
.

Let A = (I − P22X)−1P21 : H → V and

B =
[

I
X(I − P22X)−1P21

]
=

[
I

XA

]
: H → H ⊕ U.

Then

I −FP (X)∗FP (X) = A∗(I −X∗X)A + B∗(I − P ∗P )B.

By assumption, ‖X‖ ≤ 1 and ‖P‖ ≤ 1, and so

I −X∗X ≥ 0 and I − P ∗P ≥ 0.

Hence, by [20, Theorem 4.2.2 (iii)], I −FP (X)∗FP (X) ≥ 0. Therefore, ‖FP (X)‖ ≤ 1, as 
required. �

Recall that S2×2 is the set of analytic maps F : D → M2(C) such that ‖F (λ)‖ ≤ 1
for every λ ∈ D. For each F = [Fij ]21 ∈ S2×2, we define functions γ and η by

γ(λ, z) = (1 − F22(λ)z)−1F21(λ) and

η(λ, z) =
[

1
z(1 − F22(λ)z)−1F21(λ)

]
=

[
1

zγ(λ, z)

]
(4.1)

for all λ ∈ D and z ∈ C such that 1 − F22(λ)z �= 0.

Proposition 4.3. Let F = [Fij ]21 ∈ S2×2. Then

1 −FF (μ)(w)∗FF (λ)(z) = γ(μ,w)(1 − wz)γ(λ, z) + η(μ,w)∗(I − F (μ)∗F (λ))η(λ, z)

for all μ, λ ∈ D and w, z ∈ C such that 1 −F22(μ)w �= 0 and 1 −F22(λ)z �= 0. Moreover, 
|FF (λ)(z)| ≤ 1 for all λ ∈ D and z ∈ D such that 1 − F22(λ)z �= 0.

Proof. Let H = G = U = V = C, P = F (λ), Q = F (μ), X = z and Y = w in 
Proposition 4.1. Then

1 −FF (μ)(w)∗FF (λ)(z)

= F21(μ)(1 − wF22(μ))−1(1 − wz)(1 − F22(λ)z)−1F21(λ)
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+
[
1 F21(μ)(1 − wF22(μ))−1w

]
(I − F (μ)∗F (λ))

[
1

z(1 − F22(λ)z)−1F21(λ)

]
= γ(μ,w)(1 − wz)γ(λ, z) + η(μ,w)∗(I − F (μ)∗F (λ))η(λ, z)

for all μ, λ ∈ D and w, z ∈ C such that 1 − F22(μ)w �= 0 and 1 − F22(λ)z �= 0. Since 
F ∈ S2×2 we have ‖F (λ)‖ ≤ 1 for all λ ∈ D. Hence, by Proposition 4.2, |FF (λ)(z)| ≤ 1
for all λ ∈ D and z ∈ D such that 1 − F11(λ)z �= 0, as required. �
Remark 4.4. If we take U = V = C

n and X = λ, λ ∈ D, in Proposition 4.2 then we 
deduce that

FP (λ) = P11 + P12λ(I − P22λ)−1P21

is analytic on D, since I − P22λ is invertible for all λ ∈ D.
Thus, for F = [Fij ]21 ∈ S2×2, the linear fractional transformation FF (λ)(z) is given 

by

FF (λ)(z) := F11(λ) + F12(λ)z(1 − F22(λ)z)−1F21(λ),

where λ ∈ D and z ∈ C is such that 1 − F22(λ)z �= 0.

Definition 4.5. The map

SE : S2×2 → S2

is given by

SE (F )(z, λ) := −FF (λ)(z), z, λ ∈ D.

Proposition 4.6. The map SE is well defined.

Proof. Let F ∈ S2×2. By Remark 4.4, SE (F ) is analytic on D2. By Proposition 4.3, for 
all z ∈ D,

|FF (λ)(z)| ≤ 1 for all λ ∈ D.

Hence SE (F )(z, λ) ∈ D for all z, λ ∈ D. Therefore SE (F ) ∈ S2 as required. �
Remark 4.7. In Definition 4.5, when either F21 = 0 or F12 = 0, the function

SE(F )(z, λ) = −FF (λ)(z) = −F11(λ),

is independent of z, and so in general the map SE can lose some information about F . 
However, in the case of the symmetrised bidisc, no information is lost; see Remark 6.15.
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5. Relations between S2×2 and the set of analytic kernels on D2

Basic notions and statements on analytic kernels can be found in the book [2] and in 
Aronszajn’s paper [11].

Let N and M be analytic kernels on D2, and let KN,M be the hermitian symmetric 
function on D2 × D

2 given by

KN,M (z, λ, w, μ) = 1 − (1 − wz)N(z, λ, w, μ) − (1 − μλ)M(z, λ, w, μ)

for all z, λ, w, μ ∈ D.
We define the set R1 to be

R1 := {(N,M) : N,M,KN,M are analytic kernels on D
2 and KN,M is of rank 1}.

(5.1)

5.1. The map UpperE : S2×2 → R1

For every F = [Fij ]21 ∈ S2×2 we define functions γ and η by equations

γ(λ, z) := (1 − F22(λ)z)−1F21(λ) and η(λ, z) :=
[

1
zγ(λ, z)

]
. (5.2)

The functions NF and MF on D2 × D
2 are given by

NF (z, λ, w, μ) = γ(μ,w)γ(λ, z) and MF (z, λ, w, μ) = η(μ,w)∗ I − F (μ)∗F (λ)
1 − μλ

η(λ, z)

for all z, λ, w, μ ∈ D. Note that, for z, λ, w, μ ∈ D, 1 −F22(λ)z �= 0 and 1 −F22(μ)w �= 0, 
since |F22(λ)| ≤ 1 and |F22(μ)| ≤ 1. Hence both NF and MF are well defined.

Proposition 5.1. Let F ∈ S2×2 be such that F21 �= 0. Then the maps NF and MF are 
analytic kernels on D2, NF is of rank 1, and (NF , MF ) ∈ R1.

Proof. By definition,

NF (z, λ, w, μ) = γ(μ,w)γ(λ, z)

for z, λ, w, μ ∈ D, where γ : D2 → C is not equal to 0. Thus NF is a kernel on D2 of 
rank 1.

Furthermore

MF (z, λ, w, μ) = η(μ,w)∗ I − F (μ)∗F (λ)
1 − μλ

η(λ, z),

for z, λ, w, μ ∈ D. Clearly both NF and MF are analytic.
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To prove that (NF , MF ) ∈ R1 one has to check that KN,M is an analytic kernel on 
D

2 of rank 1. Clearly KN,M is analytic. By Proposition 4.3,

1 −FF (μ)(w)FF (λ)(z) = γ(μ,w)(1 − wz)γ(λ, z) + η(μ,w)∗(I − F (μ)∗F (λ))η(λ, z)

= (1 − wz)NF (z, λ, w, μ) + (1 − μλ)MF (z, λ, w, μ)

for all z, λ, w, μ ∈ D. Therefore

KNF ,MF
(z, λ, w, μ) = FF (μ)(w)FF (λ)(z)

for all z, λ, w, μ ∈ D. Thus KNF ,MF
is an analytic kernel on D2 of rank 1. Therefore 

(NF , MF ) ∈ R1. �
Proposition 5.2. Let F ∈ S2×2 be such that F21 = 0. Then the maps NF and MF are 
analytic kernels on D2, NF is of rank 0, and (NF , MF ) ∈ R1. Moreover,

NF (z, λ, w, μ) = 0, MF (z, λ, w, μ) = 1 − F11(μ)F11(λ)
1 − μλ

,

and

KNF ,MF
(z, λ, w, μ) = F11(μ)F11(λ),

for all z, λ, w, μ ∈ D.

Proof. For every F =
[
F11 F12
0 F22

]
∈ S2×2, the functions γ and η are given by

γ(λ, z) = (1 − F22(λ)z)−1F21(λ) = 0 and η(λ, z) =
[

1
zγ(λ, z)

]
=

[
1
0

]
,

for all λ, z ∈ D. Thus,

NF (z, λ, w, μ) = 0,

for z, λ, w, μ ∈ D, and so has rank 0. Furthermore

MF (z, λ, w, μ) = [1 0] I − F (μ)∗F (λ)
1 − μλ

[
1
0

]
= 1 − F11(μ)F11(λ)

1 − μλ
,

for z, λ, w, μ ∈ D, which is independent of z and w. Hence MF is a kernel on D2. Clearly 
both NF and MF are analytic.

It is easy to see that

KN,M (z, λ, w, μ) = 1 − (1 − μλ)M(z, λ, w, μ) = F11(μ)F11(λ),
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for all z, λ, w, μ ∈ D, which is independent of z and w. Thus KNF ,MF
is an analytic 

kernel on D2 of rank 1. Therefore (NF , MF ) ∈ R1. �
Definition 5.3. The map UpperE : S2×2 → R1 is given by

UpperE (F ) = (NF ,MF )

for each F ∈ S2×2.

By Propositions 5.1 and 5.2, the map UpperE is well defined.

5.2. Procedure UW and the set-valued map UpperW : R11 → S2×2

Let F ∈ S2×2 be such that F21 �= 0. Then the kernel NF has rank 1. In this case 
Upper E maps into a subset R11 of R1 rather than onto all of R1.

Definition 5.4. The subset R11 of R1 is given by

R11 := {(N,M) : N,M,KN,M are analytic kernels on D
2 and N,KN,M are of rank 1}.

By the Moore–Aronszajn Theorem [2, Theorem 2.23], for each kernel k on a set X, 
there exists a unique Hilbert function space Hk on X that has k as its kernel.

Let us describe the procedure for the construction of a function in S2×2 from a pair 
of kernels in R11.

Theorem 5.5 (Procedure UW ). Let (N, M) ∈ R11. Then there are functions f ∈ HN and 
g ∈ HKN,M

such that

N(z, λ, w, μ) = f(w, μ)f(z, λ) and KN,M (z, λ, w, μ) = g(w, μ)g(z, λ)

for all z, λ, w, μ ∈ D and a function Ξ ∈ S2×2 such that

Ξ(λ)
(

1
zf(z, λ)

)
=

(
g(z, λ)
f(z, λ)

)
for all z, λ ∈ D.

Proof. Let (N, M) ∈ R11, so that N, KN,M are analytic kernels on D2 of rank 1. Thus 
there are functions f ∈ HN , vz,λ ∈ HM and g ∈ HKN,M

such that

N(z, λ, w, μ) = f(w, μ)f(z, λ), KN,M (z, λ, w, μ) = g(w, μ)g(z, λ)

and



D.C. Brown et al. / Journal of Functional Analysis 272 (2017) 1704–1754 1719
M(z, λ, w, μ) = 〈vz,λ, vw,μ〉HM

for all z, λ, w, μ ∈ D.
Hence (N, M) ∈ R11 can be presented in the following form

g(w, μ)g(z, λ) = 1 − (1 − wz)f(w, μ)f(z, λ) − (1 − μλ)〈vz,λ, vw,μ〉HM
, (5.3)

and so

g(w, μ)g(z, λ) + f(w, μ)f(z, λ) + 〈vz,λ, vw,μ〉HM

= 1 + wzf(w, μ)f(z, λ) + μλ〈vz,λ, vw,μ〉HM
(5.4)

for all z, λ, w, μ ∈ D. The left hand side of (5.4) can be written as

g(w, μ)g(z, λ) + f(w, μ)f(z, λ) + 〈vz,λ, vw,μ〉HM

=
〈(

g(z, λ)
f(z, λ)
vz,λ

)
,

(
g(w, μ)
f(w, μ)
vw,μ

)〉
C2⊕HM

,

and the right hand side of (5.4) has the form

1 + wzf(w, μ)f(z, λ) + μλ〈vz,λ, vw,μ〉HM

=
〈( 1

zf(z, λ)
λvz,λ

)
,

( 1
wf(w, μ)
μvw,μ

)〉
C2⊕HM

for all λ, μ, z, w ∈ D. Therefore〈(
g(z, λ)
f(z, λ)
vz,λ

)
,

(
g(w, μ)
f(w, μ)
vw,μ

)〉
C2⊕HM

=
〈( 1

zf(z, λ)
λvz,λ

)
,

( 1
wf(w, μ)
μvw,μ

)〉
C2⊕HM

for all z, λ, w, μ ∈ D.
Thus the relation (5.3) can be express by the statement that the Gramian of vectors(

g(z, λ)
f(z, λ)
vz,λ

)
∈ C

2 ⊕HM , λ, μ, z, w ∈ D,

is equal to the Gramian of vectors( 1
wf(w, μ)
μvw,μ

)
∈ C

2 ⊕HM , λ, μ, z, w ∈ D.

Hence there is an isometry
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L0 : span
{( 1

zf(z, λ)
λvz,λ

)
: z, λ ∈ D

}
→ C

2 ⊕HM

such that

L0

( 1
zf(z, λ)
λvz,λ

)
=

(
g(z, λ)
f(z, λ)
vz,λ

)

for all z, λ ∈ D.
We extend L0 to a contraction L on C2 ⊕HM by defining L to be 0 on (C2 ⊕HM ) �

span {(1, zf(z, λ), λvz,λ) : z, λ ∈ D}. Write L as a block operator matrix

L =
[
A B
C D

]
: C2 ⊕HM → C

2 ⊕HM

where A : C2 → C
2, B : HM → C

2, C : C2 → HM and D : HM → HM , then L satisfies

[
A B
C D

] ⎛⎝(
1

zf(z, λ)

)
λvz,λ

⎞⎠ =

⎛⎝(
g(z, λ)
f(z, λ)

)
vz,λ

⎞⎠
for all z, λ ∈ D.

Then, for z, λ ∈ D, we obtain the pair of equations

A

(
1

zf(z, λ)

)
+ Bλvz,λ =

(
g(z, λ)
f(z, λ)

)
and

C

(
1

zf(z, λ)

)
+ Dλvz,λ = vz,λ.

Since L is a contraction, ‖D‖ ≤ 1 and IHM
− Dλ is invertible for all λ ∈ D. From the 

second of these equations,

vz,λ = (IHM
−Dλ)−1C

(
1

zf(z, λ)

)
for all z, λ ∈ D. Hence the first equation has the form

(A + Bλ(IHM
−Dλ)−1C)

(
1

zf(z, λ)

)
=

(
g(z, λ)
f(z, λ)

)
for all z, λ ∈ D.

Recall that, for the operator L, the linear fractional transformation



D.C. Brown et al. / Journal of Functional Analysis 272 (2017) 1704–1754 1721
FL(λ) = A + Bλ(IHM
−Dλ)−1C

for all λ ∈ D. Since L is a contraction, by Proposition 4.2 and Remark 4.4,

‖FL(λ)‖ ≤ 1 for all λ ∈ D,

and FL is analytic on D. Since A and Bλ(IHM
−Dλ)−1C are operators from C2 to C2, 

FL is in S2×2. Then Ξ = FL has required properties. �
The function Ξ constructed with Procedure UW is not necessarily unique since the 

functions f , g and vz,λ are not uniquely defined. The following proposition gives relations 
between different Ξ obtained using Procedure UW .

Proposition 5.6. Let (N, M) ∈ R11 and let f1, f2 ∈ HN , v1
z,λ, v

2
z,λ ∈ HM and g1, g2 ∈

HKN,M
be such that

N(z, λ, w, μ) = f1(w, μ)f1(z, λ) = f2(w, μ)f2(z, λ),

M(z, λ, w, μ) = 〈v1
z,λ, v

1
w,μ〉HM

= 〈v2
z,λ, v

2
w,μ〉HM

,

and

KN,M (z, λ, w, μ) = g1(w, μ)g1(z, λ) = g2(w, μ)g2(z, λ)

for all z, λ, w, μ ∈ D. Let Ξ1 and Ξ2 be constructed from (N, M) using Procedure UW

with the functions f1, g1, v1 and f2, g2, v2, respectively. Then

Ξ2 =
[
ζ1 0
0 ζ2

]
Ξ1

[
1 0
0 ζ2

]
for some ζ1, ζ2 ∈ T.

Proof. It is easy to see that f2 = ζff1 and g2 = ζgg1 for some ζf , ζg ∈ T. By Theorem 5.5, 
Ξ1 and Ξ2 satisfy

Ξ1(λ)
(

1
zf1(z, λ)

)
=

(
g1(z, λ)
f1(z, λ)

)
and Ξ2(λ)

(
1

zf2(z, λ)

)
=

(
g2(z, λ)
f2(z, λ)

)
for all z, λ ∈ D. Hence

Ξ2(λ)
(

1
zf2(z, λ)

)
= Ξ2(λ)

[
1 0
0 ζf

] (
1

zf1(z, λ)

)
and (

g2(z, λ)
f (z, λ)

)
=

[
ζg 0
0 ζ

] (
g1(z, λ)
f (z, λ)

)
=

[
ζg 0
0 ζ

]
Ξ1(λ)

(
1

zf (z, λ)

)

2 f 1 f 1
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for all z, λ ∈ D. Thus(
Ξ2(λ)

[
1 0
0 ζf

]
−

[
ζg 0
0 ζf

]
Ξ1(λ)

) (
1

zf1(z, λ)

)
= 0

for all z, λ ∈ D.
Since f1 is a nonzero analytic function of 2 variables, the set of zeros of f1 is nowhere 

dense in D2. Therefore

Ξ2(λ) =
[
ζg 0
0 ζf

]
Ξ1(λ)

[
1 0
0 ζf

]
for all λ ∈ D. �

Proposition 5.6 leads us to the following result.

Proposition 5.7. Let (N, M) ∈ R11. Let Ξ be any function constructed from (N, M) by 
Procedure UW . Then {[

ζ1 0
0 ζ2

]
Ξ

[
1 0
0 ζ2

]
: ζ1, ζ2 ∈ T

}
⊆ S2×2

is the set of all possible functions that can be constructed from (N, M) by Procedure UW .

Definition 5.8. The map UpperW is the set-valued map from R11 to S2×2 given by

UpperW (N,M) =
{

Ξ ∈ S2×2 constructed by Procedure UW for (N,M) ∈ R11
}
.

Proposition 5.9. Let (N, M) ∈ R11 and let Ξ ∈ UpperW (N, M). Then

Upper E (Ξ) = (N,M).

Proof. Let Ξ =
[
a b
c d

]
∈ S2×2. Then Upper E (Ξ) = (NΞ, MΞ), where

NΞ(z, λ, w, μ) = c(μ)
1 − d(μ)w

c(λ)
1 − d(λ)z

and

MΞ(z, λ, w, μ) =
[
1 w c(μ)

1−d(μ) w

] I − Ξ(μ)∗Ξ(λ)
1 − μλ

[ 1
zc(λ)

1−d(λ)z

]
,

for all z, λ, w, μ ∈ D.
By assumption, Ξ ∈ Upper W (N, M). Thus there exist functions f and g such that
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N(z, λ, w, μ) = f(w, μ)f(z, λ), KN,M (z, λ, w, μ) = g(w, μ)g(z, λ)

for all z, λ, w, μ ∈ D, and

Ξ(λ)
(

1
zf(z, λ)

)
=

(
g(z, λ)
f(z, λ)

)
for all z, λ ∈ D.

Hence

a(λ) + b(λ)zf(z, λ) = g(z, λ) and c(λ) + d(λ)zf(z, λ) = f(z, λ)

for all z, λ ∈ D. Therefore, for all z, λ ∈ D, 1 − d(λ)z �= 0 and

f(z, λ) = (1 − d(λ)z)−1c(λ).

Thus

NΞ(z, λ, w, μ) = f(w, μ)f(z, λ) = N(z, λ, w, μ)

for all z, λ, w, μ ∈ D. Moreover

FΞ(λ)(z) = a(λ) + b(λ)z(1 − d(λ)z)−1c(λ) = g(z, λ)

for all z, λ ∈ D. Therefore

FΞ(μ)(w)FΞ(λ)(z) = g(w, μ)g(z, λ) = KN,M (z, λ, w, μ)

for all z, λ, w, μ ∈ D. By Proposition 4.3,

1 −FΞ(μ)(w)FΞ(λ)(z) = (1 − wz)NΞ(z, λ, w, μ) + (1 − μλ)MΞ(z, λ, w, μ),

and so

1 −KN,M (z, λ, w, μ) = (1 − wz)N(z, λ, w, μ) + (1 − μλ)MΞ(z, λ, w, μ)

for all z, λ, w, μ ∈ D. By assumption,

KN,M (z, λ, w, μ) = 1 − (1 − wz)N(z, λ, w, μ) − (1 − μλ)M(z, λ, w, μ)

for all z, λ, w, μ ∈ D. Hence MΞ(z, λ, w, μ) = M(z, λ, w, μ) for all z, λ, w, μ ∈ D. �
Proposition 5.10. For any F ∈ S2×2 such that F21 �= 0,

Upper W ◦ Upper E (F ) =
{[

ζ1 0
0 ζ2

]
F

[
1 0
0 ζ2

]
: ζ1, ζ2 ∈ T

}
.
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Proof. Let F = [Fij ]21 ∈ S2×2. Then Upper E (F ) = (NF , MF ) where

NF (z, λ, w, μ) = F21(μ)
1 − F22(μ)w

F21(λ)
1 − F22(λ)z

and

MF (z, λ, w, μ) =
[
1 wF21(μ)

1−F22(μ)w

] I − F (μ)∗F (λ)
1 − μλ

[ 1
zF21(λ)

1−F22(λ)z

]
,

for all z, λ, w, μ ∈ D. By Proposition 4.3,

1 −FF (μ)(w)FF (λ)(z) = (1 − wz)NF (z, λ, w, μ) + (1 − μλ)MF (z, λ, w, μ),

and so

KNF ,MF
(z, λ, w, μ) = 1 − (1 − wz)NF (z, λ, w, μ) − (1 − μλ)MF (z, λ, w, μ)

= FF (μ)(w)FF (λ)(z)

for all z, λ, w, μ ∈ D. Apply Procedure UW to (NF , MF ) to construct a function Ξ ∈ S2×2

such that

Ξ(λ)
( 1

zF21(λ)
1−F22(λ)z

)
=

( FF (λ)(z)
F21(λ)

1−F22(λ)z

)
for all z, λ ∈ D. Then, by Proposition 5.7,

Upper W (NF ,MF ) =
{[

ζ1 0
0 ζ2

]
Ξ

[
1 0
0 ζ2

]
: ζ1, ζ2 ∈ T

}
.

Note

F (λ)
( 1

zF21(λ)
1−F22(λ)z

)
=

[
F11(λ) F12(λ)
F21(λ) F22(λ)

] ( 1
zF21(λ)

1−F22(λ)z

)

=
(
F11(λ) + F12(λ)zF21(λ)

1−F22(λ)z

F21(λ) + F22(λ)zF21(λ)
1−F22(λ)z

)
=

(
FF (λ)(z)

F21(λ)
1−F22(λ)z

)
,

for all z, λ ∈ D. Therefore

(Ξ(λ) − F (λ))
( 1

zF21(λ)
1−F22(λ)z

)
= 0,

for all z, λ ∈ D. Since F21 is a nonzero analytic function on D, the zeros of F21 are 
isolated in D. Thus Ξ(λ) = F (λ) for all λ ∈ D. Hence
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Upper W ◦ UpperE (F ) =
{[

ζ1 0
0 ζ2

]
F

[
1 0
0 ζ2

]
: ζ1, ζ2 ∈ T

}
. �

5.3. The map Right S : R1 → S2

Definition 5.11. The map Right S is the set-valued map from R1 to S2 which is given, 
for each (N, M) ∈ R1, by

Right S (N,M) = {f ∈ S2, such that KN,M (z, λ, w, μ) = f(w, μ)f(z, λ), z, λ, w, μ ∈ D}.

Proposition 5.12. Right S is well defined and, for (N, M) ∈ R1,

Right S (N,M) = {ζf : ζ ∈ T},

where f : D2 → C is analytic and satisfies

KN,M (z, λ, w, μ) = f(w, μ)f(z, λ)

for all z, λ, w, μ ∈ D.

Proof. Let (N, M) ∈ R1. Then KN,M is an analytic kernel on D2 of rank 1. Thus there 
exist an analytic function f : D2 → C such that

KN,M (z, λ, w, μ) = f(w, μ)f(z, λ)

for all z, λ, w, μ ∈ D. In addition, if for an analytic function g : D2 → C,

KN,M (z, λ, w, μ) = g(w, μ)g(z, λ)

for all z, λ, w, μ ∈ D, then g = ζf for some ζ ∈ T.
Note

1 −KN,M (z, λ, w, μ) = (1 − wz)N(z, λ, w, μ) + (1 − μλ)M(z, λ, w, μ) ≥ 0

for all z, λ, w, μ ∈ D. Thus

1 − f(w, μ)f(z, λ) = 1 −KN,M (z, λ, w, μ) ≥ 0

for all z, λ, w, μ ∈ D. Hence |f(z, λ)| ≤ 1 for all z, λ ∈ D. Therefore f ∈ S2, and so 
Right S is well defined. �

Let us consider relations between Right S and other maps in the rich saltire.

Proposition 5.13. Let F ∈ S2×2. Then

Right S ◦ Upper E (F ) = {ζ SE (F ) : ζ ∈ T} .
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Proof. By the definition, SE (F )(z, λ) = −FF (λ)(z) for all z, λ ∈ D. By the definition of 
Upper E (F ) and by Propositions 5.1 and 5.2, UpperE (F ) = (NF , MF ) ∈ R1, where

KNF ,MF
(z, λ, w, μ) = FF (μ)(w)FF (λ)(z) = (−FF (μ)(w))(−FF (λ)(z))

for all z, λ, w, μ ∈ D. Thus

Right S ◦ Upper E (F ) = Right S (NF ,MF ) = {ζ SE (F ) : ζ ∈ T} . �
Proposition 5.14. Let (N, M) ∈ R11. Then

Right S (N,M) = {SE (F ) : F ∈ Upper W (N,M)}.

Proof. Let (N, M) ∈ R11 and let Ξ =
[
Ξ11 Ξ12
Ξ21 Ξ22

]
∈ S2×2 be constructed by Proce-

dure UW for (N, M). Then UpperW (N, M) =
{[

ζ1 0
0 ζ2

]
Ξ

[
1 0
0 ζ2

]
: ζ1, ζ2 ∈ T

}
and

SE
([

ζ1 0
0 ζ2

]
Ξ

[
1 0
0 ζ2

])
(z, λ) = SE

([
ζ1Ξ11 ζ1ζ2Ξ12
ζ2Ξ21 Ξ22

])
(z, λ)

= −ζ1Ξ11(λ) − ζ1ζ2Ξ12(λ)ζ2Ξ21(λ)z
1 − Ξ22(λ)z

= ζ1

(
−Ξ11(λ) − Ξ12(λ)Ξ21(λ)z

1 − Ξ22(λ)z

)
= ζ1 SE (Ξ)(z, λ)

for all z, λ ∈ D and all ζ1, ζ2 ∈ T. Hence

{SE (F ) : F ∈ Upper W (N,M)} = {ζ SE (Ξ) : ζ ∈ T} .

By Proposition 5.13 and Proposition 5.9, Upper E (Ξ) = (N, M) and

Right S (N,M) = Right S ◦ Upper E (Ξ) = {SE (F ) : F ∈ UpperW (N,M)} . �
5.4. The map RightN : S2 → R1

Theorem 5.15. [2, Theorem 11.13] Let ϕ ∈ S2. Then there are kernels N, M on D2 such 
that

1 − ϕ(μ1, μ2)ϕ(λ1, λ2) = (1 − μ1λ1)N(λ1, λ2, μ1, μ2) + (1 − μ2λ2)M(λ1, λ2, μ1, μ2)

for all λ1, λ2, μ1, μ2 ∈ D.
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Remark 5.16. The pair of kernels (N, M) from Theorem 5.15 are known as Agler kernels 
for ϕ ∈ S2. There are papers with constructive proofs of the existence of Agler kernels. 
See for example [12,14] and [15].

One can see that, for the Agler kernels (N, M) for ϕ ∈ S2,

KN,M (z, λ, w, μ) = 1 − (1 − wz)N(z, λ, w, μ) − (1 − μλ)M(z, λ, w, μ) = ϕ(w, μ)ϕ(z, λ)

for all z, λ, w, μ ∈ D. Thus KN,M is a kernel on D2 of rank 1 and (N, M) ∈ R1. Moreover, 
Right S (N, M) = {ζϕ : ζ ∈ T}.

Definition 5.17. The map RightN is the set-valued map from S2 to R1 which is given, 
for ϕ ∈ S2, by

RightN (ϕ) = {(N,M) is a pair of Agler kernels for ϕ}.

Remark 5.18. Let (N, M) ∈ R1 and let f ∈ S2 such that

KN,M (z, λ, w, μ) = f(w, μ)f(z, λ)

for all z, λ, w, μ ∈ D. Then, for all ϕ ∈ Right S (N, M),

RightN (ϕ) = RightN (f).

Moreover (N, M) ∈ RightN (f).

6. Relations between Hol (D, Γ) and other objects in the rich saltire

The rich saltire for the symmetrised bidisc is the following.

S2×2

Left SG
SE

Upper E
R1

Upper W

Right S
SWG

Hol (D,Γ)

Left NG

Lower EG

S2

Lower WG

Right N

(6.1)

We will define maps of the rich saltire for G and describe connections between different 
maps in the diagram (6.1).
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6.1. The maps LeftNG : Hol (D, Γ) → S2×2 and Left SG : S2×2 → Hol (D, Γ)

Proposition 6.1. [10, Proposition 6.1] For each h = (s, p) ∈ Hol (D, Γ) there exists a 
unique F = [Fij ]21 ∈ S2×2 such that

h = (tr F,detF )

and F11 = F22, |F12| = |F21| a. e. on T, F21 is either 0 or outer and F21(0) ≥ 0. More-
over, for all μ, λ ∈ D and all w, z ∈ C such that 1 − F22(μ)w �= 0 and 1 − F22(λ)z �= 0,

1 − Φ(w, h(μ))Φ(z, h(λ)) = (1 − wz)γ(μ,w)γ(λ, z) + η(μ,w)∗(I − F (μ)∗F (λ))η(λ, z).

The construction of F in [10, Proposition 6.1] is the following. Let h = (s, p) ∈
Hol (D, Γ) be such that 1

4s
2 = p. Then

F =
[

1
2s 0
0 1

2s

]

satisfies all of the required conditions. Now suppose that 1
4s

2 �= p. Then 1
4s

2 − p is a 
non-zero H∞ function, and so it has a unique inner-outer factorisation, expressible in 
the form ϕeC = 1

4s
2 − p, where ϕ is inner, eC is outer and eC(0) ≥ 0. It follows that

F =
[

1
2s ϕe

1
2C

e
1
2C 1

2s

]

is the only matrix satisfying the required conditions.

Definition 6.2. The map LeftNG : Hol (D, Γ) → S2×2 is given by LeftNG (h) = F , 
h ∈ Hol (D, Γ), where F is the unique element from S2×2 such that

h = (tr F,detF )

and F11 = F22, |F12| = |F21| a. e. on T, F21 is either 0 or outer and F21(0) ≥ 0.

Definition 6.3. The map Left SG : S2×2 → Hol (D, Γ) is given by

F �→ (tr F,detF )

for all F ∈ S2×2.

The following is trivial.

Lemma 6.4. Left SG ◦ Left NG = idHol (D,Γ).
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Example 6.5. Left NG ◦ Left SG �= idS2×2 . Consider the function F on D defined by

F (λ) =
[
λ2 0
0 λ

]
for all λ ∈ D. Then F ∈ S2×2 and, for all λ ∈ D,

Left SG (F )(λ) = (tr F (λ),detF (λ)) = (λ2 + λ, λ3).

It is clear that Left NG ◦ Left SG (F ) �= F .

6.2. The map LowerEG : Hol (D, Γ) → S2

Definition 6.6. The map LowerEG : Hol (D, Γ) → S2 is given by

Lower EG (h)(z, λ) := Φ(z, h(λ)), z, λ ∈ D,

for h ∈ Hol (D, Γ).

Proposition 6.7. The map LowerEG is well defined.

Proof. Let h = (s, p) ∈ Hol (D, Γ). For (z, λ) ∈ D
2,

Lower EG (h)(z, λ) = Φ(z, s(λ), p(λ)) where (s(λ), p(λ)) ∈ Γ.

By [9, Proposition 3.2], |s(λ)| ≤ 2 and, for all w in a dense subset of T,

|Φ(w, s(λ), p(λ))| ≤ 1.

Therefore

|zs(λ)| < 2 and |Φ(z, s(λ), p(λ))| ≤ 1.

Hence 2 − zs(λ) �= 0 and LowerEG (h)(z, λ) ∈ D. Since h is analytic and maps into Γ, 
the map Φ(z, h(λ)), z, λ ∈ D is analytic on D × Γ. Thus LowerEG (h) ∈ S2. �

One can ask the question:

which subset of S2 corresponds to Hol (D,Γ)? (6.2)

If h = (s, p) ∈ Hol (D, Γ) then, for any fixed λ ∈ D, the map

z �→ Φ(z, h(λ)) = 2zp(λ) − s(λ) = 2p(λ)z − s(λ) (6.3)
2 − zs(λ) −zs(λ) + 2
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is a linear fractional self-map f(z) = az+b
cz+d of D with the property “b = c”. To make 

the last phrase precise, say that a linear fractional map f of the complex plane has the 
property “b = c” if f(0) �= ∞ and either f is a constant map or, for some a, b and d
in C,

f(z) = az + b

bz + d
for all z ∈ C ∪ {∞}.

We shall denote the class of such functions f in S2 by Sb=c
2 .

Here is an answer to Question (6.2).

Proposition 6.8. [10, Proposition 5.2] Let G be an analytic function on D2. There exists 
a function h ∈ Hol (D, Γ) such that

G(z, λ) = Φ(z, h(λ)) for all z, λ ∈ D (6.4)

if and only if G ∈ S2 and, for every λ ∈ D, G(·, λ) is a linear fractional transformation 
with the property “b = c”. Moreover, if ϕ ∈ Sb=c

2 then its corresponding function h is 
unique.

Proof. The first part of the statement was proved in [10, Proposition 5.2]. We show here 
that, for every ϕ ∈ Sb=c

2 , its corresponding function h is unique. Suppose g ∈ Hol (D, Γ)
also satisfies the required properties. Then

Φ(z, h(λ)) = ϕ(z, λ) = Φ(z, g(λ)) for all z, λ ∈ D.

Suppose h = (s, p) and g = (q, r), then, for all z, λ ∈ D,

(2zp(λ) − s(λ))(2 − zq(λ)) = (2zr(λ) − q(λ))(2 − zs(λ)).

Thus, for all z, λ ∈ D,

z2(r(λ)s(λ) − p(λ)q(λ)) − 2z(r(λ) − p(λ)) + (q(λ) − s(λ)) = 0.

Hence, for all λ ∈ D, q(λ) − s(λ) = 0 and r(λ) − p(λ) = 0, and so h = g. �
6.3. The map LowerWG : Sb=c

2 → Hol (D, Γ)

We are interested in a map from Sb=c
2 rather than from the whole of S2. The proof of 

Proposition 6.8 provides for each ϕ ∈ Sb=c
2 the construction of a unique hϕ ∈ Hol (D, Γ).

Definition 6.9. For every ϕ ∈ Sb=c
2 such that ϕ(z, λ) = a(λ)z+b(λ)

b(λ)z+d(λ) , z, λ ∈ D, with d(λ) �= 0
we define
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hϕ(λ) =
(
−2 b(λ)

d(λ)
,
a(λ)
d(λ)

)
, λ ∈ D.

The map LowerWG : Sb=c
2 → Hol (D, Γ) is given by

LowerWG (ϕ) = hϕ

for all ϕ ∈ Sb=c
2 .

By Proposition 6.8, Lower WG is well defined.

Proposition 6.10. The map LowerWG is the inverse of LowerEG : Hol (D, Γ) → Sb=c
2 .

Proof. Let h = (s, p) ∈ Hol (D, Γ). Then Lower EG (h) ∈ Sb=c
2 and

LowerEG (h)(z, λ) = Φ(z, h(λ)) = 2zp(λ) − s(λ)
2 − zs(λ) =

p(λ)z − 1
2s(λ)

−1
2s(λ)z + 1

for all z, λ ∈ D. Hence by definition

Lower WG ◦ Lower EG (h) = (−2(−1
2s), p) = h.

Let ϕ ∈ Sb=c
2 such that ϕ(z, λ) = a(λ)z+b(λ)

b(λ(z)+d(λ) , z, λ ∈ D, with d(λ) �= 0. Then

Lower WG (ϕ) = hϕ =
(
−2 b

d
,
a

d

)
,

and so

Lower EG (hϕ)(z, λ) = Φ(z, hϕ(λ)) =
a(λ)
d(λ)z −

1
2 (−2 b(λ)

d(λ) )

1 − 1
2 (−2 b(λ)

d(λ) )z
= a(λ)z + b(λ)

b(λ)z + d(λ) = ϕ(z, λ)

for all z, λ ∈ D. Thus LowerEG ◦LowerWG (ϕ) = ϕ for all ϕ ∈ Sb=c
2 . Therefore LowerWG

is the inverse of LowerEG . �
Let us consider how the defined maps interact with each other.

Proposition 6.11. The following holds SE ◦LeftNG = LowerEG.

Proof. Let h ∈ Hol (D, Γ). Then, by Proposition 6.1, for LeftNG (h) = F ∈ S2×2,

SE (F )(z, λ) = −FF (λ)(z) = Φ(z, h(λ))
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for all z, λ ∈ D. Hence SE ◦Left NG (h)(z, λ) = Φ(z, h(λ)) for all z, λ ∈ D. By defi-
nition, Lower EG (h)(z, λ) = Φ(z, h(λ)) for all z, λ ∈ D. Thus, for all h ∈ Hol (D, Γ), 
SE ◦LeftNG(h) = LowerEG(h). �
Corollary 6.12. The following equalities hold SE ◦LeftNG ◦ LowerWG = idSb=c

2
and 

Lower WG ◦ SE ◦Left NG = idHol (D,Γ).

Proof. By Proposition 6.11, SE ◦LeftNG = Lower EG and, by Proposition 6.10, 
Lower WG is the inverse of LowerEG . The results follow immediately. �
Proposition 6.13. For all F = [Fij ]21 ∈ S2×2 such that F11 = F22, we have

LowerEG ◦ Left SG (F ) = SE (F ).

Proof. Let F = [Fij ]21 ∈ S2×2. Then

SE (F )(z, λ) = −F11(λ) − F12(λ)F21(λ)z
1 − F11(λ)z = −F11(λ) + (F11(λ)2 − F12(λ)F21(λ))z

1 − F11(λ)z

for all z, λ ∈ D and Left SG (F ) = (tr F, detF ) = (2F11, F 2
11 − F21F12). Thus

Lower EG ◦ Left SG (F )(z, λ) = Φ(z, 2F11(λ), F11(λ)2 − F21(λ)F12(λ))

= 2z(F 2
11(λ) − F21(λ)F12(λ)) − 2F11(λ)

2 − 2zF11(λ)

= −F11(λ) + (F11(λ)2 − F12(λ)F21(λ))z
1 − F11(λ)z

for all z, λ ∈ D. Therefore, for all F ∈ S2×2 such that F11 = F22, LowerEG◦Left SG (F ) =
SE (F ). �

However for an arbitrary F ∈ S2×2 we may have LowerEG ◦ Left SG (F ) �= SE (F ) as 
the following example shows.

Example 6.14. Let F =
[
f 0
0 g

]
, where f(z) is the Blaschke factor B1

2
and g(z) is the 

Blaschke factor B−1
2
. Then F ∈ S2×2. It is easy to see that

SE (F )(0, λ) = −F11(λ) − F12(λ)F21(λ) · 0
1 − F22(λ) · 0 = −f(λ)

and
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Lower EG ◦ Left SG (F ) (0, λ) = 2 · 0 · detF (λ) − tr F (λ)
2 − 0 · tr F (λ)

= −(f(λ) + g(λ))
2

for all λ ∈ D. Therefore LowerEG ◦ Left SG (F ) �= SE (F ).

Remark 6.15. In Definition 4.5, when either F21 = 0 or F12 = 0, the function

SE(F )(z, λ) = −FF (λ)(z) = −F11(λ),

is independent of z, and so in general the map SE can lose some information about F . 
However, in the case of the symmetrised bidisc, no information is lost. For h = (s, p) ∈
Hol (D, Γ) such that s2 = 4p, by Definition 6.6,

Lower EG (h)(z, λ) := Φ(z, h(λ)) = −s(λ)
2 , for z, λ ∈ D.

Secondly, by Definition 6.2, Left NG (h) = F , where

F =
[

1
2s 0
0 1

2s

]
.

Therefore, for h = (s, p) ∈ Hol (D, Γ) such that h(D) ⊂ R,

SE ◦Left NG (h)(z, λ) = LowerEG (h)(z, λ) = −1
2s(λ), λ ∈ D.

6.4. The map SWG : R11 → Hol (D, Γ)

Definition 6.16. The map SWG is the set-valued map from R11 to Hol (D, Γ) which is 
given by

SWG (N,M) = {Left SG (F ) : F ∈ UpperW (N,M)}.

Proposition 6.17. Let (N, M) ∈ R11, and let Ξ be a function constructed by Procedure 
UW for (N, M). Then

{Left SG (F ) : F ∈ Upper W (N,M)} =
{(

tr
[
ζ 0
0 1

]
Ξ, ζ det Ξ

)
: ζ ∈ T

}
⊆ Hol (D,Γ).

Proof. By Proposition 5.7,

Upper W (N,M) =
{[

ζ1 0
0 ζ

]
Ξ

[
1 0
0 ζ

]
: ζ1, ζ2 ∈ T

}
.

2 2
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Hence, for F ∈ UpperW (N, M), F =
[
ζ1 0
0 ζ2

]
Ξ 

[
1 0
0 ζ2

]
for some ζ1, ζ2 ∈ T. Then

Left SG (F ) =
(

tr
[
ζ1 0
0 ζ2

]
Ξ

[
1 0
0 ζ2

]
, det

[
ζ1 0
0 ζ2

]
Ξ

[
1 0
0 ζ2

])
=

(
tr

[
ζ1 0
0 1

]
Ξ, ζ1 detΞ

)
. �

Therefore, for (N, M) ∈ R11,

SWG (N,M) =
{(

tr
[
ζ 0
0 1

]
Ξ, ζ detΞ

)
: ζ ∈ T

}
,

where Ξ ∈ S2×2 is a function constructed by Procedure UW for (N, M). The later set is 
independent of the choice of Ξ.

Relations between SWG and other maps in the rich saltire are the following.

Proposition 6.18. Let F ∈ S2×2 such that F21 �= 0. Then

SWG ◦UpperE (F ) =
{

Left SG

([
ζ 0
0 1

]
F

)
: ζ ∈ T

}
.

Proof. By Proposition 5.10,

UpperW ◦ Upper E (F ) =
{[

ζ1 0
0 ζ2

]
F

[
1 0
0 ζ2

]
: ζ1, ζ2 ∈ T

}
,

and hence

SWG ◦Upper E (F ) =
{

Left SG

([
ζ1 0
0 ζ2

]
F

[
1 0
0 ζ2

])
: ζ1, ζ2 ∈ T

}
=

{(
tr

[
ζ1 0
0 ζ2

]
F

[
1 0
0 ζ2

]
, det

[
ζ1 0
0 ζ2

]
F

[
1 0
0 ζ2

])
: ζ1, ζ2 ∈ T

}
=

{
Left SG

([
ζ 0
0 1

]
F

)
: ζ ∈ T

}
. �

Corollary 6.19. Let h = (s, p) ∈ Hol (D, Γ) such that 1
4s

2 �= p. Then

SWG ◦Upper E ◦ Left NG (h) =
{(

1
2(ζ + 1)s, ζp

)
: ζ ∈ T

}
.

Proof. By Definition 6.2, Left NG (h) = F =
[ 1

2s F12

F21
1
2s

]
, where F21 �= 0 and detF = p. 

By Proposition 6.18,



D.C. Brown et al. / Journal of Functional Analysis 272 (2017) 1704–1754 1735
SWG ◦UpperE (F ) =
{

Left SG

([
ζ 0
0 1

]
F

)
: ζ ∈ T

}
=

{
Left SG

([
ζ 1

2s ζF12

F21
1
2s

])
: ζ ∈ T

}
=

{(
1
2(ζ + 1)s, ζ detF

)
: ζ ∈ T

}
.

Therefore SWG ◦Upper E ◦ Left NG (h) =
{( 1

2(ζ + 1)s, ζp
)

: ζ ∈ T
}
. �

Remark 6.20. By Corollary 6.19, for h = (s, p) ∈ Hol (D, Γ) such that h(D) is not in R, 
we have h ∈ SWG ◦UpperE ◦ LeftNG (h), since, for ζ = 1,(

1
2(ζ + 1)s, ζp

)
= (s, p).

Corollary 6.21. Let ϕ ∈ Sb=c
2 . Then

Right S ◦ Upper E ◦ Left NG ◦ LowerWG (ϕ) = {ζϕ : ζ ∈ T} .

Proof. By Corollary 6.12,

SE ◦LeftNG ◦ LowerWG (ϕ) = ϕ.

It is obvious that LeftNG ◦ LowerWG (ϕ) ∈ S2×2. By Proposition 5.13,

Right S ◦ UpperE (LeftNG ◦ Lower WG (ϕ)) = {ζ SE (LeftNG ◦ Lower WG (ϕ)) : ζ ∈ T}

Therefore Right S ◦ UpperE ◦ Left NG ◦ Lower WG (ϕ) = {ζϕ : ζ ∈ T}. �
7. Relations between Hol (D, E) and other objects in the rich saltire

The rich saltire for the tetrablock is the following.

S2×2

Left SE
SE

Upper E
R1

Upper W

Right S
SWE

Hol (D, E)

Left NE

Lower EE

S2
Lower WE

Right N

(7.1)

We will define the maps of the rich saltire which depend on E and describe connections 
between the different maps in diagram (7.1).



1736 D.C. Brown et al. / Journal of Functional Analysis 272 (2017) 1704–1754
7.1. The map LeftNE : Hol (D, E) → S2×2

Theorem 7.1. Let x = (x1, x2, x3) ∈ Hol (D, E). There exists a unique function

F = [Fij ]21 ∈ S2×2

such that

x = (F11, F22, detF ), (7.2)

and

|F12| = |F21| a. e. on T, F21 is either 0 or outer, and F21(0) ≥ 0. (7.3)

Moreover, for all μ, λ ∈ D and all w, z ∈ C such that

1 − F22(μ)w �= 0 and 1 − F22(λ)z �= 0,

1 − Ψ(w, x(μ))Ψ(z, x(λ)) = (1 − wz)γ(μ,w)γ(λ, z)

+ η(μ,w)∗(I − F (μ)∗F (λ))η(λ, z), (7.4)

where

γ(λ, z) := (1 − F22(λ)z)−1F21(λ) and η(λ, z) :=
[

1
zγ(λ, z)

]
. (7.5)

Proof. Consider first the case that x1x2 = x3. By Proposition 3.3, |x1(λ)|, |x2(λ)| ≤ 1
for all λ ∈ D. Then the function

F =
[
x1 0
0 x2

]
is in S2×2 and has the required properties (7.2) and (7.3), and moreover it is the only 
function with these properties.

In the case that x1x2 �= x3, the H∞ function x1x2 − x3 is nonzero, and so it has a 
unique inner-outer factorisation, say ϕeC = x1x2 − x3 where ϕ is inner, eC is outer and 
eC(0) ≥ 0. Let

F
def=

[
x1 ϕe

1
2C

e
1
2C x2

]
. (7.6)

One can see that

detF = x1x2 − ϕeC = x1x2 − x1x2 + x3 = x3,
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and |F12| = eRe 1
2C = |F21| a. e. on T, F21 is outer, and F21(0) ≥ 0. It follows that F is 

the only matrix satisfying the required properties (7.2) and (7.3).
Let us check that F ∈ S2×2. Clearly F is holomorphic on D. We must show that 

‖F (λ)‖ ≤ 1 for all λ ∈ D. Let us prove that I−F (λ)∗F (λ) is positive semidefinite for all 
λ ∈ D. It is enough to show that, for all λ ∈ D, the diagonal entries of I−F (λ)∗F (λ) are 
non-negative and det (I − F (λ)∗F (λ)) ≥ 0. Since |F12| = |F21| a. e. on T and F21F12 =
x1x2 − x3 we have

|F12|2 = |F21|2 = |F21F12| = |x1x2 − x3|

a. e. on T. At almost every λ ∈ T,

I − F (λ)∗F (λ)

=
[

1 − |x1(λ)|2 − |x1(λ)x2(λ) − x3(λ)| −x1(λ)F12(λ) − F21(λ)x2(λ)
−F12(λ)x1(λ) − x2(λ)F21(λ) 1 − |x1(λ)x2(λ) − x3(λ)| − |x2(λ)|2

]

and

det (I − F (λ)∗F (λ)) = 1 − |x1(λ)|2 − 2|x1(λ)x2(λ) − x3(λ)| − |x2(λ)|2 + |x3(λ)|2.

Let D11 and D22 be the diagonal entries of I − F ∗F . Since x(λ) ∈ E for λ ∈ D, by 
Proposition 3.3,

|x2(λ) − x1(λ)x3(λ)| + |x1(λ)x2(λ) − x3(λ)| ≤ 1 − |x1(λ)|2

and

|x1(λ) − x2(λ)x3(λ)| + |x1(λ)x2(λ) − x3(λ)| ≤ 1 − |x2(λ)|2

for all λ ∈ D. Thus, for almost every λ ∈ T,

D11(λ) ≥ |x2(λ) − x1(λ)x3(λ)| ≥ 0 and D22(λ) ≥ |x1(λ) − x2(λ)x3(λ)| ≥ 0.

By Proposition 3.3,

|x1(λ)|2 + |x2(λ)|2 − |x3(λ)|2 + 2|x1(λ)x2(λ) − x3(λ)| ≤ 1,

for all λ ∈ D. Hence, for almost every λ ∈ T,

det (I − F (λ)∗F (λ)) ≥ 0.

Therefore

I − F (λ)∗F (λ)
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for almost every λ ∈ T. Thus ‖F (λ)‖ ≤ 1 for almost every λ ∈ T, and so, by the 
Maximum Modulus Principle, ‖F (λ)‖ ≤ 1 for all λ ∈ D.

We now prove the identity (7.4). By Proposition 4.3, for any F = [Fij ]21 ∈ S2×2,

1 −FF (μ)(w)∗FF (λ)(z) = γ(μ,w)(1 − wz)γ(λ, z) + η(μ,w)∗(I − F (μ)∗F (λ))η(λ, z)

for all μ, λ ∈ D and w, z ∈ C such that 1 − F22(μ)w �= 0 and 1 − F22(λ)z �= 0.
First we note that

FF (λ)(z) = F11(λ) + F12(λ)F21(λ)z
1 − F22(λ)z = x1(λ) + (x1(λ)x2(λ) − x3(λ))z

1 − x2(λ)z

= x1(λ) − x3(λ)z
1 − x2(λ)z = x3(λ)z − x1(λ)

x2(λ)z − 1 = Ψ(z, x(λ))

for all λ ∈ D and all z ∈ C such that 1 −F22(λ)z �= 0. The functions γ and η are defined 
by equations (7.5). Hence

1 − Ψ(w, x(μ))Ψ(z, x(λ)) = 1 −FF (μ)(w)∗FF (λ)(z)

= (1 − wz)γ(μ,w)γ(λ, z) + η(μ,w)∗(I − F (μ)∗F (λ))η(λ, z)

for all μ, λ ∈ D and all w, z ∈ C such that 1 − F22(μ)w �= 0 and 1 − F22(λ)z �= 0. �
Definition 7.2. The map LeftNE : Hol (D, E) → S2×2 is given by

Left NE (x) = F = [Fij ]21

for x = (x1, x2, x3) ∈ Hol (D, E), where F ∈ S2×2 such that x = (F11, F22, detF ), 
|F12| = |F21| a. e. on T, F21 is either outer or 0 and F21(0) ≥ 0.

7.2. The map Left SE : S2×2 → Hol (D, E)

Definition 7.3. The map Left SE : S2×2 → Hol (D, E) is defined by

F = [Fij ]21 �→ (F11, F22, detF )

for each F ∈ S2×2.

By Proposition 3.3 and Theorem 3.4, the map Left SE is well defined. Relations be-
tween the maps LeftNE and Left SE are the following.
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Proposition 7.4.

(i) The equality Left SE ◦ Left NE = idHol (D,E) holds, and
(ii) LeftNE ◦ Left SE �= idS∈×∈ .

Proof. (i) Let x = (x1, x2, x3) ∈ Hol (D, E). By Definition 7.2,

LeftNE (x) = F = [Fij ]21 ,

where F ∈ S2×2 such that x = (F11, F22, detF ), |F12| = |F21| a. e. on T, F21 is either 
outer or 0 and F21(0) ≥ 0. Therefore Left SE ◦ Left NE = idHol (D,E) holds.

(ii) Let us consider the following example: the function F on D which is defined by

F (λ) = λ√
2

[
1 0
1 0

]
, λ ∈ D.

Clearly, F ∈ S2×2. Then

Left SE (F )(λ) = ( λ√
2
, 0, 0) ∈ Hol (D, E),

and, by Definition 7.2,

Left NE ◦ Left SE (F )(λ) =
[

λ√
2 0

0 0

]
, λ ∈ D.

Hence LeftNE ◦ Left SE �= idS∈×∈ . �
7.3. The maps LowerEE : Hol (D, E) → S lf

2 and LowerWE : S lf
2 → Hol (D, E)

Lemma 7.5. Let ϕ ∈ S2 be such that ϕ(·, λ) is a linear fractional map for all λ ∈ D. Then 
ϕ can be written as

ϕ(z, λ) = a(λ)z + b(λ)
c(λ)z + 1

for all z, λ ∈ D, where a, b, c are functions from D to C, and b is analytic on D. Moreover, 
if c is analytic on D, then so is a.

Proof. Let ϕ ∈ S2 be such that ϕ(·, λ) is a linear fractional map for all λ ∈ D. Then we 
can write

ϕ(z, λ) = a(λ)z + b(λ)

c(λ)z + d(λ)
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for all z, λ ∈ D, where a, b, c, d are functions from D to C. Since ϕ ∈ S2, up to cancellation, 
ϕ(·, λ) does not have a pole at 0 for any λ ∈ D. Thus, without loss of generality, we may 
write

ϕ(z, λ) = a(λ)z + b(λ)
c(λ)z + 1

for all z, λ ∈ D. Moreover, since b(λ) = ϕ(0, λ) for all λ ∈ D, and so b is analytic on D.
Suppose c is analytic on D. Then

a(λ)z = ϕ(z, λ)(c(λ)z + 1) − b(λ)

for all z, λ ∈ D, and so a is analytic on D. �
Definition 7.6. Let S lf

2 be the subset of S2 which contains those ϕ for which ϕ(·, λ) is a 
linear fractional map of the form

ϕ(z, λ) = a(λ)z + b(λ)
c(λ)z + 1

for all z, λ ∈ D, where c is analytic on D, and if a(λ) = b(λ)c(λ) for some λ ∈ D, then, 
in addition, |c(λ)| ≤ 1.

Proposition 7.7. Let ϕ be a function on D2. Then ϕ ∈ S lf
2 if and only if there exists a 

function x ∈ Hol (D, E) such that

ϕ(z, λ) = Ψ(z, x(λ)) for all z, λ ∈ D.

Proof. Suppose ϕ ∈ S lf
2 . Then

ϕ(z, λ) = a(λ)z + b(λ)
c(λ)z + 1

for all z, λ ∈ D, where c is analytic on D, and if a(λ) = b(λ)c(λ) for some λ ∈ D, then in 
addition |c(λ)| ≤ 1. By Lemma 7.5, both a and b are also analytic on D.

Set

x(λ) = (b(λ),−c(λ),−a(λ))

for all λ ∈ D. Then x is analytic on D, and |Ψ(z, x(λ)| = |x3(λ)z−x1(λ)
x2(λ)z−1 | = |ϕ(z, λ)| ≤ 1

for all z, λ ∈ D, and if a(λ) = b(λ)c(λ) for some λ ∈ D, then, in addition, |c(λ)| ≤ 1. 
Hence, by Proposition 3.3(3), x(λ) ∈ E for all λ ∈ D, and

ϕ(z, λ) = Ψ(z, x(λ)) for all z, λ ∈ D.
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Conversely, suppose there exists an x = (x1, x2, x3) ∈ Hol (D, E) such that ϕ(z, λ) =
Ψ(z, x(λ)) for all z, λ ∈ D. Then

ϕ(z, λ) = x3(λ)z − x1(λ)
x2(λ)z − 1

for all z, λ ∈ D and clearly ϕ(·, λ) is a linear fractional transformation for all λ ∈ D. 
It is obvious that x1, x2 and x3 are analytic on D. Since x(λ) ∈ E for all λ ∈ D, by 
Proposition 3.3(3), |ϕ(z, λ)| = |Ψ(z, x(λ))| ≤ 1 for all z, λ ∈ D, and if x1(λ)x2(λ) = x3(λ)
then in addition |x2(λ)| ≤ 1. Thus ϕ ∈ S lf

2 . �
By Proposition 7.7, the map below LowerEE is well defined.

Definition 7.8. The map Lower EE : Hol (D, E) → S lf
2 , for x = (x1, x2, x3) ∈ Hol (D, E), is 

given by

LowerEE (x)(z, λ) := Ψ(z, x(λ)) = x3(λ)z − x1(λ)
x2(λ)z − 1 , z, λ ∈ D.

Proposition 7.9. Let ϕ ∈ S lf
2 . Suppose functions x = (x1, x2, x3), y = (y1, y2, y3) ∈

Hol (D, E) are such that

ϕ(z, λ) = Ψ(z, x(λ))

and

ϕ(z, λ) = Ψ(z, y(λ))

for all z, λ ∈ D. Then the following relations hold:

(i) if x1x2 �= x3, then x = y on D;
(ii) if x1x2 = x3, then y = (x1, y2, x1y2) on D.

Proof. By assumption,

Ψ(z, x(λ)) = ϕ(z, λ) = Ψ(z, y(λ))

for all z, λ ∈ D. Hence

x3(λ)z − x1(λ)
x2(λ)z − 1 = y3(λ)z − y1(λ)

y2(λ)z − 1 ,

and so
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x3(λ)y2(λ)z2 − (x1(λ)y2(λ) + x3(λ))z + x1(λ)

= y3(λ)x2(λ)z2 − (y1(λ)x2(λ) + y3(λ))z + y1(λ)

for all z, λ ∈ D. Therefore x1 = y1, x3y2 = y3x2, and x1y2 +x3 = y1x2 + y3 on D. Hence, 
for all λ ∈ D,

(x3(λ) − x1(λ)x2(λ))y2(λ) = (x3(λ) − x1(λ)x2(λ))x2(λ). (7.7)

(i) Suppose that x1x2 �= x3. Since x3 − x1x2 is a nonzero analytic function on D, the 
zeros of this function are isolated in D. Thus, by (7.7), y2 = x2 and y3 = x3 on D. Hence 
x = y.

(ii) If x1x2 = x3, then we have x1 = y1, y3 = x1y2, and so y = (x1, y2, x1y2) on D. �
One can use Proposition 7.7 to define the map LowerWE below.

Definition 7.10. The map LowerWE : S lf
2 → Hol (D, E) is given by the following proce-

dure:

(i) for ϕ ∈ S lf
2 , where ϕ(z, λ) = a(λ)z+b(λ)

c(λ)z+1 , z, λ ∈ D, and a �= bc,

LowerWE (ϕ) = (b,−c,−a) ;

(ii) for ϕ ∈ S lf
2 such that a = bc, and so ϕ(z, λ) = b(λ), z, λ ∈ D, Lower WE is the set 

map

LowerWE (ϕ) = {(b,−d,−bd) , where d is analytic and |d| ≤ 1 on D}.

Proposition 7.11. The following relations hold:
(i) for each x = (x1, x2, x3) ∈ Hol (D, E) such that x3 �= x1x2,

Lower WE ◦ Lower EE(x) = x;

(ii) for each ϕ ∈ S lf
2 such that ϕ(z, λ) = a(λ)z+b(λ)

c(λ)z+1 , z, λ ∈ D, and a �= bc,

Lower EE ◦ LowerWE(ϕ) = ϕ.

Proof. (i) Let x = (x1, x2, x3) ∈ Hol (D, E) be such that x3 �= x1x2. Then

LowerEE (x) = ϕ ∈ S lf
2 , where ϕ(z, λ) = Ψ(z, x(λ)), z, λ ∈ D.

Thus

ϕ(z, λ) = x3(λ)z − x1(λ) = −x3(λ)z + x1(λ)

x2(λ)z − 1 −x2(λ)z + 1
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for all z, λ ∈ D and x3 �= x1x2. By Definition 7.10,

Lower WE (ϕ) = (x1, x2, x3) = x,

and so

LowerWE ◦ Lower EE(x) = x.

(ii) Let ϕ ∈ S lf
2 be such that ϕ(z, λ) = a(λ)z+b(λ)

c(λ)z+1 , z, λ ∈ D and a �= bc. Then, by 
Definition 7.10,

Lower WE (ϕ) = xϕ = (b,−c,−a) .

Therefore

LowerEE(xϕ)(z, λ) = Ψ(z, xϕ(λ)) = a(λ)z + b(λ)
c(λ)z + 1 = ϕ(z, λ)

for all z, λ ∈ D. It follows that Lower EE ◦ LowerWE (ϕ) = ϕ for ϕ ∈ S lf
2 such that 

a �= bc. �
Let us see how these maps interact with the other maps in the rich saltire (7.1).

Proposition 7.12. The following equality SE ◦Left NE = LowerEE holds.

Proof. Let x = (x1, x2, x3) ∈ Hol (D, E). Then LeftNE (x) = F ∈ S2×2 as defined in 
Theorem 7.1 and, by the proof of Theorem 7.1,

SE(F )(z, λ) = FF (λ)(z) = Ψ(z, x(λ))

for all z, λ ∈ D. Hence, by definition,

SE ◦LeftNE (x)(z, λ) = Ψ(z, x(λ)) = Lower EE (x)(z, λ)

for all z, λ ∈ D. It follows that SE ◦LeftNE (x) = LowerEE (x) for all x ∈ Hol (D, E) and 
so SE ◦LeftNE = LowerEE . �
Corollary 7.13. The following relations hold:

(i) for each x = (x1, x2, x3) ∈ Hol (D, E) such that x3 �= x1x2,

Lower WE ◦ SE ◦LeftNE(x) = x;

(ii) for each ϕ ∈ S lf
2 such that ϕ(z, λ) = a(λ)z+b(λ)

c(λ)z+1 , z, λ ∈ D, and a �= bc,

SE ◦Left NE ◦ Lower WE(ϕ) = ϕ.
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Proof. This follows immediately from Proposition 7.12 and Proposition 7.11. �
Proposition 7.14. The equality LowerEE ◦ Left SE = SE holds.

Proof. Let F = [Fij ]21 ∈ S2×2. Then Left SE (F ) = (F11, F22, detF ) and

LowerEE ((F11, F22, detF ))(z, λ) = Ψ(z, F11(λ), F22(λ),detF (λ))

for all z, λ ∈ D. Moreover

SE(F )(z, λ) = FF (λ)(z)

= F11(λ) + F12(λ)F21(λ)z
1 − F22(λ)z = F11(λ) − detF (λ)z

1 − F22(λ)z

= Ψ(z, F11(λ), F22(λ),detF (λ))

for all z, λ ∈ D. It follows that Lower EE ◦ Left SE (F ) = SE(F ) for all F ∈ S2×2 and so 
Lower EE ◦ Left SE = SE as required. �

The idea for SWE is that we want to follow Procedure UW with the application of 
the map Left SE to the function produced. The following proposition will facilitate this.

Proposition 7.15. Let (N, M) ∈ R11. Let Ξ be any function constructed from (N, M) by 
Procedure UW (Theorem 5.5). Then

{Left SE(F ) : F ∈ Upper W (N,M)} = {(ζΞ11,Ξ22, ζ detΞ) : ζ ∈ T} ⊆ Hol (D, E).

Proof. By Proposition 5.7, a function F =
[
ζ1 0
0 ζ2

]
Ξ 

[
1 0
0 ζ2

]
∈ UpperW (N, M), 

where ζ1, ζ2 ∈ T. Thus

Left SE (F ) =
(
ζ1Ξ11,Ξ22, det

[
ζ1 0
0 ζ2

]
Ξ

[
1 0
0 ζ2

])
= (ζ1Ξ11,Ξ22, ζ1 det Ξ) . �

Definition 7.16. Let SWE be the set-valued map from R11 to Hol (D, E) such that

SWE (N,M) = {(ζΞ11,Ξ22, ζ detΞ) : ζ ∈ T}

for all (N, M) ∈ R11, where Ξ =
[
Ξ11 Ξ12
Ξ21 Ξ22

]
∈ S2×2 is a function constructed from 

(N, M) by Procedure UW.

By Proposition 5.7, SWE is independent of choice of Ξ in Upper W (N, M).
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8. A criterion for the solvability of the μDiag-synthesis problem

Theorem 8.1. Let λ1, . . . , λn be distinct points in D and let (x1j , x2j , x3j) ∈ E be such 
that x1jx2j �= x3j for j = 1, . . . , n. Then the following are equivalent.

(i) There exists a holomorphic function x : D → E such that

x(λj) = (x1j , x2j , x3j) for j = 1, . . . , n. (8.1)

(ii) There exists a rational E-inner function x such that

x(λj) = (x1j , x2j , x3j) for j = 1, . . . , n. (8.2)

(iii) For every triple of distinct points z1, z2, z3 in D, there exist positive 3n-square ma-
trices N = [Nil,jk]n,3i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]n,3i,j=1,l,k=1 such 
that, for 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3,

1 − zlx3i − x1i

x2izl − 1
zkx3j − x1j

x2jzk − 1 = (1 − zlzk)Nil,jk + (1 − λiλj)Mil,jk. (8.3)

(iv) For some distinct points z1, z2, z3 in D, there exist positive 3n-square matrices N =
[Nil,jk]n,3i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]n,3i,j=1,l,k=1 such that

[
1 − zlx3i − x1i

x2izl − 1
zkx3j − x1j

x2jzk − 1

]
≥ [(1 − zlzk)Nil,jk] +

[
(1 − λiλj)Mil,jk

]
. (8.4)

Proof. Clearly (ii) =⇒ (i) and (iii) =⇒ (iv). We will show that (iii) =⇒ (ii), (iv) =⇒ (i) 
and (i) =⇒ (iii) to complete the proof.

(iii) =⇒ (ii): Suppose that (iii) holds. Then since N is positive and has rank 1 there 
are γjk ∈ C such that for all j = 1, . . . , n and k = 1, 2, 3

Nil,jk = γilγjk.

Similarly since M is positive there is a Hilbert space H of dimension at most 3n and 
vectors vjk ∈ H such that for all j = 1, . . . , n and k = 1, 2, 3

Mil,jk = 〈vjk, vil〉H .

Now recall that Ψ(zk, x1j , x2j , x3j) = zkx3j−x1j
x2jzk−1 . Then, as in the proof of Theorem 5.5, 

we can show that the Gramian of the vectors(Ψ(zk, x1j , x2j , x3j)
γjk

)
∈ C

2 ⊕H

vjk
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for all j = 1, . . . , n and k = 1, 2, 3, is equal to the Gramian of the vectors

( 1
zkγjk
λjvjk

)
∈ C

2 ⊕H

for all j = 1, . . . , n and k = 1, 2, 3. Hence there is a unitary operator L on C2 ⊕H which 
maps the vectors

(Ψ(zk, x1j , x2j , x3j)
γjk
vjk

)
to the vectors

( 1
zkγjk
λjvjk

)

for j = 1, . . . , n and k = 1, 2, 3. Write L as a block operator matrix

L =
[
A B
C D

]
,

where A, D act on C2, H respectively. Then, for j = 1, . . . , n and k = 1, 2, 3, we obtain 
the following equations(

Ψ(zk, x1j , x2j , x3j)
γjk

)
= A

(
1

zkγjk

)
+ Bλjvjk and vjk = C

(
1

zkγjk

)
+ Dλjvjk.

From the second of these equations,

vjk = (I −Dλj)−1C

(
1

zkγjk

)
,

and so (
Ψ(zk, x1j , x2j , x3j)

γjk

)
= (A + Bλj(I −Dλj)−1C)

(
1

zkγjk

)
,

for all j = 1, . . . , n and k = 1, 2, 3. Let Θ(λ) = A + Bλ(I − Dλ)−1C =
[
a(λ) b(λ)
c(λ) d(λ)

]
. 

Since L is unitary and H is finite-dimensional, Θ is a rational 2 ×2 inner function. Hence 
the function x := (a, d, detΘ) is a rational E-inner function.

We claim that x satisfies the interpolation conditions (8.2) x(λj) = (x1j , x2j , x3j) for 
all j = 1, . . . , n.

From above(
Ψ(zk, x1j , x2j , x3j)

γjk

)
= Θ(λj)

(
1

zkγjk

)
=

(
a(λj) + b(λj)zkγjk
c(λj) + d(λj)zkγjk

)
for j = 1, . . . , n and k = 1, 2, 3. Hence
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Ψ(zk, x1j , x2j , x3j) = a(λj) + b(λj)zkγjk and γjk = c(λj) + d(λj)zkγjk

and so

Ψ(zk, x1j , x2j , x3j) = a(λj) + b(λj)zk(1 − d(λj)zk)−1c(λj).

That is, for each j = 1, . . . , n, the linear fractional maps

Ψ(zk, x1j , x2j , x3j) = x1j − x3jz

1 − x2jz
and

a(λj) + b(λj)c(λj)z
1 − d(λj)z

= a(λj) − (a(λj)d(λj) − b(λj)c(λj))z
1 − d(λj)z

agree at three distinct values of z ∈ D, and so the two maps are the same. Thus, since 
x1jx2j �= x3j for j = 1, . . . , n,

a(λj) = x1j , d(λj) = x2j and det Θ(λj) = a(λj)d(λj) − b(λj)c(λj) = x3j .

It follows that x(λj) = (x1j , x2j , x3j) for j = 1, . . . , n and so (iii) =⇒ (ii).
(iv) =⇒ (i): This proof is similar to (iii) =⇒ (ii). The difference is that the Gramian 

of the vectors (Ψ(zk, x1j , x2j , x3j)
γjk
vjk

)
∈ C

2 ⊕H

is less than or equal to the Gramian of the vectors( 1
zkγjk
λjvjk

)
∈ C

2 ⊕H,

for j = 1, . . . , n and k = 1, 2, 3. Hence there is a contraction L on C2 ⊕H which maps 
the vectors (Ψ(zk, x1j , x2j , x3j)

γjk
vjk

)
to the vectors

( 1
zkγjk
λjvjk

)
.

Since L is a contraction, the map Θ defined by Θ(λ) = A + Bλ(I − Dλ)−1C =[
a(λ) b(λ)
c(λ) d(λ)

]
belongs to S2×2 and hence x = (a, d, detΘ) ∈ Hol (D, E). That x(λj) =

(x1j , x2j , x3j) for j = 1, . . . , n follows as in the previous part.
(i) =⇒ (iii): Suppose there is a holomorphic function x = (x1, x2, x3) : D → E

satisfying x(λj) = (x1j , x2j , x3j) for j = 1, . . . , n. By Theorem 7.1, there is a holomorphic 
function
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F =
[
x1 f1
f2 x2

]
: D → M2(C)

such that f2 �= 0 and ‖F (λ)‖ ≤ 1 for all λ ∈ D and

1−Ψ(w, x(μ))Ψ(z, x(λ)) = (1−wz)γ(μ,w)γ(λ, z)+(1−μλ)η(μ,w)∗ I − F (μ)∗F (λ)
1 − μλ

η(λ, z)

for all μ, λ ∈ D and any w, z ∈ C such that 1 − x2(μ)w �= 0 and 1 − x2(λ)z �= 0, where

γ(λ, z) = (1 − x2(λ)z)−1f2(λ) and η(λ, z) =
[

1
γ(λ, z)z

]
.

Hence for the given λj ∈ D, j = 1, . . . , n, and for all w, z ∈ D,

1 − Ψ(w, x1i, x2i, x3i)Ψ(z, x1j , x2j , x3j)

= 1 − Ψ(w, x(λi))Ψ(z, x(λj))

= (1 − wz)γ(λi, w)γ(λj , z) + (1 − λiλj)η(λi, w)∗ I − F (λi)∗F (λj)
1 − λiλj

η(λj , z).

In particular for every triple of distinct points z1, z2, z3 in D, and for all j = 1, . . . , n,

1 − Ψ(zl, x1i, x2i, x3i)Ψ(zk, x1j , x2j , x3j)

= (1 − zlzk)γ(λi, zl)γ(λj , zk) + (1 − λiλj)η(λi, zl)∗
I − F (λi)∗F (λj)

1 − λiλj

η(λj , zk).

Since F ∈ S2×2 with f2 �= 0, by Proposition 5.1,

γ(μ,w)γ(λ, z) and η(μ,w)∗ I − F (μ)∗F (λ)
1 − μλ

η(λ, z)

are kernels on D2. Hence the 3n-square matrices

N = [Nil,jk]n,3i,j=1,l,k=1 :=
[
γ(λi, zl)γ(λj , zk)

]n,3
i,j=1,l,k=1

and

M = [Mil,jk]n,3i,j=1,l,k=1 :=
[
η(λi, zl)∗

I − F (λi)∗F (λj)
1 − λiλj

η(λj , zk)
]n,3

i,j=1,l,k=1

are positive for all 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3. Moreover N is of rank 1 and for all 
1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3,

1 − Ψ(zl, x1i, x2i, x3i)Ψ(zk, x1j , x2j , x3j) = (1 − zlzk)Nil,jk + (1 − λiλj)Mil,jk.

It follows that (i) =⇒ (iii). �
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9. Construction of all interpolating functions in Hol (D, E)

Theorem 8.1 gives us a criterion for the solvability of the interpolation problem

find x ∈ Hol(D, E) such that x(λj) = (x1j , x2j , x3j) for j = 1, . . . , n. (9.1)

The proof of the theorem contains a description of a process for the derivation of a 
solution of the problem (9.1) from a feasible pair (N, M) for the inequality (8.4) with 
rank (N) ≤ 1. The process can be summarised as follows.

Procedure SW
Let λj and (x1j , x2j , x3j) be as in Theorem 8.1. Let z1, z2, z3 be a triple of distinct

points in D, and N, M be positive 3n-square matrices such that rank (N) ≤ 1 and the 
inequality (8.4) holds.

(1) Choose scalars γjk such that N = [γi�γjk ]n,3i,j=1,�,k=1.
(2) Choose a Hilbert space M and vectors vjk ∈ M such that

M = [〈vjk, vi�〉M ]n,3i,j=1,�,k=1 .

(3) Choose a contraction [
A B
C D

]
: C2 ⊕M → C

2 ⊕M

such that [
A B
C D

] ( 1
zkγjk
λjvjk

)
=

(Ψ(zk, x1j , x2j , x3j)
γjk
vjk

)
(9.2)

for j = 1, . . . , n and k = 1, 2, 3.
(4) Let

x(λ) = Left SE (A + Bλ(I −Dλ)−1C) (9.3)

for λ ∈ D.

Then x ∈ Hol(D, E) and x(λj) = (x1j , x2j , x3j) for j = 1, . . . , n.
The purpose of this section is to show that this procedure in principle yields the 

general solution of the problem (9.1), provided that one can find the general feasible 
pair (N, M) for the relevant inequality with rank (N) ≤ 1.

Theorem 9.1. Every solution of an E-interpolation problem arises by Procedure SW from 
a solution (N, M) of the corresponding inequality (8.4) with rank of N less than or equal 
to 1.
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Proof. Let λj , x1j , x2j , x3j be as in Theorem 8.1 and let x = (x1, x2, x3) ∈ Hol (D, E) be 
such that x(λj) = (x1j , x2j , x3j) for all j = 1, . . . , n. We must produce a pair of positive 
matrices (N, M) that satisfy the inequality (8.4) such that Procedure SW, when applied 
to (N, M) with appropriate choices, produces x.

By Proposition 7.1 there is a unique F = [Fij ]21 ∈ S2×2 such that F11 = x1, F22 = x2, 
detF = x3, |F12| = |F21| a. e. on T, F21 is outer or 0 and F12 is inner. Moreover if

γ(λ, z) = (1 − F22(λ)z)−1F21(λ) and η(λ, z) =
[

1
zγ(z, λ)

]
then

1 − Ψ(w, x(μ))Ψ(z, x(λ)) = (1 − wz)γ(μ,w)γ(λ, z) + η(μ,w)∗(I − F (μ)∗F (λ))η(λ, z)

for all z, λ, w, μ ∈ D.
Since F ∈ S2×2,

(λ, μ) �→ I − F (μ)∗F (λ)
1 − μλ

is a positive 2 × 2 kernel on D, and so there is a Hilbert space H and a holomorphic map 
U : D → L(C2, H) such that

I − F (μ)∗F (λ)
1 − μλ

= U(μ)∗U(λ)

for all λ, μ ∈ D. Hence

1 − Ψ(w, x(μ))Ψ(z, x(λ)) = (1 − wz)γ(μ,w)γ(λ, z) + (1 − μλ)η(μ,w)∗U(μ)∗U(λ)η(λ, z)

for all z, λ, w, μ ∈ D. In particular, for every triple of distinct points z1, z2, z3 in D,

1 − Ψ(zl, x1i, x2i, x3i)Ψ(zk, x1j , x2j , x3j)

= (1 − zlzk)γ(λi, zl)γ(λj , zk) + (1 − λiλj)〈U(λj)η(zk, λj), U(λi)η(zl, λi)〉H

for all i, j = 1, . . . , n and l, k = 1, 2, 3. It follows that the 3n-square matrices

N =
[
γ(zl, λi)γ(zk, λj)

]n,3
i,j=1,l,k=1

and

M = [〈U(λj)η(zk, λj), U(λi)η(zl, λi)〉H]n,3i,j=1,l,k=1

satisfy the inequality (8.4) and moreover the rank of N is less than or equal to 1. Thus 
we may apply Procedure SW to (N, M). In steps (1) and (2) we choose γjk = γ(λj , zk), 
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M = H and vjk = U(λj)η(λj , zk). As in the proof of Theorem 5.5 we can show that the 
Grammian of the vectors ( 1

zγ(λ, z)
λU(λ)η(λ, z)

)
∈ C

2 ⊕H

for all z, λ ∈ D, is equal to the Grammian of the vectors( Ψ(z, x(λ)
γ(λ, z)

U(λ)η(λ, z)

)
∈ C

2 ⊕H

for all z, λ ∈ D. Hence there is an isomertry

L0 : span
{( 1

zγ(λ, z)
λU(λ)η(λ, z)

)
: z, λ ∈ D

}
→ C

2 ⊕H

such that

L0

( 1
zγ(λ, z)

λU(λ)η(λ, z)

)
=

( Ψ(z, x(λ)
γ(λ, z)

U(λ)η(λ, z)

)

for all z, λ ∈ D. Now extend L0 to a contraction

L =
[
A B
C D

]
: C2 ⊕H → C

2 ⊕H.

Then, in particular,

L

( 1
zkγ(λj , zk)

λjU(λj)η(λj , zk)

)
=

( Ψ(zk, x(λj)
γ(λj , zk)

U(λj)η(λj , zk)

)

for all j = 1, . . . , n and k = 1, 2, 3, which is step (3) of Procedure SW. Hence we can use 
L in step (4) to obtain a function x̃ ∈ Hol (D, E) such that x̃(λj) = (x1j , x2j , x3j).

We claim that x̃ = x. We already have

⎛⎝(
Ψ(z, x(λ)
γ(λ, z)

)
U(λ)η(λ, z)

⎞⎠ = L

( 1
zγ(λ, z)

λU(λ)η(λ, z)

)
=

⎛⎜⎜⎝A

(
1

zγ(λ, z)

)
+ BλU(λ)η(λ, z)

C

(
1

zγ(λ, z)

)
+ DλU(λ)η(λ, z)

⎞⎟⎟⎠
and so (

Ψ(z, x(λ))
γ(λ, z)

)
= A

(
1

zγ(λ, z)

)
+ BλU(λ)η(λ, z)
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and

(1 −Dλ)U(λ)η(λ, z) = C

(
1

zγ(λ, z)

)
for all z, λ ∈ D. Hence(

Ψ(z, x(λ))
γ(λ, z)

)
= (A + Bλ(I −Dλ)−1C)

(
1

zγ(λ, z)

)
= Θ(λ)

(
1

zγ(λ, z)

)
and so

Ψ(z, x(λ)) = Θ11(λ) + Θ12(λ)zγ(λ, z)

and

γ(λ, z) = Θ21(λ) + Θ22(λ)zγ(λ, z)

for all z, λ ∈ D. It follows that

Ψ(z, x(λ)) = Θ11(λ) + Θ12Θ21(λ)z
1 − Θ22(λ)z = detΘ(λ)z − Θ11(λ)

Θ22(λ)z − 1

for all z, λ ∈ D, and so, by Proposition 7.9, Θ11(λ) = x1(λ), Θ22(λ) = x2(λ), detΘ(λ) =
x3(λ) and x̃ = (x1, x2, x3) = x. �

The criterion for the μDiag-synthesis problem (Theorem 1.1) follows from Theorem 3.1
and Theorem 8.1. The tetrablock E is a bounded 3-dimensional domain, which is more 
amenable to study than the unbounded 4-dimensional domain

Σ def= {A ∈ C
2×2 : μDiag(A) < 1}.

Theorem 9.2. Let λ1, . . . , λn be distinct points in D and let (x1j , x2j , x3j) ∈ E be such 
that x1jx2j �= x3j for j = 1, . . . , n. The E-interpolation problem

λj ∈ D �→ (x1j , x2j , x3j) ∈ E

for j = 1, . . . , n, is solvable if and only if for some distinct points z1, z2, z3 in D, 
there exist positive 3n-square matrices N = [Nil,jk]n,3i,j=1,l,k=1 of rank 1 and M =
[Mil,jk]n,3i,j=1,l,k=1 that satisfy

[
1 − zlx3i − x1i zkx3j − x1j

]
≥ [(1 − zlzk)Nil,jk] +

[
(1 − λiλj)Mil,jk

]
, (9.4)
x2izl − 1 x2jzk − 1
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|Nil,jk| ≤
1

(1 − |x2i|)(1 − |x2j |)
and

|Mil,jk| ≤
2

|1 − λiλj |

√
1 + 1

(1 − |x2i|)2

√
1 + 1

(1 − |x2j |)2
.

Proof. Sufficiency follows from Theorem 8.1 (iv) =⇒ (i). To prove necessity, suppose 
that the interpolation problem is solvable. In the proof of Theorem 8.1 (i) =⇒ (iii) it 
was shown that, for every triple of distinct points z1, z2, z3 in D, the inequality (9.4) is 
satisfied for

N = [Nil,jk]n,3i,j=1,l,k=1 =
[
γ(λi, zl)γ(λj , zk)

]n,3
i,j=1,l,k=1

of rank 1 and

M = [Mil,jk]n,3i,j=1,l,k=1 =
[
η(λi, zl)∗

I − F (λi)∗F (λj)
1 − λiλj

η(λj , zk)
]n,3

i,j=1,l,k=1

where ‖F (λj)‖ ≤ 1 for all j = 1, . . . , n,

γ(λj , zk) = (1 − x2jzk)−1f2(λj) and η(λj , zk) =
[

1
γ(λj , zk)zk

]
,

and |f2(λj)| ≤ 1 for all j = 1, . . . , n. It follows that for all j = 1, . . . , n and k = 1, 2, 3,

|γ(λj , zk)| ≤
1

|1 − x2jzk|
≤ 1

1 − |x2j |
and so |Nil,jk| ≤

1
(1 − |x2i|)(1 − |x2j |)

.

Moreover for all j = 1, . . . , n and k = 1, 2, 3,

‖η(λj , zk)‖2
C2 =

∣∣∣∣∣∣∣∣[γ(λj , zk)zk
1

]∣∣∣∣∣∣∣∣2
C2

= 1 + |γ(λj , zk)zk|2 ≤ 1 + 1
(1 − |x2j |)2

and so

|Mil,jk| ≤
‖I − F (λi)∗F (λj)‖

|1 − λiλj |
‖η(λi, zl)‖C2‖η(λj , zk)‖C2

≤ 2
|1 − λiλj |

√
1 + 1

(1 − |x2i|)2

√
1 + 1

(1 − |x2j |)2
.

Thus if the given E-interpolation problem is solvable then there exist positive 3n-square 
matrices satisfying the required conditions. �
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