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Hydrodynamic instability in eccentric astrophysical discs
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ABSTRACT

Eccentric Keplerian discs are believed to be unstable to three-dimensional hydro-
dynamical instabilities driven by the time-dependence of fluid properties around an
orbit. These instabilities could lead to small-scale turbulence, and ultimately modify
the global disc properties. We use a local model of an eccentric disc, derived in a
companion paper, to compute the nonlinear vertical (“breathing mode”) oscillations
of the disc. We then analyse their linear stability to locally axisymmetric disturbances
for any disc eccentricity and eccentricity gradient using a numerical Floquet method.
In the limit of small departures from a circular reference orbit, the instability of an
isothermal disc is explained analytically. We also study analytically the small-scale
instability of an eccentric neutrally stratified polytropic disc with any polytropic in-
dex using a WKB approximation. We find that eccentric discs are generically unstable
to the parametric excitation of small-scale inertial waves. The nonlinear evolution of
these instabilities should be studied in numerical simulations, where we expect them
to lead to a decay of the disc eccentricity and eccentricity gradient as well as to induce
additional transport and mixing. Our results highlight that it is essential to consider
the three-dimensional structure of eccentric discs, and their resulting vertical oscilla-
tory flows, in order to correctly capture their evolution.

Key words: accretion, accretion discs – planetary systems – hydrodynamics – waves
– instabilities

1 INTRODUCTION

Astrophysical discs with eccentric orbits have been proposed
to explain a number of astrophysical observations. They are
thought to explain the superhump phenomenon in SU UMa
stars (Whitehurst 1988; Lubow 1991a; Smith et al. 2007),
the spectral variability of rapidly rotating Be stars (Okazaki
1991; Papaloizou et al. 1992; Ogilvie 2008) and, in the case
of a collisionless disc of stars, the visible structure of the nu-
cleus of the galaxy M31 (Tremaine 1995; Peiris & Tremaine
2003). In addition, the orbital evolution of a newly born
planet due to its tidal interaction with the protoplanetary
disc is intricately coupled with the evolution of eccentric
modes in the disc. The excitation and damping of these
modes may have played a role in the early evolution of plan-
etary eccentricities (Papaloizou et al. 2001; Papaloizou 2002;
Goldreich & Sari 2003; Kley & Dirksen 2006; D’Angelo et al.
2006; Bitsch et al. 2013).

Eccentric modes in Keplerian discs are slowly precessing
modes with azimuthal wavenumber m = 1 (e.g. Tremaine
2001; Papaloizou 2002) that vary on a length scale compa-
rable with the radius of the disc. Because of their global
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extent they are usually thought to be extremely long-lived.
However, a gaseous eccentric disc may be unstable to hy-
drodynamic instabilities, and these may limit the lifetime of
the eccentricity.

In a companion paper (Ogilvie & Barker 2014; hereafter
OB14), we derived a local model of an eccentric Keplerian
disc, which can be used to study its linear stability, as well as
for future nonlinear numerical studies. We showed how the
dynamics of the local model can be used to determine the
evolution of the mass, angular momentum and eccentricity
distributions in the disc. We also derived the nonlinear ver-
tical oscillations of the disc (first obtained in a global model
by Ogilvie 2001) and studied their behaviour numerically. In
an isothermal disc the vertical oscillations exhibit extreme
behaviour for eccentricities above approximately 0.5, which
could potentially lead to shocks and resulting dissipation
in their nonlinear evolution. Such discs are likely to evolve
violently on a dynamical timescale, so we concentrate in-
stead on discs with smaller eccentricities. In this case, the
behaviour of the vertical oscillations is a regular “breath-
ing mode” of the disc, which causes an additional periodic
variation of the fluid properties around an orbit. Such discs
may be unstable to parametric instabilities involving low-
frequency internal waves. These may lead to a damping of
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the disc eccentricity and could limit the eccentricities of ob-
servable discs. In this paper we use the local model to study
the linear stability of an eccentric disc.

Papaloizou (2005a) was the first to study the hydro-
dynamic instability of eccentric Keplerian discs, motivated
by the earlier work of Goodman (1993) and Lubow et al.
(1993) for tidally deformed discs (which have m = 2). He
found that eccentric discs were unstable to a parametric in-
stability that took the form of resonantly excited inertial
waves. Their nonlinear evolution in a global disc model was
subsequently studied in Papaloizou (2005b), where they led
to small-scale subsonic turbulence (or wave activity) and
to a gradual decay of the disc eccentricity. The pioneering
calculations of Papaloizou (2005a) were limited to studying
the three-dimensional stability of a uniformly eccentric disc
without vertical structure. In this paper we use the newly
derived local model to study the local linear stability of discs
with any eccentricity and eccentricity gradient, taking into
account the vertical structure of the disc in full.

The structure of this paper is as follows. In §2 we write
down the equations describing fluid dynamics within the lo-
cal model derived in OB14, and describe the resulting ver-
tical oscillatory flows in the disc. We set up the local linear
stability analysis of an eccentric disc in §3, analyse this sys-
tem numerically in §4, and end with a discussion and con-
clusion. Detailed analytical understanding of the instability
is relegated to Appendices B to D.

2 LOCAL MODEL AND LAMINAR FLOWS

The basic equations describing ideal isothermal hydrody-
namics within the local model of a coplanar eccentric Ke-
plerian disc are summarised in this section. The properties
of an eccentric orbit in a coplanar Keplerian disc can be de-
scribed by the following parameters: the semi-latus rectum
λ (related to the semi-major axis a by λ = a(1−e2)), the ec-
centricity e(λ), and the longitude of pericentre ω(λ). When
formulated in dimensionless terms, the local model is inde-
pendent of λ, but does depend on the local eccentricity e, as
well as the dimensionless local gradients in the eccentricity
λe′ ≡ λde/dλ and eλω′ ≡ eλdω/dλ, where the latter may
be thought of as a measure of the twist in the disc. These
may be combined into the complex eccentricity E = eeiω

and eccentricity gradient λE′ = λdE/dλ.
The local model derived in OB14 is valid for a thin

disc with ǫ = H/r ≪ 1 and describes fluid dynamics in
a small patch of the disc centred around a reference orbit
at the mid-plane with orbital coordinates (λ0, ϕ(t), 0). Ow-
ing to the geometry of an eccentric orbit, it is convenient
to adopt (in general) non-orthogonal coordinates (ξ, η, ζ),
where ξ = λ− λ0 is a quasi-radial coordinate, η = φ− ϕ(t)
is an angular coordinate and ζ = z is the usual vertical coor-
dinate. The coordinates (ξ, λ0η, ζ) are equivalent to Carte-
sian coordinates when the orbit is circular – in this case the
system of equations that we will list below reduces to the
standard shearing box commonly used to study the dynam-
ics of astrophysical discs.

We define the contravariant velocity components
(vξ, vη, vζ) and the enthalpy h, where the latter is defined
by

h = c2s ln ρ+ const, (1)

for an isothermal ideal gas with sound speed cs, in which
the pressure p is related to the density ρ by p = c2sρ.

The linear stability of an eccentric disc to a general
non-axisymmetric disturbance is complicated considerably
by the presence of Keplerian shear, so we consider locally
axisymmetric motions in this work. The resulting (inviscid)
equations in the local model are (Eq. 80–83 in OB14)

Dvξ + 2Γλ
λφΩv

ξ + 2Γλ
φφΩv

η = −gλλ∂ξh, (2)

Dvη + (∂λΩ+ 2Γφ
λφΩ)v

ξ + (∂φΩ+ 2Γφ
φφΩ)v

η = (3)

−gλφ∂ξh,

Dvζ = −Φ2ζ − ∂ζh, (4)

Dh = −c2s

(

∆+ ∂ξv
ξ + ∂ζv

ζ
)

, (5)

where

D ≡ ∂t + vξ∂ξ + vζ∂ζ , (6)

is the Lagrangian derivative. We have evaluated the orbital
angular velocity Ω and its derivatives, as well as the met-
ric and connection coefficients, at a reference point in the
mid-plane of the disc (λ0, ϕ(t), 0), so that these become pe-
riodic functions of time only. The orbital velocity divergence
is written as ∆, which is nonzero when the disc has an ec-
centricity gradient (see OB14 and Appendix A).

The gravitational potential expanded about the mid-
plane takes the form (with ζ = O(ǫ))

Φ = Φ0 +
1

2
ζ2Φ2 +O(ζ4), (7)

where Φ0 = −GM/R and Φ2 = GM/R3, and R is the cylin-
drical radius. The periodic variation of Φ2 around an orbit is
responsible for driving vertical oscillatory flows in the disc.
These (nonlinear) oscillations can be obtained by looking for
simple solutions of Eqs. 2–5 of the form

vξ = vη = 0, vζ = w(t)ζ, h = f(t)− 1

2
ζ2g(t), (8)

which satisfy the following ODEs:

dtw + w2 = −Φ2 + g, (9)

dtf = −c2s (∆ + w) , (10)

dtg = −2wg. (11)

The laminar flow functions f and g = c2sH
−2 (where H(t)

is the Gaussian scaleheight of the isothermal disc), together
define the surface density of the disc

Σ ∝ e
f

c2s csg
− 1

2 ∝ e
f

c2s H, (12)

satisfying

dtΣ = −∆Σ, (13)

so that the surface density is constant around an elliptical
orbit when ∆ = 0, but varies if ∆ 6= 0.

Periodic solutions of Eqs. 9–11 can be computed nu-
merically using a shooting method. Several examples have
been plotted in OB14. Note that λe′ and eλω′ play no role
in determining g and w in the isothermal approximation
(although the enthalpy at the mid-plane f does depend on
∆).
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3 LINEAR STABILITY OF ECCENTRIC DISCS

3.1 Linearised axisymmetric perturbation

equations

We consider small perturbations to the orbital motion and
vertical laminar flows of the form Re

[
v̂ξ(ζ, t)eikξξ

]
, and so

on for other variables, where kξ is a quasi-radial wavenum-
ber. We subsequently drop the hat on the perturbations for

clarity. We choose units such that Ω0 =
(

GM
λ3

0

) 1

2

= 1 and

cs = 1, therefore the disc thickness would take a constant

value H = g−
1

2 = 1 for a circular disc.

We note that it is much simpler to use the true anomaly
θ as a variable rather than t, and that the corresponding
rates of change are related by ∂t = Ω∂θ = (1 + e cos θ)2∂θ.
This variable is used as a “time-like” variable, and is con-
tinuous and monotonically increasing, not restricted to the
range [0, 2π]. We further define c ≡ cos θ and s ≡ sin θ. The
resulting linearised perturbation equations are

Ω∂θv
ξ + wζ∂ζv

ξ + 2Γλ
λφΩv

ξ + 2Γλ
φφΩv

η = −igλλkξh, (14)

Ω∂θv
η + wζ∂ζv

η +
(

∂λΩ+ Γφ
λφΩ

)

vξ

+
(

∂φΩ+ 2Γφ
φφ

)

vη = −igλφkξh, (15)

Ω∂θv
ζ + wζ∂ζv

ζ + wvζ = −∂ζh, (16)

Ω∂θh+ wζ∂ζh− gζvζ = −ikξv
ξ − ∂ζv

ζ . (17)

The coefficients are periodic functions of θ with period 2π,
which we list in Appendix A. A statement of conservation
of energy for the perturbations can be derived at this stage,
which we present in Appendix C – this is used to analyse
the energetics of the resulting instabilities.

The vertical structure of waves in a circular isothermal
disc take the form of Hermite polynomials in ζ (e.g. Okazaki
et al. 1987; Ogilvie & Latter 2013). These have the property
that the energy density of the perturbations tends to zero
at large distances from the mid-plane. In the eccentric case,
Eqs. 14–17 also have exact solutions that are polynomials
in ζ. These solutions can be represented as finite sums of
(probabilist’s) Hermite polynomials:

vξ =

N∑

n=0

uξ
n(θ)Hen(ζ), (18)

vη =
N∑

n=0

λ−1uη
n(θ)Hen(ζ), (19)

vζ =
N∑

n=1

uζ
n(θ)Hen−1(ζ), (20)

h =

N∑

n=0

hn(θ)Hen(ζ), (21)

where N is the vertical mode number. The factor of λ−1

ensures that uη
n has units of velocity. Note that

dζHen(ζ) = nHen−1(ζ), (22)

ζHen(ζ) = Hen+1(ζ) + nHen−1(ζ). (23)

The resulting ODEs are

(1 + ec)2dθw + w2 = −Φ2 + g, (24)

(1 + ec)2dθf = − (∆ + w) , (25)

(1 + ec)2dθg = −2wg, (26)

for the laminar flows, and

(1 + ec)2dθu
ξ
n + w

[

nuξ
n + (n+ 1)(n+ 2)uξ

n+2

]

(27)

+2Γλ
λφΩu

ξ
n + 2λ−1Γλ

φφΩu
η
n = −igλλkξhn,

(1 + ec)2dθu
η
n + w

[
nuη

n + (n+ 1)(n+ 2)uη
n+2

]
(28)

+uξ
nλ∂λΩ+ 2λΓφ

λφΩu
ξ
n + Γφ

φφΩu
η
n = −iλgλφkξhn,

(1 + ec)2dθu
ζ
n + w

[

(n− 1)uζ
n + n(n+ 1)uζ

n+2

]

(29)

+wuζ
n = −nhn,

(1 + ec)2dθhn + w [nhn + (n+ 1)(n+ 2)hn+2] (30)

−(g − 1)
[

uζ
n + (n+ 1)uζ

n+2

]

= −ikξu
ξ
n + uζ

n,

for the linear perturbations. Eq. 29 is valid for 1 6 n 6 N
and the other three are valid for 0 6 n 6 N . We have set
uξ
n = 0 etc for n > N by considering polynomial solutions.

This is the system of equations that we will solve to de-
termine the linear stability of an eccentric disc to locally
axisymmetric perturbations. Note that vertical hydrostatic
equilibrium corresponds to g = H−2 = 1, which does not
hold in an eccentric disc, in general. Also, note that there
are three dimensionless parameters that define the local or-
bital properties of the eccentric disc: e, λe′, eλω′.

For a given vertical mode number N , the set of 4N − 1
equations given by Eqs. 27–30 are analysed numerically us-
ing a Floquet method. This method is appropriate since the
coefficients are periodic functions of θ. First, the monodromy
matrix of linearly independent solutions is constructed by
integrating the ODEs over one period (in the process the
laminar flows are also computed) for initial conditions such
that all variables except one are set to zero. The eigenvalues
of the monodromy matrix allow us to obtain the complex
growth rates of the instability. See Ogilvie & Latter (2013)
for details of a similar approach used to study the instabil-
ities of a warped disc. We have verified that we obtain the
correct linear dispersion relation for a circular disc, and we
will illustrate in §4 that our numerically computed growth
rates are in excellent agreement with the analytical predic-
tions presented in Appendix B.

The vertical oscillations of the disc couple components
with different n when e 6= 0. However, these only couple a
component n with a component m = n + 2, and there are
no additional couplings to components with m < n. These
are then “one-way” couplings, for which components with
m < n are slaved to the maximum n. The growth rate of
the instability observed in the next section is therefore fully
determined by considering only the component with n = N .

c© 2014 RAS, MNRAS 000, 1–18



4 A. J. Barker & G. I. Ogilvie

3.2 Linear axisymmetric waves in a circular disc

When e = λe′ = eλω′ = w = g − 1 = 0, the above system
reduces to

dθu
ξ
n − 2Ωuη

n = −ikξhn, (31)

dθu
η
n +

1

2
Ωuξ

n = 0, (32)

dθu
ζ
n = −nhn, (33)

dθhn = −ikξu
ξ
n + uζ

n. (34)

Looking for solutions proportional to e−iωθ, we obtain the
ideal dispersion relation describing axisymmetric waves in a
circular isothermal Keplerian disc:

(−ω2 + n)(−ω2 + 1)− k2
ξω

2 = 0. (35)

The low frequency branch for n 6= 0 corresponds to iner-
tial waves. A pair of inertial waves with ω = ± 1

2
(which

occurs when kξ = 1
2

√
3(4n− 1)) can be coupled to give 1,

which is the frequency at which the geometrical coefficients
in Eqs. 27–30 are modulated. For a given range of kξ these
resonant waves are fully captured by considering a finite
range of vertical mode numbers. These are the waves that
become unstable in an eccentric disc, as we will illustrate in
the next section.

4 NUMERICAL CALCULATIONS

In a disc with nonzero eccentricity or eccentricity gradient
the coefficients in Eqs. 27–30 become 2π-periodic functions
of θ. The periodic variation in the eccentric orbital motion
of the gas around an orbit, together with the associated ver-
tical oscillation of the disc, drive a parametric instability
consisting of pairs of inertial waves. In the local model, the
eccentric orbital motion has radial and vertical wavenum-
bers of 0 and a frequency of 1 (i.e. the orbital frequency).
For small departures from circularity, an instability is driven
by a parametric resonance between the eccentric (and ver-
tical) oscillation of the fluid around an orbit and a pair of
inertial waves with ω = ±1/2 with the same radial and ver-
tical wavenumbers. These waves propagate radially in oppo-
site directions, and their superposition is a standing wave.
These are coupled in an eccentric disc because their frequen-
cies differ by 1. When the departure from circularity is not
small (or if viscosity is included), there is a frequency band
of instability around exact resonance whose width increases
with the eccentricity. The instability of a disc with an eccen-
tricity gradient is found to take the same form, as we will
illustrate below. This instability is explained in detail in Ap-
pendix B, where we analytically compute the growth rates
at exact resonance. We have also analysed the sources of en-
ergy driving the instability, which we present in Appendix
C.

4.1 Uniformly eccentric disc

We first illustrate the instability of a uniformly eccentric
disc, with λe′ = λω′ = 0. In Fig. 1, we plot the growth rate
of the fastest growing mode from our numerical calculations
as a function of the radial wavenumber kξ for various e. We
have also plotted our analytical predictions from Appendix
B for the growth rate (σ) at exact resonance as red circles,

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

σ
m
a
x

e

Figure 3.Maximum growth rate of the instability (for kξ ∈ [0, 5])
as a function of e for a uniformly eccentric disc (using units such

that
(

GM/λ3
0

) 1

2 = 1). The numerical results are plotted as blue
circles, and were computed up to N = 12, which was found to

be sufficient to obtain the fastest growing mode in all cases. The
black dashed line is the theoretical prediction for small e, σ =
3e/4.

where σ = 3e/4 independent of kξ when e ≪ 1. For small
e, instability occurs in discrete wavenumber bands centred
on certain values of kξ, which merge as kξ → ∞. The first
peak represents a pair of inertial waves with n = 1, there-
fore kξ = 3/2. The subsequent peaks represent inertial waves
with sequentially increasing n in such a way that the waves
have ω = ± 1

2
. As e is increased, the instability bands be-

come wider and merge, and their centres are shifted slightly
from the analytical prediction. There is an additional peak
at small kξ below the first instability band whose growth
rate is O(e2); this instability is also found to have an iner-
tial wave character. For e & 0.4, there is instability for any
kξ > 0.

We illustrate the velocity field for one representative
unstable mode when e = 0.01 in the (ξ, ζ)-plane in Fig. 2 –
the velocity components uξ and uζ have been multiplied by
ρ1/2 to show the wave energy at four different phases around
an orbit. This mode is a standing wave, whose amplitude is
modulated in such a way to extract energy from the orbital
flow and the vertical oscillation of the disc. The dominant
contribution comes from the vertical oscillation of the disc,
arising from a term Re

[
−w|uζ |2

]
in the energy equation,

which has net contribution ∝ −
∫ 2π

0
sin θ(2−2 sin θ)dθ = 2π

(this is shown in detail in Appendix C). The mode has its
maximum magnitude of vertical velocity at the phase θ =
3π/2, at which −w has its maximum, therefore it can extract
energy from the vertical oscillation most efficiently at this
phase.

In Fig. 3 we plot the growth rate of the fastest growing
mode maximised over kξ in the range kξ ∈ [0, 5] as a function
of e. This range in kξ was chosen to limit to the computa-
tional cost of a wide parameter search, and was found to be
sufficient to capture the fastest growing mode in all cases.
The numerical results are shown as blue circles and the ana-

c© 2014 RAS, MNRAS 000, 1–18
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Figure 1. Instability of a uniformly eccentric disc with λe′ = λω′ = 0. The growth rate of the fastest growing mode (using units such

that
(

GM/λ3
0

) 1

2 = 1) is plotted as a function of kξ for various e. The red circles show the analytical prediction from Appendix B at
exact resonance, which is valid when e ≪ 1. The numerical calculations were performed with vertical mode numbers up to N = 12, which
was sufficient to obtain the fastest growing mode in all cases, and involved calculations at 400 uniformly distributed values of kξ ∈ [0, 5].

Computations for larger e were not performed owing to the extreme behaviour of the vertical laminar flows in these cases.
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Figure 2. Illustration of the velocity field (multiplied by
√
ρ to show the localisation of wave energy near to the mid-plane) of the

n = 1 unstable mode at exact resonance when e = 0.01 for four different phases around an orbit. This is a standing mode composed of a
superposition of travelling inertial waves propagating in opposite directions radially. The arrows have the same scale in each panel. When
the “meridional” velocity perturbations vanish at θ = π

2
, the azimuthal velocity perturbation is nonzero. The amplitude of the vertical

velocity is correlated with the orbital motion in such a way to extract energy from the vertical oscillation of the disc, and is maximum
at θ = 3π

2
, where −w has its maximum. At θ = 2π, the mode returns to its form at θ = 0 but is slightly amplified and reversed in sign

since its period is 4π.

lytical prediction is shown as a black dashed line with slope
3e/4. The small-e analytical prediction for the growth rate
at exact resonance correctly captures the instability until
e & 0.4, above which the numerically determined growth
rate is found to deviate. The peak growth rate is no longer
independent of kξ when e 6≪ 1 (see Fig. 1).

The laminar flows were found to have quite extreme be-
haviour for e & 0.4 or so, with an asymmetric character such
that there are strong compressions occurring very close to
pericentre (OB14). That these laminar flows differ from sim-
ple sinusoidal behaviour for moderately large eccentricities
could reduce their ability to excite inertial waves, and might
explain why the growth rate is smaller than would be pre-
dicted from a simple extrapolation of the small-e behaviour

for e & 0.4. Nevertheless, the growth rate in these cases is
still large enough for the instability to be dynamically im-
portant within a few orbits. For moderate e, instability is
possible for any kξ > 0.

Note that the maximum growth rate for the local in-
stability in a uniformly eccentric isothermal disc is much
stronger than the corresponding growth rate obtained by Pa-
paloizou (2005a). He found that in a cylindrical disc model
(without vertical structure), σ = 3e/16 in the limit that
kξ, n → ∞. The difference between these follows from our
inclusion of the laminar vertical oscillation of the disc, which
provides an additional periodic forcing, and an additional
free energy source. The vertical disc oscillations are thus
able to amplify the growth rate of the instabilities. We have

c© 2014 RAS, MNRAS 000, 1–18
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Figure 5. Maximum growth rate of the instability (for kξ ∈
[0, 5]) as a function of |λe′| when e = 0 (using units such that
(

GM/λ3
0

) 1

2 = 1). The numerical results are plotted as blue cir-
cles, and were computed up to N = 12, which was found to be

sufficient to obtain the fastest growing mode in all cases. The
black dashed line is the theoretical prediction for small |λe′|,
σmax = 3|λe′|/16.

confirmed that we obtain the analytical prediction of Pa-
paloizou (2005a) if we artificially neglect the laminar flows
by choosing w = g−1 = 0 (see Appendix B). This highlights
the importance of considering the three-dimensional struc-
ture of an eccentric disc to correctly capture the instability.

4.2 Circular reference orbit with nonzero

eccentricity gradient

The next case to consider turns out in fact to be the simplest:
the instability of a disc that is locally circular but has a
nonzero eccentricity gradient. In this case, w = g − 1 = 0
for an isothermal disc, so that the vertical laminar flows are
no longer present, and there are no corresponding couplings
between different n in Eqs. 27–30. An instability is driven
by the periodic variation of the orbital motion of the gas
on orbits that neighbour our reference circular orbit. This
is analysed in Appendix B, and is found to have the same
character as the instability described in §4.1.

In Fig. 4 we plot the growth rate of the fastest growing
mode from our numerical calculations as a function of the
radial wavenumber kξ for various |λe′|. We have also plotted
our analytical predictions from Appendix B for the growth
rate at exact resonance as red circles, where for small |λe′|,
σ = 3|λe′|/16 for large kξ, n. In this case the instability is
somewhat weaker than that for a uniformly eccentric disc
because the additional energy source provided by the verti-
cal oscillations of the disc is absent. This means that for the
smallest |λe′| that we have considered, the instability bands
are very narrow (in the first panel, exact resonance is not
captured by our distribution of points in kξ). However, for
large |λe′|, instability is possible for any kξ > 0. Note that
non-intersecting orbits must have |λe′| < 1 (if this is vio-

lated, the instability that we have described will no longer
be relevant, since the flow will develop shocks).

In Fig. 5 we plot the growth rate of the fastest growing
mode maximised over kξ in the range kξ ∈ [0, 5] as a func-
tion of |λe′|. The numerically determined values are shown
as blue circles and the black dashed line shows the small-|λe′|
analytical prediction as kξ, n → ∞. The analytical predic-
tion works well until |λe′| ∼ 1, near to which the growth
rate is slightly amplified over the small-|λe′| prediction.

4.3 General eccentric disc

We will now describe the instability for the more general
configuration of an eccentric disc with a nonzero eccentricity
gradient. The requirement for orbits to not intersect is
(
e− λe′

)2
+ e2(λω′)2 < 1. (36)

If this is violated, we expect shocks to form, and they are
likely to dominate the evolution of the disc. We compute the
maximum growth rate of the instability and plot its contours
on the (λe′ − e, eλω′)-plane for several values of e in Fig. 6
– this plane was chosen since the requirement for orbits to
be non-intersecting is represented as the region inside the
unit circle. This figure illustrates that we have instability
over most of the (e, λe′, λω′) parameter space, and that the
growth rate is generally larger when we have larger eccentric-
ities, as well as larger eccentricity gradients. The analytical
prediction for this general case for small departures from
a circular reference orbit is presented in Appendix B. We
find that the instability of an eccentric disc is stronger for
larger1 e+ λe′. Note, however, that there is a region where
the instability is weak, centred on λω′ = 0. For large n the
growth rate is zero when λe′ = −4e for small e (though the
growth rate is not exactly zero for any finite n), which is
predicted by the analysis in Appendix B (departures from
this prediction in Fig. 6 are apparent for larger e, where
this region moves further to the left of the allowed param-
eter space). For those particular choices of parameters, the
coupling between the eccentric disc motion and the inertial
waves is weak. However, instability is possible over nearly
all of the parameter space for an eccentric disc.

For the case e = 0, which was described in §4.2, the
only relevant parameter describing the orbit is λe′. In this
case, if we were to plot this on Fig. 6, the contours would be
perfect circles centred on the origin, with the growth rate
shown in Fig. 5. As e is increased, the growth rate con-
tours begin to differ from circles and when e & 0.4, they
become increasingly independent of λω′ i.e. they are bet-
ter approximated by vertical lines. This presumably results
from the increasingly non-sinusoidal behaviour of the lam-
inar flow solutions, which become more strongly localised
near pericentre for moderately large e. Therefore they may
not be as efficient at exciting inertial waves.

Fig. 6 illustrates that instabilities growing on a dynam-
ical timescale are possible for an orbit with any eccentricity
considered, as long as the eccentricity gradient is sufficiently

1 This may seem somewhat surprising because the orbits intersect
when e− λe′ is sufficiently large. Therefore we might expect the
growth rate to increase with e− λe′. However, inertial waves are
not excited as efficiently when e and λe′ have opposite signs.
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Figure 4. Instability in the case of a circular reference orbit with e = 0 and a nonzero eccentricity gradient. The growth rate of the

fastest growing mode (using units such that
(

GM/λ3
0

) 1

2 = 1) is plotted as a function of kξ for various |λe′|. The red circles show the
analytical prediction from Appendix B at exact resonance, which is valid when |λe′| ≪ 1. The numerical calculations were performed up
to N = 12, which was sufficient to obtain the fastest growing mode in all cases, and involved calculations at 400 uniformly distributed
values of kξ ∈ [0, 5]. Note that |λe′| < 1 for non-intersecting orbits.
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Figure 6. Growth rate of the instability (using units such that
(

GM/λ3
0

) 1

2 = 1) maximised over kξ ∈ [0, 5] for a general eccentric
disc on the (λe′ − e, eλω′)-plane for several values of e. There are 30 points in each coordinate of a Cartesian grid in the range [−1, 1],
with vertical mode numbers up to N = 9. The results are then interpolated and smoothed. Orbits outside of the circle of radius 1 are
intersecting.
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large. This also shows that the instability of an eccentric disc
is widespread.

5 NEUTRALLY STRATIFIED POLYTROPIC

DISCS: DEPENDENCE ON THE

ADIABATIC INDEX

The results presented in §4 were obtained by assuming an
isothermal relation, which is the most compressible model
that we can adopt. Given that the compressibility of the disc
plays an important role in driving the laminar vertical oscil-
lations, and that the presence of these oscillations was found
to significantly amplify the growth rate of the instability, it
is important to determine how these results depend on the
adiabatic index. In this section we describe our analytical re-
sults for a neutrally stratified polytropic disc which behaves
adiabatically with p ∝ ργ , where γ = 1 + 1/np, and np is
the polytropic index. Realistic discs are expected to have
γ ≈ 1.4 − 1.7. We neglect any possible stable (or unstable)
vertical stratification since this requires the eigenfunctions
to be localised near to the mid-plane of the disc, and this
would complicate the analysis.

In Appendix D we present the analytical theory describ-
ing the locally axisymmetric instability of an eccentric disc
using a WKB approximation, in which the radial and verti-
cal wavelengths of the unstable mode are taken to be much
smaller than the disc thickness. Looking for such small-scale
instabilities allows us to treat the unstable modes locally
as plane waves, which avoids the complication that there
are no analytically computable eigenmodes for the circular
polytropic disc, unlike the isothermal disc considered so far.
The WKB theory in Appendix D extends the calculations of
Papaloizou (2005a) to include the vertical structure of the
disc, and to allow for any eccentricity gradient and adiabatic
index (for a neutrally stratified disc).

The instability is found to take the same form for any
γ, and involves the excitation of pairs of inertial waves with
ω = ±1/2 that form a standing wave. However, the growth
rate of the instability is found to depend on γ. In particular,
the instability for a uniformly eccentric disc has a growth
rate

σ =
3

16

(

1 +
3

γ

)

e, (37)

which is strongest for an isothermal disc (γ = 1 leads to
3e/4) and reduces to 3e/16 for an incompressible disc (γ →
∞). An incompressible disc does not exhibit vertical laminar
oscillations in this case, so the instability is driven purely by
the periodic variation of the eccentric orbital motion around
an orbit. Hence the agreement with the growth rate obtained
by Papaloizou (2005a). This demonstrates once again that
the vertical laminar flows play an important role in driving
instabilities in an eccentric disc. Note that the growth rate
is significantly amplified over the incompressible limit for
any realistic γ. For example, σ = 21 e/40 ≈ 0.525 e when
γ = 5

3
, which is appropriate for a disc consisting of ionised

hydrogen.
Similarly, if we consider the instability of a circular ref-

erence orbit with a nonzero eccentricity gradient, we obtain

σ =
3

16γ
|λe′|, (38)

which is strongest for an isothermal disc (3|λe′|/16), and
vanishes entirely in the incompressible limit.

The more general configuration of an eccentric disc with
a nonzero eccentricity gradient is presented in Appendix D.

6 DISCUSSION

The local instability that we have analysed in this paper oc-
curs whenever an astrophysical disc becomes eccentric. As-
suming a simple α-prescription for the turbulence in a Keple-
rian disc, we can simply estimate to what degree a departure
from circularity is required for the instability to grow in the
presence of viscosity. The viscous damping rate of a mode
with radial wavenumber kξ and vertical mode number n is
approximately2 α(k2

ξ+n), where α is the viscosity coefficient.
For a uniformly eccentric disc, we require e & 0.04(α/10−2)
for the largest wavelength (n = 1, kξ = 3/2) instability to
occur. Similarly, for a circular reference orbit with a nonzero
eccentricity gradient, we require |λe′| & 0.17(α/10−2) for
instability. Note, however, that instability is strongest for a
combination of eccentricity and eccentricity gradient, there-
fore instability may be possible even if these criteria are not
satisfied. In addition, it is unclear whether the interaction of
this instability with the turbulence that drives accretion in
the disc can be modelled with a simple α-viscosity prescrip-
tion. Nevertheless, we conclude that instability is possible in
a sufficiently eccentric disc for typical values of α thought
to be relevant for circumstellar discs.

Another aspect is that the local instability involves the
coupling of pairs of inertial waves that propagate radially
in opposite directions in the disc to form a local standing
wave. If the disc eccentricity or its gradient is localised to
some region of the disc of radial extent D (the “interac-
tion region”), the instability will only cause disturbances to
reach large amplitudes if the waves spend enough time in
that region to be sufficiently amplified. We expect the in-
stability to be important if the growth time is shorter than
the wave crossing time over this region (unless the waves
can reflect from radial boundaries and re-enter the interac-
tion region), which is approximately σ−1 . D/cg, where the
group velocity of an inertial wave is cg ∼ ω/kξ. This sug-
gests that kξ & O((eD)−1) is required for the instability to
amplify disturbances to large amplitudes, so that a small
interaction region or a weak eccentricity will preferentially
excite small-scale disturbances, which may be more difficult
to observe in simulations, or be more easily damped by vis-
cosity (this simplistic argument neglects the presence of an
eccentricity gradient).

Previous grid-based hydrodynamical simulations of
disc-companion tidal interactions have observed the gen-
eration of local eccentricity and eccentricity gradients in
the disc (e.g. Papaloizou et al. 2001; Kley & Dirksen 2006;
D’Angelo et al. 2006; Kley et al. 2008; Marzari et al. 2012).
However, the instabilities that we have described in this pa-
per have never been observed previously3. This is partly be-

2 The viscous linearised equations for the instabilities in a warped
disc were studied more carefully in Ogilvie & Latter 2013.
3 Except by Papaloizou (2005b), who performed a set of global
simulations specifically designed to study them for the specific
case of a cylindrical disc (lacking vertical structure).
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cause most of the existing simulations are two-dimensional,
therefore they would be unable to capture the instability.
In addition, these simulations would also incorrectly neglect
the vertical laminar oscillations of an eccentric disc. The
limited three-dimensional simulations that have been per-
formed thus far (e.g. Bitsch et al. 2013) necessarily have
limited spatial resolution (or too large a physical or numer-
ical viscosity), so they may have been unable to capture the
instability4. In addition, the instability may be too weak
to be observed during the limited duration of some simula-
tions, particularly when the disc eccentricity or eccentricity
gradients do not attain large values.

In a similar way, global SPH simulations of eccen-
tric discs in superhump binaries are either two-dimensional
(Whitehurst 1988; Lubow 1991b), or they do not have suffi-
cient spatial resolution to be able to capture these instabili-
ties (Smith et al. 2007). Previous simulations have captured
the exponential growth of eccentricity due to the tidal insta-
bility of Whitehurst (1988) and Lubow (1991a), but they do
not identify a mechanism of saturation for the instability.
The instabilities that we have analysed in this paper may
provide such a mechanism, because their growth rates are
an increasing function of the eccentricity.

These instabilities may play a role in modifying the ec-
centricities of planets undergoing tidal interactions with the
protoplanetary disc. Secular interactions between the plan-
ets and the disc will redistribute the angular momentum
deficit between the various components, leading to oscilla-
tions in the disc and planet eccentricities (e.g. Papaloizou
et al. 2001; Papaloizou 2002; Goldreich & Sari 2003). When
parts of the disc become eccentric, we speculate that the
instabilities analysed here would lead to a decay of the disc
eccentricity and eccentricity gradient (this behaviour was
observed by Papaloizou 2005b). These instabilities would
therefore reduce the angular momentum deficit of the sys-
tem, and provide a mechanism for damping the eccentricities
of the planets due to their secular coupling with the disc. To
determine the efficiency of this damping process, nonlinear
calculations are required, which we defer to future work.

7 CONCLUSIONS

In this paper we have studied the hydrodynamic stability
of eccentric Keplerian discs. We have utilised a local model
similar to the conventional shearing box, which we derived
in a companion paper (OB14), to compute the vertical os-
cillations of the eccentric disc, and to analyse their result-
ing instabilities using a numerical Floquet method. We have
obtained detailed analytical understanding of the instabil-
ity for isothermal discs (Appendices B and C), as well as for

4 The simulations in Bitsch et al. (2013) of an isothermal verti-
cally structured disc have α = 0.005. The eccentricity of the disc
attains values of approximately e ∼ 0.3 and |λe′| ∼ 0.5, so the
largest wavelength instability can in principle be excited. How-
ever, the radial extent of the region of moderate disc eccentricity

is . 1, so the most strongly excited waves will have smaller ra-
dial wavelengths, with kξ & 6, n & 10, which will most likely be

damped by the viscosity adopted. Hence it is not surprising that
this instability is not observed in their simulations.

polytropic discs with any polytropic index using a WKB ap-
proximation (Appendix D), for any weak local eccentricity
and eccentricity gradient. This work considerably extends
the pioneering calculations of Papaloizou (2005a), who was
the first to identify these instabilities for the specific case of
a uniformly eccentric cylindrical disc.

We have highlighted the importance of considering
three-dimensional effects and the disc vertical structure in
order to understand the evolution of eccentric discs. This
arises because vertical oscillations of the disc are driven by
the periodic variation in the vertical gravitational accelera-
tion around an eccentric orbit (identified by Ogilvie 2001).
These oscillations provide an additional free energy source,
and an additional periodic driving, of small-scale inertial
waves. Instabilities with dynamically relevant growth rates
are found in a disc with a sufficiently large local eccentric-
ity or eccentricity gradient. Two-dimensional calculations
would be unable to capture either of these effects, and are
unlikely to correctly describe the evolution of eccentric discs.

Disc-planet interactions can generate local disc eccen-
tricity and eccentricity gradients (Papaloizou et al. 2001;
Kley & Dirksen 2006; D’Angelo et al. 2006; Bitsch et al.
2013). The secular interaction of planets with eccentric disc
modes leads to an exchange of eccentricity between the disc
and any planets orbiting within. The instabilities that we
have analysed could damp the eccentric modes in the disc.
This could provide a mechanism to damp the eccentricities
of planets that interact with their discs.

The instability that we have studied in this paper is re-
lated to the elliptical instability in fluid dynamics (e.g. Ker-
swell 2002), which is thought to be excited in tidally de-
formed discs in binary systems (Goodman 1993; Lubow et al.
1993), as well as the fluid interiors of stars and giant plan-
ets (Barker & Lithwick 2013, 2014). The nonlinear evolution
of these instabilities in a local model of a tidally deformed
disc was studied by Ryu & Goodman (1994), who found
that they resulted in sustained turbulence (or wave activ-
ity) and a tidal torque, together with some weak angular
momentum transport. Papaloizou (2005b) studied the evo-
lution of the instabilities presented in Papaloizou (2005a) in
a global cylindrical Keplerian disc with a free eccentricity.
He found that these instabilities lead to a gradual decay of
the disc eccentricity. In order to determine the astrophysical
implications of these instabilities, it is essential to perform
three-dimensional nonlinear numerical simulations of eccen-
tric discs, either using the local model derived in OB14, or in
global simulations of discs with vertical structure. We defer
such calculations to future work.
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APPENDIX A: GEOMETRICAL COEFFICIENTS

It is much simpler to use the true anomaly θ rather than time for studying the local dynamics of an eccentric disc. This is
defined by θ(λ) = φ−ω(λ), where ω(λ) is the longitude of pericentre and φ is the azimuthal angle. Here we list the coefficients
that are relevant for understanding the local instabilities of an eccentric disc. Below, primes denote differentiation with respect
to λ, while c and s denote cos θ and sin θ, respectively. J is the Jacobian of the orbital coordinates, gij are the components
of the metric tensor (and its inverse gij), Γi

jk are the components of the Levi-Civita connection, and ∆ = (1/J)∂φ(JΩ) is the
orbital velocity divergence (see OB14 for further details).

R = λ(1 + ec)−1 (A1)

Ω =

√

GM

λ3Ω2
0

(1 + ec)2 (A2)

Φ2 = (1 + ec)3 (A3)

J = λ
(1− λe′c+ ec− eλω′s)

(1 + ec)3
(A4)

gλλ =
(1 + ec)2(1 + 2ce+ e2)

(1− cλe′ + ec− esλω′)2
(A5)

λgλφ =
−es(1 + ce)2

(1− cλe′ + ec− esλω′)
(A6)

λ2gφφ = (1 + ec)2 (A7)

gλλ =
(1− cλe′ + ec− esλω′)2

(1 + ec)4
(A8)

λ−1gλφ = es
(1− cλe′ + ec− esλω′)

(1 + ec)4
(A9)

λ−2gφφ =
1 + 2ec+ e2

(1 + ec)4
(A10)

Γλ
λφ =

(sλe′ − e(c+ e)λω′)

(1 + ec)(1− cλe′ + ec− esλω′)
(A11)

λ−1Γλ
φφ =

−1

(1− cλe′ + ec− esλω′)
(A12)

λΓφ
λφ =

(1− cλe′ + ec− esλω′)

(1 + ec)
(A13)

Γφ
φφ =

2es

(1 + ec)
(A14)

λ∂λΩ = −3

2
(1 + ec)2 + 2(1 + ec)(cλe′ + esλω′) (A15)

∂φΩ = −2es(1 + ec) (A16)

∆ =
(1 + ec)(sλe′ − e(c+ e)λω′)

(1− cλe′ + ec− esλω′)
(A17)

APPENDIX B: THEORY OF LOCAL PARAMETRIC INSTABILITY IN AN ISOTHERMAL

ECCENTRIC DISC

In this section we present the theory that explains the parametric instability observed in §4 for an isothermal eccentric disc.
An instability is possible because the eccentric orbital motion of the gas, together with the periodic vertical oscillations of
the disc, couple the waves that exist in an unperturbed circular disc. The approach followed here is similar to the analysis in
Ogilvie & Latter (2013), except that the instability (in its simplest form) does not couple modes with different n.

We consider a slightly eccentric disc with a small nonzero eccentricity and eccentricity gradient. We define a small
parameter ǫ such that e, |λe′| and e|λω′| are each O(ǫ). This allows all three parameters to play a role in the instability when
ǫ ≪ 1, and gives the most general expression for the instability growth rate as a function of (e, λe′, eλω′). We also neglect
viscosity and study the instability at exact parametric resonance – it is straightforward to generalise this calculation to include
a slight detuning or damping of the resonance (e.g. Ogilvie & Latter 2013).

The laminar flows, which are the solutions of Eqs. 24–26, have the expansion

w = 3es+O(ǫ2), (B1)

g = 1 + 6ec+O(ǫ2), (B2)

f = 3ec+ λe′c+ eλω′s+O(ǫ2). (B3)
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Note that w and g− 1 do not depend on the eccentricity gradient – this is no longer the case for a polytropic disc with γ 6= 1
(see Appendix D).

We employ a multiple-time-scale expansion of the fluid variables such that

uξ
n = uξ,0

n (θ0, θ1, . . . ) + ǫuξ,1
n (θ0, θ1, . . . ) +O(ǫ2), (B4)

and so on for other variables. We define θ0 = θ and θ1 = ǫθ, so that dθ = ∂0 + ǫ∂1 + . . . , etc. The orbital motion varies
periodically with θ0, and this drives parametric instabilities that grow on the slow timescale described by θ1. We also define

Un =
[
uξ
n, u

η
n, u

ζ
n, hn

]T
.

Based on the properties of the fastest growing modes observed in our numerical calculations in §4, we study the exact
parametric instability of a pair of inertial waves with ω = ± 1

2
and the same n, so that kξ = 1

2

√
3(4n− 1). At leading order

(O(ǫ0)), this pair of linear waves can be written

U
0
n = A+

n (θ1)Û
+0

n +A−
n (θ1)Û

−0

n , (B5)

where

Û
±0

n =







±iω(ω2 − n)
1
2
(ω2 − n)
±nkξω
ikξω

2






e∓iωθ0 (B6)

are both eigenvectors of the unperturbed circular disc. The leading-order equations are

LnU
0
n = 0, (B7)

where

Ln =







∂0 −2 0 ikξ
1
2

∂0 0 0
0 0 ∂0 n
ikξ 0 −1 ∂0







, (B8)

since our chosen solution is a linear superposition of eigenvectors.
To first order (O(ǫ1)), we obtain the following system of ODEs for each n:

LnU
1
n = F

1
n +G

1
n+2, (B9)

where the effective forcing vectors F
1
n and G

1
n+2 can be obtained from the expansions of Eq. 27–30 to O(ǫ1). Note that

G
1
n+2 couples mode n with mode m = n + 2. However, there are no additional couplings to modes with m < n, so these

are “one-way” couplings, and the modes with m < n will be slaved to the mode with the maximum n. The growth rate of
the instability is therefore fully determined by considering only the largest n. We may therefore neglect G1

n+2 to analyse the
growth rate of the instability (note also that this term is exactly zero if e = 0).

For a general forcing vector with F
1
n = [an, bn, cn, dn]

T , the necessary solvability condition for the system of equations
at this order is

−kξω (−iωan + 2bn) +
(
−ω2 + 1

)
(cn − iωdn) = 0. (B10)

This condition is required to eliminate the secular terms in Eq. B9, and leads to a pair of amplitude equations relating A±
n

and their derivatives with respect to θ1:

∂1A
±
n =

±3i

4(16n− 1)

[
(4n− 1)(e+ λe′ ± ieλω′) + 12ne

]
A∓

n . (B11)

The growth rate of the instability at exact resonance is therefore

σ =
3

4

1

16n− 1

√

e2(16n− 1)2 + (4n− 1)2(λe′)2 + 2(4n− 1)(16n− 1)eλe′ + (4n− 1)2(eλω′)2 (B12)

=
3

4

1

16n− 1
| (16n− 1)E + (4n− 1)λE′| (B13)

→ 3

16

√

16e2 + (λe′)2 + 8eλe′ + (eλω′)2, as n → ∞. (B14)

This prediction is in excellent agreement with the numerically computed growth rates presented in §4 when ǫ ≪ 1. This
provides a posteriori justification that couplings between different n are not required to explain the instability in §4. We have
plotted this analytical prediction as red circles in Figs. 1 and 4. Note that this instability is weak for some combination of the
orbital parameters. In particular, for large n when λω′ = 0, the instability vanishes when λe′ = −4e (and is non-vanishing
but weak for finite n). This corresponds with the region of weak instability present in Fig. 6 (at least when ǫ ≪ 1), at which
the nonlinear coupling is found to be weak.

Several special cases of this instability can be considered.

c© 2014 RAS, MNRAS 000, 1–18
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B1 Uniformly eccentric disc

For a uniform eccentric disc with λe′ = λω′ = 0, we find

σ =
3

4
e, (B15)

independent of n. This prediction agrees with the numerically computed growth rates presented in Figs. 1 and 3 when e ≪ 1.
This result differs from the result obtained by Papaloizou (2005a) for a vertically unstructured (i.e. cylindrical) disc of

3
16
e. We have verified that we also obtain this result by re-deriving Eq. B12 with w = g − 1 = 0, and consider the limit as

n → ∞. The difference between the two predictions arises because of the additional presence of the vertical disc oscillations
in an eccentric disc when its vertical structure is considered. This provides an additional free energy source (see Appendix
C below), and an additional periodic forcing that can excite inertial waves. The instability is strongly enhanced and it is
essential to consider the vertical structure of the disc to obtain the correct growth rate.

In this case, the resulting phase relation for the pair of waves is A−
n = −iA+

n , so that the physical instability is a standing
wave whose vertical velocity is proportional to (using Eq. B5)

Re
[

A+
n e

−iωθ+ikξξ −A−
n e

iωθ+ikξξ
]

= 2|A+
n | sin

(

kξξ + φA − π

4

)

sin
(

ωθ − π

4

)

, (B16)

for example, where φA is the argument of A+
n . This consists of the superposition of a pair of travelling waves that propagate

radially in opposite directions.

B2 Circular reference orbit with a nonzero eccentricity gradient

For a disc with e = 0, the growth rate is

σ =
3

4

(
4n− 1

16n− 1

)

|λe′| → 3

16
|λe′| as n → ∞. (B17)

The instability of an eccentricity gradient is therefore somewhat weaker than the instability of eccentricity for comparable e
and |λe′|. Neverthless, larger eccentricity gradients might be expected to result from disc-companion tidal interactions. The
instability again takes the form of a standing wave, as in the case of a uniformly eccentric disc.

B3 Maximum growth rate for a given eccentricity

The maximum growth rate for a given eccentricity can be estimated by substituting the criterion for the orbits to just intersect
(Eq. 36) into the general expression for the growth rate. Note that the maximum growth rate is obtained for an untwisted
disc with the maximum positive eccentricity gradient. In this case we obtain an upper bound on the maximum growth rate,
as a function of e,

σ 6
3

16

√

25e2 + 10e+ 1 → 1.125, as e → 1. (B18)

This approximately agrees with the maximum growth rates presented in Fig. 6, except for the largest e considered, where
this estimate is no longer valid. This indicates that the growth rate for a given eccentricity can be much larger than the
corresponding instability in a disc with a uniform eccentricity of the same magnitude.

APPENDIX C: ENERGETICS OF THE INSTABILITY IN AN ISOTHERMAL DISC

In this section we construct an energy equation from Eqs. 14–17. This will allow us to understand the energetics of the
instability analysed in Appendix B. To construct the energy equation we note that mass conservation requires

∂t(ρJΩ) = −wJΩ∂ζ(ρζ), (C1)

and that

∂tgij = Ω
(

Γl
ikglj + Γl

jkgil
)

. (C2)

The covariant derivative of a contravariant vector is

∇iv
j = ∂iv

j + Γj
ikv

k. (C3)
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If we define U i to be the components of the background velocity field (orbital and vertical flow), then

∇λU
λ = Γλ

λφΩ, (C4)

∇φU
λ = Γλ

φφΩ, (C5)

∇λU
φ = ∂λΩ+ Γφ

λφΩ, (C6)

∇φU
φ = ∂φΩ+ Γφ

φφΩ, (C7)

∇zU
z = w. (C8)

We define

E =
1

2
gijv

i(vj)∗ +
1

2
|h|2, (C9)

to be the specific energy of the perturbations, so that the statement of energy (flux) conservation can be written

dt

∫ ∞

∞

ρJΩEdζ = −Re

{∫ ∞

∞

ρJΩ
[

vi(vj)∗∇iUj

]

dζ

}

(C10)

= −Re

{∫ ∞

∞

ρJΩ
[

vi(vj)∗gjk∇iU
k
]

dζ

}

, (C11)

= −Re

{∫ ∞

∞

ρJΩ
[

a11|vξ|2 + a12v
ξ(vη)∗ + a22|vη|2 + a33|vζ |2

]

dζ

}

, (C12)

assuming appropriate boundary conditions so that the boundary terms vanish (and noting that the covariant derivative of
the metric tensor is zero). We define

a11 = gλλΓ
λ
λφΩ+ gλφ(Γ

φ
λφΩ+ λ∂λΩ) = sλe′ − ceλω′ − 1

2
es+O(ǫ2), (C13)

a12 = gλλΓ
λ
φφΩ+ gλφ(Γ

λ
λφΩ+ Γφ

φφΩ+ ∂φΩ) + gφφ(Γ
φ
λφΩ+ λ∂λΩ) = −3

2
+ (e+ 2λe′)c+ 2seλω′ +O(ǫ2), (C14)

a22 = gλφΓ
λ
φφΩ+ gφφ(Γ

φ
φφΩ+ ∂φΩ) = −es+O(ǫ2), (C15)

a33 = w = 3es+O(ǫ2), (C16)

to be the nonzero components of the background (covariant) velocity gradient tensor. For a uniform circular disc, this reduces
to − 3

2
vξ(vη)∗ on the RHS, as expected. The RHS represents the exchange of energy with the vertical and orbital flows through

Reynolds stresses.
We pose a multiple-scales expansion of the energy equation and consider only terms O(ǫ1) that give a net contribution

to the energy of the unstable mode around an orbit, after integrating over θ. After each term is evaluated using the unstable
mode written down in Eq. B5, we are left with the following nonzero contributions that result from the left-hand side of the
energy equation (before computing the ζ integral)

∂1

∫ 2π

0

ρJΩE
︸ ︷︷ ︸

O(ǫ0)

dθ = ∂1

∫ 2π

0

1

2

(

|uξ,0
n |2 + |uη,0

n |2 + 1

n
|uζ,0

n |2 + |h0
n|2

)

dθ =
π(4n− 1)(20n+ 1)

64
∂1

(
|A+

n |2 + |A−
n |2

)
, (C17)

where the factor of (1/n) comes from the expansion of the vertical velocity in Hen−1 rather than Hen, and
∫ 2π

0

Ω
︸︷︷︸

O(ǫ1)

∂0 ρJΩE
︸ ︷︷ ︸

O(ǫ0)

dθ = −3π(4n− 1)2

32
e Im[A+

n (A
−
n )

∗]. (C18)

From the right-hand side of the energy equation, we obtain

−Re

∫ 2π

0

ρJΩ
︸︷︷︸

O(ǫ0)

a11
︸︷︷︸

O(ǫ1)

|uξ,0
n |2dθ =

π(4n− 1)2

64

[
(−e+ 2λe′)Im[A+

n (A
−
n )

∗]− 2eλω′Re[A+
n (A

−
n )

∗]
]
, (C19)

−Re

∫ 2π

0

ρJΩ
︸︷︷︸

O(ǫ0)

a22
︸︷︷︸

O(ǫ1)

|uη,0
n |2dθ =

π(4n− 1)2

32
e Im[A+

n (A
−
n )

∗], (C20)

−Re

∫ 2π

0

ρJΩ
︸︷︷︸

O(ǫ0)

a33
︸︷︷︸

O(ǫ1)

(1/n)|uζ,0
n |2dθ =

9π(4n− 1)n

8
e Im[A+

n (A
−
n )

∗], (C21)

−Re

∫ 2π

0

ρJΩ
︸︷︷︸

O(ǫ1)

a12
︸︷︷︸

O(ǫ0)

uξ,0
n (uη,0

n )∗dθ =
9π(4n− 1)2n

32
e Im[A+

n (A
−
n )

∗], (C22)
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−Re

∫ 2π

0

ρJΩ
︸︷︷︸

O(ǫ0)

a12
︸︷︷︸

O(ǫ1)

uξ,0
n (uη,0

n )∗dθ =
π(4n− 1)2

32

[
(e+ 2λe′)Im[A+

n (A
−
n )

∗]− 2eλω′Re[A+
n (A

−
n )

∗]
]
, (C23)

−Re

∫ 2π

0

ρJΩa12
︸ ︷︷ ︸

O(ǫ0)

(uξ,0
n (uη,1

n )∗ + uξ,1
n (uη,0

n )∗)dθ = −3π(4n− 1)2

64

[
∂1

(
|A+

n |2 + |A−
n |2

)
+ (6n+ 1)e Im[A+

n (A
−
n )

∗]
]
. (C24)

For the last term, we must use part of the solution at O(ǫ1). However, it turns out that we only require the relationship
between uξ,1

n and uη,1
n , which can be obtained for the equation for uη,1

n , which is:

∂0u
η,1
n +

1

2
uξ,1
n = −(2ec∂0 + ∂1 + nw)uη,0

n − ecuξ,0
n − 2esuη,0

n + ikξesh
0
n. (C25)

The components of this equation that we require are those that are proportional to e∓iθ/2:

−iuη,1
n + uξ,1

n |−iθ/2 =
4n− 1

16

[
4∂1A

+
n + (6n+ 1)ieA−

n

]
, (C26)

iuη,1
n + uξ,1

n |iθ/2 =
4n− 1

16

[
4∂1A

−
n − (6n+ 1)ieA+

n

]
. (C27)

Note also that
∫ ∞

−∞

e−
ζ2

2 Hen(ζ)Hen′(ζ)dζ = n!
√
2πδnn′ , (C28)

∫ ∞

−∞

ρJΩ [Hen(ζ)]
2 dζ =

∫ ∞

−∞

JΩef−g ζ2

2 [Hen(ζ)]
2 dζ = n!

√
2π [1− 6nec] +O(ǫ2). (C29)

After all this work, we can combine Eqs. C17–C24 to obtain an energy equation for the unstable modes:

π(4n− 1)(16n− 1)

32
∂1

(
|A+

n |2 + |A−
n |2

)
=

3π(4n− 1)

32

[
(16n− 1)e Im[A+

n (A
−
n )

∗]

+(4n− 1)
(
λe′Im[A+

n (A
−
n )

∗]− eλω′Re[A+
n (A

−
n )

∗]
)]

, (C30)

from which we can obtain the growth rate previously written down in Eq. B12 after looking for growing modes with A+
n , A

−
n ∝

eσθ1 . This calculation is useful in two ways. Firstly, it allows us to check Eq. B12 by providing an alternative derivation of
the growth rate of the instability. This is comforting. Secondly, it allows us to determine the primary energy source driving
the instability in each case. Note that there is an exact cancellation of terms O(n3) between Eqs. C22 and C24, which would
otherwise dominate the right-hand side. The coefficient in square brackets of the first term on the right-hand side of Eq. C30
is made up of a factor of 4n− 1, which arises even in the absence of laminar flows, and a factor of 12n that follows from the
inclusion of the vertical laminar flows (the final two terms in the square brackets, involving the eccentricity gradient, are not
affected by the laminar flows for an isothermal disc).

For a uniformly eccentric disc, the largest individual term (at O(ǫ1)) that does not cancel is clearly Eq. C21, which repre-
sents the extraction of energy from the vertical oscillation of the disc. The ratio of this contribution to the total contribution
for a uniformly eccentric disc is 12n/(16n−1) → 3/4 for large n. The next largest term comes from Eq. C18, which represents
the amplification of perturbation energy through the time variation of the orbital angular velocity. On the other hand, if
the laminar vertical flows in the disc are artificially neglected, Eq. C21 does not contribute, and the remaining terms give
the smaller growth rate obtained by Papaloizou (2005a) in the limit n → ∞. This again illustrates the importance of these
vertical flows for the instability.

APPENDIX D: WKB THEORY OF PARAMETRIC INSTABILITY IN A NEUTRALLY STRATIFIED

POLYTROPIC DISC

In this section we perform a local stability analysis of an eccentric disc using a WKB approximation, in a neutrally stratified

disc with any polytropic (adiabatic) index np. That is, we consider a circular equilibrium disc with p = Kρ
1+ 1

np , where
γ = 1 + 1

np
for a neutrally stratified (adiabatic) disc. We do not consider stably (or unstably) stratified discs, since the

relevant inertial modes are then spatially localised near to the mid-plane (Korycansky & Pringle 1995; Ogilvie 1998), which
requires taking into account their vertical structure, thereby complicating matters. The approach taken here is somewhat
similar to that for an isothermal disc presented in Appendix B, though there are some differences, which will be highlighted
below. The calculation in this section is an extension of Papaloizou (2005a) to take into account an eccentricity gradient, the
vertical structure (and oscillations) of the disc, as well as any adiabatic index (for a neutrally stratified disc).

In the WKB approximation, axisymmetric inertial perturbations of an eccentric disc are incompressible (e.g. Ogilvie
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1998), and satisfy (cf. Eqs 14–17):

Ω∂θv
ξ + wζ∂ζv

ξ + 2Γλ
λφΩv

ξ + 2Γλ
φφΩv

η = −gλλ∂ξh, (D1)

Ω∂θv
η + wζ∂ζv

η +
(

∂λΩ+ 2Γφ
λφΩ

)

vξ +
(

∂φΩ+ 2Γφ
φφ

)

vη = −λgλφ∂ξh, (D2)

Ω∂θv
ζ + wζ∂ζu

ζ + wvζ = −∂ζh, (D3)

0 = −∂ξv
ξ − ∂ζv

ζ . (D4)

We analyse the solutions of these equations using Kelvin (shearing) waves with a θ-dependent vertical wavenumber kζ(θ),

vξ = Re
[

ûξeikξξ+ikζ(θ)ζ−iωθ
]

, (D5)

and so on, where we subsequently drop the hats on the perturbations (we also introduce an extra factor of λ−1 in the vη

component of the solution so that ûη has units of a velocity). These are locally plane waves with vertical wavelengths that
stretch in concert with the vertical oscillations of the disc. Our reason for choosing an evolving vertical wavenumber is to
eliminate the terms that are linear in ζ from Eqs D1–D4, which is accomplished by requiring

Ωdθkζ = −wkζ . (D6)

The laminar flow solutions no longer satisfy Eq. 24–26, and are instead the solutions of

(1 + e cos θ)2dθw + w2 = −(1 + e cos θ)3 + g, (D7)

(1 + e cos θ)2dθg = −(γ − 1)∆g − (γ + 1)wg. (D8)

These have the following 2π-periodic solutions:

g = 1 +

(
γ + 1

γ

)

3ec−
(
γ − 1

γ

)

(cλe′ + seλω′) +O(ǫ2), (D9)

w =
3es

γ
+

(
γ − 1

γ

)

(−sλe′ + ceλω′) +O(ǫ2), (D10)

kζ = k0
ζ

[

1 +
3ec

γ
−

(
γ − 1

γ

)

(cλe′ + seλω′)

]

+O(ǫ2), (D11)

which reduce to the solutions obtained in Appendix B for an isothermal disc when γ = 1. Note, that an eccentricity gradient
plays a role in driving these oscillations when γ 6= 1, unlike for the case of an isothermal disc.

We define a small parameter ǫ such that e, |λe′| and e|λω′| are each O(ǫ), and use a multiple-time-scales expansion as in
Appendix B. We consider an instability of a pair of inertial waves with ω = ± 1

2
, with a single vertical wavenumber k0

ζ = n
(where n is used as a label for the mode), which can be written as

U
0
n = A+

n (θ1)Û
+0

n +A−
n (θ1)Û

−0

n , (D12)

where Un =
[
uξ
n, u

η
n, u

ζ
n, hn

]T
, and the eigenvectors are

Û
±0

n =








±iω
1
2

∓i
kξ

kζ
ω

−i
kξ

k2

ζ

ω2







e∓iωθ0 . (D13)

The corresponding system at O(ǫ0)

LnU
0
n = 0, (D14)

where

Ln =







∂0 −2 0 ikξ
1
2

∂0 0 0
0 0 ∂0 ik0

ζ

kξ 0 k0
ζ 0







, (D15)

The associated solvability condition for a general forcing vector F is:

−iωan + 2bn + iω
kξ
kζ

cn − kξ
k2
ζ

ω2dn = 0, (D16)

which allows us to obtain the amplitude equations for the two waves at O(ǫ1):

∂1A
±
n = ∓ 3

16γ

[
(3 + γ)e+ λe′ ± ieλω′

]
A∓

n . (D17)
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The growth rate of the instability at exact resonance is therefore

σ =
3

16γ

√

(3 + γ)2e2 + (λe′)2 + 2(3 + γ)eλe′ + e2(λω′)2, (D18)

=
3

16γ
| (3 + γ)E + λE′|. (D19)

This is equivalent to the result for the isothermal disc (Eq. B12, when n → ∞). Note that when γ = 5
3
, the instability

of a uniformly eccentric disc has a growth rate σ = 21
40
e ≈ 0.525e, which is somewhat smaller than the isothermal (most

compressible case) but is still significantly enhanced over the case in which the vertical structure of the disc is neglected ( 3
16
e).

We can conclude from this that taking into account the vertical structure of the disc can significantly amplify the growth
rate for any realistic adiabatic index with γ ≈ 1.4−1.7. The strongest amplification is clearly for the isothermal disc; however,
the vertical oscillations of the disc play an important role for any realistic adiabatic index.

D1 Incompressible limit

The incompressible (γ → ∞) limit of the equations gives the laminar solutions

w = −∆, (D20)

g = (1 + e cos θ)3 +∆2 − (1 + e cos θ)2dθ∆, (D21)

where ∆ is known in advance based on the local properties of the Keplerian orbit. The thickness of disc varies only if there
is a nonzero orbital velocity divergence – whenever the orbital streamlines bunch up, this forces the disc to become thicker
since the fluid is incompressible. The instability in this case has growth rate

σ =
3

16
e, (D22)

which is independent of the local eccentricity gradient.
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