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Attributed Graph Transformation via Rule

Schemata: Church-Rosser Theorem

Ivaylo Hristakiev⋆ and Detlef Plump

University of York, United Kingdom

Abstract. We present an approach to attributed graph transformation
which requires neither infinite graphs containing data algebras nor aux-
iliary edges that link graph items with their attributes. Instead, we use
the double-pushout approach with relabelling and extend it with rule
schemata which are instantiated to ordinary rules prior to application.
This framework provides the formal basis for the graph programming
language GP 2. In this paper, we abstract from the data algebra of
GP 2, define parallel independence of rule schema applications, and
prove the Church-Rosser Theorem for our approach. The proof relies
on the Church-Rosser Theorem for partially labelled graphs and adapts
the classical proof by Ehrig and Kreowski, bypassing the technicalities
of adhesive categories.

1 Introduction

Traditionally, the theory of graph transformation assumed that labels in graphs
do not change in derivations (see, for example, [2]). But in applications of graph
transformation it is often necessary to compute with labels. For instance, finding
shortest paths in a graph whose edges are labelled with distances requires to
determine the shorter of two distances and to add distances.

Graphs in which data elements of some fixed algebra are attached to nodes
and edges have been called attributed graphs since [12], the first formal ap-
proach to extend graph transformation with computations on labels. In that
paper, graphs are encoded as algebras to treat graph structure and algebra data
uniformly. With a similar intention, the papers [9,6] go the other way round and
encode the data algebra in graphs. Each data element becomes a special data
node and auxiliary edges connect ordinary nodes and edges with the data nodes.

The latter approach has become mainstream but has some serious drawbacks
(bemoaned as the akwardness of attributes in [17]). Firstly, the way attributes are
attached to edges leads to the situation of edges having other edges as sources.
This requires non-standard graphs and makes the model unusual. Secondly, and
more importantly, there is typically an infinite number of data nodes because
standard data algebras (such as integers or lists) have infinite domains. This

⋆ Supported by a Doctoral Training Grant from the Engineering and Physical Sciences
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means that attributed graphs are usually infinite, leading to a discrepancy be-
tween theory and practice as graphs are stored using finite representations. In the
approach of [6], even rules are normally infinite because they consist of graphs
containing the complete term algebra corresponding to the data algebra.

In this paper, we propose an alternative approach to attributed graph trans-
formation which avoids both infinite graphs and auxiliary attribute edges. In-
stead of merging graphs with the data algebra, we keep them separate. Host
graph items simply get labelled with data elements and rule graph items get la-
belled with terms. To make this work, rules are instantiated by replacing terms
with corresponding data values and then applied as usual. Hence our rules are
actually rule schemata whose application can be seen as a two-stage process.

In order to modify attributes, it is crucial that interface items in rules can be
relabelled. We therefore use the double-pushout approach with partially labelled
interface graphs as a formal basis [7]. This approach is also the foundation of the
graph programming language GP 2 [15]. The fixed data algebra of GP 2 consists
of integers, character strings, and heterogeneous lists of strings and integers. In
this paper, we abstract from this particular algebra and consider an arbitrary
data algebra (see Subsection 2.2).

In Section 3, we define parallel independence of rule schema applications
and prove the so-called Church-Rosser Theorem for our setting. Roughly, this
result establishes that independent rule schema applications can be interchanged
and result in the same graph. Our proof nicely decomposes into the Church-
Rosser Theorem for the double-pushout approach with relabelling plus a simple
extension to rule schemata (see Subsection 3.2).

The Church-Rosser Theorem for the relabelling setting was obtained in [8]
as a corollary of an abstract result for M,N -adhesive transformation systems.
However, we deliberately avoid the categorical machinery of adhesiveness, van
Kampen squares, etc. which we believe is difficult to digest for an average reader.
Instead, we merely adapt the classical proof of Ehrig and Kreowski [5] to partially
labelled graphs, essentially by replacing properties of pushouts and pullbacks in
the unlabelled case by properties of natural pushouts in the setting of partially
labelled graphs. (A pushout is natural if it is also a pullback.)

The rest of this paper is organized as follows. In Section 2, we describe the
general idea of our approach. In Section 3, we present the notions of parallel and
sequential independence and formalize the Church-Rosser Theorem at the rule
schema level. Section 4 contains the relevant proofs. A conclusion and future
work are given in Section 6.

We assume the reader to be familiar with basic notions of the double-pushout
approach to graph transformation (see [3]). An extended version of this paper,
along with complete proofs, can be found in [10].
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2 Attributed Graph Transformation via Rule Schemata

In this section, we present our approach to transforming labelled graphs by rule
schemata. We begin by briefly reviewing labelled graphs and the double-pushout
approach to graph transformation with relabelling (see [7] for details).

2.1 Double-Pushout Approach with Relabelling

A partially labelled graph G over a (possibly infinite) label set L consists of finite
sets VG and EG of nodes and edges, source and target functions sG, tG : EG →
VG, a partial node labelling function lG,V : VG → L, and a partial edge labelling
function lG,E : EG → L. Given a node or edge x, we write lG(x) = ⊥ to express
that lG(x) is undefined1. Graph G is totally labelled if lG,V and lG,E are total
functions. The classes of partially and totally labelled graphs are denoted by
G⊥(L) and G(L), respectively.

A premorphism g : G → H consists of two functions gV : VG → VH and
gE : EG → EH that preserve sources and targets: gV (sG(e)) = sH(gE(e) and
gV (tG(e)) = tH(gE(e)) for all edges e. Premorphism g is a graph morphism if it
preserves labels, that is, if lG(x) = lH(g(x)) for all items x such that lG(x) is
defined.

A graph morphism g preserves undefinedness if it maps unlabelled items in
G to unlabelled items in H. We call g an inclusion if g(x) = x for all items
x. Note that inclusions need not preserve undefinedness. Finally, g is injective
(surjective) if gV and gE are injective (surjective), and an isomorphism if it is
injective, surjective and preserves undefinedness.

Partially labelled graphs and graph morphisms constitute a category (which
isM,N -adhesive [8] if one picksM to be the injective morphisms and N to be
the injective morphisms that preserve undefinedness). In this category, pushouts
need not exist as can be observed in Figure 2(a).

A rule r = 〈L ← K → R〉 over L consists of two inclusions K → L and
K → R such that L and R are graphs in G(L) and K is a graph in G⊥(L).

Definition 1 (Direct derivation). A direct derivation between graphs G and
H in G⊥(L) via a rule r = 〈L ← K → R〉 consists of two natural pushouts2 as
in Figure 1, where g : L→ G is an injective graph morphism.

We denote such a derivation byG⇒r,g H. The requirement that the pushouts
in Figure 1 are natural ensures that the pushout complement D in Figure 1
is uniquely determined by rule r, graph G and morphism g [7, Theorem 1].
Figure 2(b) demonstrates that non-natural pushout complements need not be
unique. It is worth noting that in the traditional setting of double-pushout graph
transformation with totally labelled graphs, the pushouts are automatically nat-
ural by the injectivity of L← K and K → R.

1 We do not distinguish between nodes and edges in statements that hold analogously
for both sets.

2 A pushout is natural if it is also a pullback.
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Fig. 1: A direct derivation
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Fig. 2: (a) Pushouts need not exist. (b) A natural and a non-natural double
pushout.

Operationally, the application of rule r to graph G proceeds as follows: (1)
match L with a subgraph of G by means of an injective graph morphism g : L→
G satisfying the dangling condition: no node in g(L)−g(K) is incident to an edge
in G− g(L); (2) obtain a graph D by removing from G all items in g(L)− g(K)
and, for all unlabelled items x in K, making g(x) unlabelled; (3) add disjointly
to D all items from R−K, keeping their labels, to obtain a graph H; (4) for all
unlabelled items x in K, lH(g(x)) becomes lR(x).

In [7] it is shown that if G is totally labelled, then the resulting graph H is
also totally labelled. Moreover, unlabelled items in the interface graph K have
unlabelled images in the intermediate graph D by the naturalness condition for
pushouts.

2.2 Rule Schemata

Rule schemata for attributed graph transformation were introduced in the con-
text of the graph programming language GP [16]. We first review signatures and
algebras (details can be found, for example, in [3, Appendix B]).

Consider a signature Σ consisting of a set S of sorts and a family of operation
symbols OP = (OPw,s)(w,s)∈S∗×S . A Σ-algebra A consists of a family of carrier
sets (As)s∈S containing data values, and a set of functions implementing the
operations of Σ. A term algebra TΣ(X) is built up from terms consisting of
constants and variables, where X is a family of variables that is disjoint from
OP .
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Fig. 3: Example of a rule schema direct derivation

An assignment α : X → A is a family of mappings (αs : Xs → As)s∈S , giving
a value to each variable in X. Its unique extension α∗ : TΣ(X) → A evaluates
terms according to α.

We assume a fixed Σ-algebra A whose elements are used as host graph labels,
and a corresponding term algebra TΣ(X) whose terms are used as labels in rule
schemata. To avoid an inflation of symbols, we sometimes equate A or TΣ(X)
with the union of its carrier sets.

Definition 2 (Rule schema). A rule schema r = 〈L ← K → R〉 consists of
two inclusions K → L and K → R such that L and R are graphs in G(TΣ(X))
and K is a graph in G⊥(TΣ(X)).

To apply a rule schema r to a graph, the schema is first instantiated by
evaluating its labels according to some assignment α : X → A.

Definition 3 (Rule schema instance and direct derivation). Consider a
graph G in G⊥(TΣ(X)) and an assignment α : X → A. The instance Gα is
the graph in G⊥(A) obtained from G by replacing each label l with α∗(l). The
instance of a rule schema r = 〈L← K → R〉 is the rule rα = 〈Lα ← Kα → Rα〉.

A rule schema direct derivation via r between graphs G and H in G⊥(A) is
a direct derivation G⇒rα,g H via the instance rα according to Definition 1.

We write G ⇒r,g,α H if there exists a direct derivation from G to H with
rule schema r, graph morpshism g and assignment α. Note that we use ⇒ for
the application of both rule schemata and rules.
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Figure 3 shows an example of a rule schema direct derivation, where we
assume that algebra A contains the integers with addition (+). The variables x
and y are of sort int and are mapped by assignment α to 1 and 2, respectively.
This allows for the relabelling of node 1 to 3. Note that this rule schema gives
rise to infinitely many instances because the carrier set of integers is infinite.

Given an injective premorphism g : L→ G and an assignment α : X → A, a
graph morphism g′ : Lα → G is induced by g and α if g′V = gV and g′E = gE . In
other words, the application of α to L must turn g into a label-preserving graph
morphism. The following proposition gives a necessary and sufficient condition
for a rule schema with left-hand side L to be applicable with a morphism induced
by g and α. The proof relies on a result in [7] about the existence and uniqueness
of direct derivations in the double-pushout approach with relabelling.

Proposition 1 (Existence and uniqueness of direct derivations). Con-
sider a rule schema r = 〈L← K → R〉, an injective premorphism g : L→ G with
G in G⊥(A), and an assignment α : X → A. Then there exists a direct derivation
G ⇒r,g′,α H such that g′ is induced by g and α, if and only if g satisfies the
dangling condition and each item x in L satisfies

lG(g(x)) = α∗(lL(x)).

Moreover, in this case H is determined uniquely up to isomorphism.

Proof. “If”: By assumption, each item x in L satisfies lG(g(x)) = α∗(lL(x)) =
lLα(x) and hence g′ : Lα → G with g′V = gV and g′E = gE is a graph morphism.

Moreover, it is clear that g′ satisfies the dangling condition with respect to rα

because g satisfies the dangling condition with respect to r. Thus, by [7, Theorem
1], there is a direct derivation G ⇒rα,g′ H where H is determined uniquely up
to isomorphism by rα and g′. Since rα and g′ are uniquely determined by r, α
and g, it follows that H is uniquely determined by r, α and g, too.

“Only if”: Suppose that G⇒r,g′,α H where g′ is induced by g and α. Then,
by definition, G ⇒rα,g′ H. Hence, by [7, Theorem 1], g′ satisfies the dangling
condition. Since g′V = gV and g′E = gE , it is clear that g satisfies the dangling
condition with respect to r. Moreover, since g′ is label-preserving, each item x

in L satisfies lG(g(x)) = lG(g
′(x)) = lLα(x) = α∗(lL(x)). ⊓⊔

As indicated above, a rule schema r = 〈L ← K → R〉 may have infinitely
many instances. Even if one restricts to instances that are compatible with a
given premorphism g : L→ G, there may be infinitely many instances to choose
from. For example, consider a premorphism that maps a node in L labelled with
x + y to a node in G labelled with the integer 3 (assuming the conventions of
Figure 3). There are infinitely many assignments meeting the labelling condition
of Proposition 1 because the equation x + y = 3 has infinitely many solutions
over the integers.

Example 1 (GP 2 rule schemata). Labels in the graph programming language
GP 2 [15,1] are integers, character strings or heterogeneous lists of integers and
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character strings. Lists are constructed by concatenation: given lists x and y,
their concatenation is written x:y.

Expressions in the left-hand side L of a GP 2 rule schema are syntactically
restricted to ensure that at most one instance of the schema is compatible with
a given premorphism g : L→ G. To this end, left-hand expressions must neither
contain arithmetic operators (except unary minus) nor repeated list variables,
and all variables occurring on the right-hand side of a rule schema must also
occur on the left-hand side.

Figure 4 shows the declaration of a GP 2 rule schema inc. Its left-hand
labels contain typed variables which are instantiated with concrete values during
graph matching. By convention, the interface of the rule schema consists of two
unlabelled nodes. The effect of inc is to increment the rightmost element in the
list of node 2.

inc(a,x,y:list; i:int)

x:i

1

y:i

2

a
x:i

1

y:i+1

2

a
⇒

Fig. 4: Declaration of a GP 2 rule schema

In this paper we are not concerned with implementation issues and do not
impose any restrictions on rule schemata. Abstracting from GP 2’s label alge-
bra, other possible data types for labels include (multi)sets, stacks, queues and
records.

3 Church-Rosser Theorem

In this section, we present the notion of parallel independence for direct deriva-
tions with relabelling and then extend it to applications of rule schemata.

3.1 Independence of Direct Derivations with Relabelling

Let each of the diagrams in Figure 5 represent two direct derivations according
to Definition 1.

Definition 4 (Parallel and sequential independence). Two direct deriva-
tions H1 ⇐r1,m1

G ⇒r2,m2
H2 as in Figure 5 (top) are parallel independent if

there exist morphisms i : L1 → D2 and j : L2 → D1 such that f2 ◦ i = m1 and
f1 ◦ j = m2.

Two direct derivations G⇒r1,m1
H1 ⇒r2,m2

H2 as in Figure 5 (bottom) are
sequentially independent if there exist morphisms i : R1 → D2 and j : L2 → D1

such that f2 ◦ i = m′
1 and f1 ◦ j = m2 .
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G

L1K1R1 L2 K2 R2

D1 D2H1 H2

m1 m2

NPO NPO NPO NPO

f1 f2
ij

H1

R1K1L1 L2 K2 R2

D1 D2G H2

m′

1
m2

NPO NPO NPO NPO

f1 f2

m1

ij

Fig. 5: Parallel and sequential independence (top and bottom, respectively)

It will turn out that parallel and sequential independence are related: two
direct derivations H1 ⇐r1,m1

G⇒r2,m2
H2 are parallel independent if and only

if the direct derivations H1 ⇒r
−1

1
,m′

1

G⇒r2,m2
H2 are sequentially independent,

where r−1
1 denotes the inverse rule of r1 and m′

1 is the comatch of m1.

Lemma 1 (Characterization of parallel independence). Two direct deriva-
tions H1 ⇐r1,m1

G⇒r2,m2
H2 are parallel independent if and only if for all items

x1 ∈ L1 and x2 ∈ L2 such that m1(x1) = m2(x2),

– x1 ∈ K1 and x2 ∈ K2, and

– lK1
(x1) 6= ⊥ and lK2

(x2) 6= ⊥.

The first condition states that every common item is an interface item. The
second condition states that no common item is relabelled by either derivation.

Example 2 (Counterexample to parallel independence). Figure 6 shows two direct
derivations H1 ⇐ G⇒ H2 that use instances of the rule schema of Figure 3. The
derivations are not parallel independent: there are no morphisms L1 → D2 and
L2 → D1 with the desired properties. The problem is that node 1 gets relabelled,
breaking the second independence condition.

Our main result (Theorem 2) will show that rule schema direct derivations
that are parallel independent can be interchanged to obtain a common result
graph. First, we state the Church-Rosser theorem for plain rules in the sense
of Definition 1. This has been proved in [8] as a corollary of the Church-Rosser
theorem for M,N -adhesive transformation systems. However, we obtain the
result directly without using the notions of adhesiveness and van Kampen square.

The proof follows the original Church-Rosser proof of [5]. At specific points
it will be necessary to show that the results for NPO decomposition apply to
the given setting. See Section 4 for the complete proof.
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Fig. 6: Counterexample to parallel independence

Theorem 1 (Church-Rosser theorem for plain rules). Given two parallel
independent direct derivations G ⇒r1,m1

H1 and G ⇒r2,m2
H2, there are a

graph H̃ and direct derivations H1 ⇒r2,m
′

2
H̃ and H2 ⇒r1,m

′

1
H̃. Moreover,

G ⇒r1,m1
H1 ⇒r2,m

′

2
H̃ as well as G ⇒r2,m2

H2 ⇒r1,m
′

1
H̃ are sequentially

independent.

3.2 Church-Rosser Theorem for Rule Schema Derivations

This subsection lifts the previous independence result to rule schema applica-
tions. The main idea is to simply add instantiation on top of plain direct deriva-
tions.

Definition 5 (Parallel independence of rule schema derivations). Two
rule schema direct derivations G ⇒r1,m1,α1

H1 and G ⇒r2,m2,α2
H2 are par-

allel independent if the plain derivations with relabelling G ⇒r
α1

1
,m1

H1 and
G⇒r

α2

2
,m2

H2 are parallel independent according to Definition 4.

G

Lα1

1Kα1

1Rα1

1

L1K1R1

Lα2

2 Kα2

2 Rα2

2

L2 K2 R2

D1 D2H1 H2

m1 im2j
f1 f2

Theorem 2 (Church-Rosser theorem for rule schemata). Given two par-
allel independent rule schema direct derivations G ⇒r1,m1

H1 and G ⇒r2,m2

H2, there is a graph H̃ and rule schema direct derivations H1 ⇒r2,m
′

2
H̃ and

H2 ⇒r1,m
′

1
H̃. Moreover G⇒r1,m1

H1 ⇒r2,m
′

2
H̃ as well as G⇒r2,m2

H2 ⇒r1,m
′

1

H̃ are sequentially independent.
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Fig. 7: Church-Rosser theorem for rule schemata

Proof. From Theorem 1, we know that independence of the plain derivations
with relabelling G ⇒r

α1

1
,m1

H1 and G ⇒r
α2

2
,m2

H2 implies the existence of a

graph H̃ and direct derivations H1 ⇒r
α2

2
,m2

H̃ and H2 ⇒r
α1

1
,m1

H̃. This is
illustrated in Figure 7.

The direct derivations G⇒r
α1

1
,m1

H1 and G⇒r
α2

2
,m2

H2 use instances of the
rule schemata r1 and r2, and therefore there are rule schema direct derivations
H1 ⇒r2,m

′

2
H̃ and H2 ⇒r1,m

′

1
H̃. With Theorem 1 follows that both G⇒r

α1

1
,m1

H1 ⇒r2,m
′

2
H̃ and G⇒r

α2

2
,m2

H2 ⇒r1,m
′

1
H̃ are sequentially independent. ⊓⊔

4 Proof of Theorem 1

The proof follows the original Church-Rosser proof of [5]. At specific points it
will be necessary to show that the results for NPO decomposition apply to the
given setting. This is because for partially labelled graphs, pushouts need not
always exist, and not all pushouts along injective morphisms are natural. These
facts have been observed in Figure 2.

Using the definition of parallel independence (Definition 4), we start by de-
composing the derivations as shown in Figure 8.

The graph D0 is obtained as a pullback of (D1 → G ← D2). The universal
property of pullbacks gives us that K1 → D1 and K2 → D2 decompose into
K1 → D0 → D1 and K2 → D0 → D2 respectively. We also have that (1+2) and
(1 + 3) are NPOs because they are left-hand sides of derivations. Furthermore,
D1 → G and D2 → G are injective and jointly surjective which makes (1) an
NPO ([10, Lemma 4]).
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G

L1K1 L2 K2

D1 D2

m1 m2

D2 D1

i j

D0 D0

(1) (1)

(2) (3)

Fig. 8: First decomposition diagram

D1 → G and D2 → G injective imply that D0 → D2 and D0 → D1 are
also injective. The subsequent parts of the proof contain four claims which are
proven afterwards.

Claim 1. The squares (2) and (3) are NPOs.

Next, the pushouts D1 of (D0 ← K1 → R1) (5) and D2 of (D0 ← K2 → R2)
(6) are constructed. These exist by the following claim:

Claim 2. In Figure 9, the pushouts D1 of (D0 ← K1 → R1) (5) and D2 of
(D0 ← K2 → R2) (6) exist.

Again using uniqueness, the morphisms R1 → H1 and R2 → H2 decompose
into R1 → D2 → H1 and R2 → D1 → H2. We also have that (5+ 7) and (6+ 8)
are NPOs because they are right-hand sides of derivations.

G

L1K1R1 L2 K2 R2

D1H1 D2 H2

m1 m2

D2 D1

i j

D0 D0

(1) (1)

(2) (3)

D1 D2

(7) (8)

(5) (6)

Fig. 9: Second decomposition diagram

Also, (7) and (8) become NPOs by the NPO Decomposition Lemma [10,
Lemma 5.3].

Claim 3. In Figure 9, the squares (7) and (8) are NPOs.

The graph H̃ is constructed as a pushout of (D1 ← D0 → D2) (4). (See
square (4) in Figure 10.)

Claim 4. The pushout of (D1 ← D0 → D2) exists.
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This pushout becomes NPO by [10, Lemma 3] and the arguments in the proof
of Claim 4. Furthermore, the graph H̃ is totally labelled due to the way D0, D1

and D2 are constructed - D1 can contain unlabelled items only from D0 −K1

which are labelled in D2, and vice versa.

The pushouts can be rearranged as in Figure 10 to show that G ⇒r1,m1

H1 ⇒r2,m
′

2
H̃ as well as G ⇒r2,m2

H2 ⇒r1,m
′

1
H̃ are sequentially independent.

Note that the graph H̃ is totally labelled.

G

L1 K1 R1

D1 H1

L2 K2 R2

D1 H̃

m1 m′

2D0 D0D2 D1

i j

(1) (7)

(2) (3)

D1 D2

(7) (4)

(5) (6)

Fig. 10: Rearranged pushouts

This concludes the proof of the Church-Rosser theorem. ⊓⊔

Next, we present the proofs of the above claims.

Proof of Claim 1We need to show that the conditions of the NPO Decomposition
Lemma [10, Lemma 5.2] hold for the following diagrams.

K1 D0 D1

L1 D2 G

(2) (1)

K2 D0 D2

L2 D1 G

(3) (1)

D0 → D1 is injective because D2 → G is injective by definition and (1)
is PB. (1) has already been proven to be NPO (at the start of this section).
Pushout exists over (L1 ← K1 → D0) as L1 is totally labelled, both morphisms
are injective and K1 → D0 preserves undefinedness, all by the definition of direct
derivation with relabelling. The square K1L1D0D2 commutes because (1 + 2)
and (1) are NPOs. Therefore, all conditions of the NPO Decomposition Lemma
[10, Lemma 5.2] hold.

The proof for the second diagram is analogous.

This concludes the proof that the squares (2) and (3) are NPOs. ⊓⊔

Proof of Claim 2 As in the previous proof, R1 and R2 are totally labelled, all
morphisms are injective and both K1 → D0 and K2 → D0 preserve undefined-
ness, all by the definition of direct derivation with relabelling. Therefore, the
pushouts (5) and (6) exist by [10, Lemma 2.2]. ⊓⊔
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Proof of Claim 3 In the context of Figure 11, we need to show that the conditions
of the NPO Decomposition Lemma [10, Lemma 5.3] hold.

K1 D0 D1

R1 D1 H1

(5) (7)

K2 D0 D2

R2 D2 H2

(6) (8)

Fig. 11: Pushouts (5), (6), (7) and (8).

D0 → D1 has already been established as injective. We need that there exists
unique NPO complement ofK1 → R1 → D1. We have thatK1 → R1 is injective
by definition. R1 → D1 is injective because K1 → D0 and L1 → D2 are
injective. The pushout (5+7) is a right-hand side of a derivation andR1 → H1 =
R1 → D1 → H1. Consequently, R1 → D1 satisfies the dangling condition w.r.t.
K1 → R1, thus the existence of a unique NPO complement is given by [10,
Lemma 2.3]. The proof for the second diagram is analogous.

This concludes the proof that the prerequisites for the NPO Decomposition
Lemma [10, Lemma 5.3] hold. Hence, squares (7) and (8) become NPOs. ⊓⊔

D0

D1

K1

R1

D2

K2

R2

H̃

(4)

(5) (6)

Proof of Claim 4 For a pushout to exist, D1 and D2 have to agree on the labels
of the unlabelled nodes of D0 ([10, Lemma 2.2]).

D1 is constructed as the pushout of (R1 ← K1 → D0) with R1 being totally
labelled. Its node and edge sets and labelling function is as defined in [10, Lemma
2.2]. Moreover, R1 → D1 and D0 → D1 are injective and jointly surjective.

There are 3 main cases for an item x to be labelled in D1:

– the item is created by the first derivation x ∈ R1 −K1. This means it does
not exist in D1, D2 or G. Consequently, this item does not have a preimage
in D0 by pullback construction ([10, Lemma 2.1]). Therefore, it cannot be a
source of conflict for pushout existence.

– the item is relabelled by the first derivation, meaning its preimage in D1

(and D0) is unlabelled x ∈ K1 and lK1
(x) = lD1

(x) = lD0
(x) = ⊥. By the

definition of parallel independence, no common items are relabelled making
the item not have a preimage in R2. Therefore it is unlabelled in D2 (by
definition of pushout), making it a non-conflict w.r.t. pushout existence.
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– the item is in D1−R1, i.e. a labelled item of D0−K1. We have that D0 → D1

and D0 → D2 are label preserving, so the label of x in D2 is the same as in
D1.

In all cases, the labels of D1 are preserved by the second derivation. The argu-
ment for the labelled items of D2 is analogous.

This concludes the proof that the pushout (4) over (D1 ← D0 → D2) exists.
⊓⊔

5 Related Work

We have adapted the classical Church-Rosser proof of Ehrig and Kreowski [5] to
partially labelled graphs and extended the result to rule schemata, essentially
by replacing properties of pushouts and pullbacks in the unlabelled case by
properties of natural pushouts in the setting of partially labelled graphs.

In [6], the theory of attributed graph transformation is developed in the
framework of so-called adhesive HLR categories. Among other results, the Church-
Rosser Theorem is proved in this setting. The approach is further studied in [4]
by adding nested application conditions and proving the previous results for this
more expressive approach. Both are a generalized version of the Church-Rosser
Theorem of [9].

So-called symbolic graphs are attributed graphs in which all data nodes are
variables, combined with a first-order logic formula over these variables. In [13]
it is shown that this approach can specify and transform classes of ordinary
attributed graphs that satisfy the given formula. The underlying graph structure
is the same as in [6], hence the approach shares the issues described in the
introduction.

Recently, a generalised Church-Rosser theorem for attributed graph trans-
formation has been proved in [11] by using symbolic graphs. A notion of parallel
independence is used that takes into account the semantics of attribute opera-
tions, in order to reduce the number of “false positives” in conflict checking.

6 Conclusion

In this paper, we have presented an approach to attributed graph transforma-
tion based on partially labelled graphs and rule schemata which are instantiated
to ordinary rules prior to application. We have defined parallel independence of
rule schema applications and have proved the Church-Rosser theorem for our
approach. The proof relies on the Church-Rosser theorem for graph transfor-
mation with relabelling and adapts the classical proof by Ehrig and Kreowski,
bypassing the technicalities of adhesive categories.

Future work includes establishing other classical graph transformation results
in our setting, such as embedding and restriction theorems. Furthermore, we
aim at studying critical pairs and confluence both for the particular case of
the GP 2 language and for attributed graph transformation over arbitrary label
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algebras. In particular, we plan to give a construction of critical pairs (labelled
with expressions) that guarantees the set of critical pairs is both finite and
complete. Completeness would mean that all possible conflicts of rule schema
applications can be represented as embeddings of critical pairs.
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